高光谱遥感080705(3)
- 格式:pdf
- 大小:1.52 MB
- 文档页数:50
高光谱遥感名词解释
1.高光谱遥感(Hyperspectral Remote Sensing):是遥感技术的一种,利用高光谱数据进行地物信息的提取。
高光谱遥感能够提供每个像元的数十至数百个波段的光谱数据,这些数据可以用来识别不同类型的地物,对地表的物理、化学和生物属性进行精确的定量分析。
2.光谱(Spectrum):是由不同波长的光组成的光线。
在高光谱遥感中,探测器可以测量出每个像元的光谱,也就是不同波长的光在该像元的反射率或辐射率的值。
3.反射率(Reflectance):是地物表面反射入射光的比率,是高光谱遥感中的一个重要参数。
不同地物的反射率在不同波段上表现出不同的特征,可以用来识别地物类型。
4.特征提取(Feature extraction):是高光谱遥感中的重要分析方法,通过数学和统计学方法对光谱数据进行处理,提取出地物的光谱特征,如反射率峰值、谷值和斜率等,用来识别地物类型和进行精确分类。
5.分类(Classification):是将地物根据其光谱特征划分为不同的类别的过程。
高光谱遥感中常用的分类方法包括基于像素的分类、基于物体的分类和基于混合像元的分类等。
6.多光谱遥感(Multispectral Remote Sensing):和高光谱遥感相似,但是只能提供少数几个波段的光谱信息。
多光谱遥感常用于地物类型的粗略分类,而高光谱遥感更加适用于地物的精细分类和属性分析。
高光谱遥感数据的分类与分析研究高光谱遥感是利用遥感技术获取地球表面光谱信息的一种方法。
相比传统的遥感图像,高光谱图像包含大量的波段信息,能够更详细地反映地物的光谱特征。
因此,在农业、林业、环境等领域中都有着广泛应用。
然而,高光谱图像数据的单个像元(spectral pixel)往往包含大量信息,需要对其进行分类与分析,以便更好地理解和利用数据。
本文将从数据预处理、特征提取及分类算法等方面进行探讨。
一、数据预处理高光谱遥感图像获取不易,数据来源也多种多样,因此其数据质量的影响也难以避免。
常见的高光谱图像预处理方法包括图像增强、谱带选择和噪声去除等。
其中,图像增强可以利用类似直方图均衡化的方法,使图像对比度更高,便于观察和处理;谱带选择则是针对图像中一个区域的不同波段信息不同的情况,选择最优波段进行分析;噪声去除则是利用相邻像元之间的相关性来消除噪声的影响,提高数据质量。
二、特征提取高光谱图像中的像元包含大量信息,如何提取其中的特征并描述其各自所代表的地物类型是分类的第一步。
常见的特征提取方法包括传统的像元反射率(spectral reflectance)、指数特征(index feature)和主成分分析(principal component analysis, PCA)等。
其中,像元反射率描述了不同波段下地物的表面反射率特征,但由于单个波段反射率上下界的存在,其描述能力受到限制。
指数特征则将多个波段特征汇总成一个指数值,虽然降低了特征维度,但是对于某些地物类型特征不明显的情况下,其分类效果有限。
PCA则是通过线性代数的方法将原始数据映射至一个低纬度空间中,使数据间相关性最小化,从而提取具有大量信息的新特征,具有较好地分类效果。
三、分类算法特征提取之后,需要进行分类算法的选择。
目前常见的分类算法包括支持向量机(support vector machine, SVM)、随机森林(random forest)、人工神经网络(artificial neural network, ANN)等。
高光谱遥感的原理与应用1. 高光谱遥感技术简介•高光谱遥感是一种用于获取地面物体光谱信息的遥感技术。
•与传统遥感技术相比,高光谱遥感具有更高的波段分辨率和更丰富的光谱信息。
•高光谱遥感技术的原理是通过采集地面物体在可见光和近红外波段的光谱反射信息,来获取物体的光谱特征。
2. 高光谱遥感的原理•高光谱遥感利用高光谱仪器来收集地面物体在一系列窄波段上的光谱反射数据。
•高光谱仪器通常由特定波段的传感器阵列组成,每个传感器负责收集一个波段的光谱数据。
•地面物体的光谱特征可以通过分析被收集到的光谱数据来确定。
3. 高光谱遥感的应用领域•农业:利用高光谱遥感技术可以监测作物的生长状态、优化农田管理以及检测病虫害等问题。
•矿产资源勘探:高光谱遥感可以检测矿产资源的类型和分布,有助于矿产资源勘探和开发。
•环境监测:高光谱遥感可以监测水体质量、土壤污染程度等环境参数,有助于环境保护和资源管理。
•森林火灾监测:通过高光谱遥感技术可以实时监测森林火灾的扩散情况,有助于及时采取灭火措施。
•城市规划:高光谱遥感可以提供城市土地利用信息,有助于城市规划和土地管理。
4. 高光谱遥感技术的优势•高光谱遥感技术具有较高的波段分辨率,可以获取更详细的光谱信息。
•高光谱遥感技术可以提供更准确的地物分类和识别能力。
•高光谱遥感技术可以探测隐蔽的物体特征,对物体的构成和结构提供更深入的了解。
•高光谱遥感技术具有较高的空间分辨率,可以提供更精细的地物信息。
5. 高光谱遥感技术的挑战和发展方向•数据处理:高光谱遥感技术生成的数据量巨大,对数据处理的算法和技术提出了新的挑战。
•传感器技术:高光谱遥感仪器的性能和稳定性需要不断提升,以满足复杂环境下的需求。
•数据标定和校正:高光谱遥感数据需要进行标定和校正,来消除传感器和大气等因素对数据的影响。
•数据分析和解释:高光谱遥感技术生成的数据需要进行分析和解释,以提取有用的地物信息。
6. 结论高光谱遥感技术是一种重要的遥感技术,具有广泛的应用前景。
高光谱遥感的原理及应用1. 概述高光谱遥感是一种在更多波段上获取图像数据的遥感技术。
与传统的遥感技术相比,高光谱遥感可以捕捉更丰富的光谱信息,对地表物质进行更精细的分类与分析。
本文将介绍高光谱遥感的基本原理和其在各个领域的应用。
2. 基本原理在高光谱遥感中,传感器能够获取地表物质在连续的较窄波段范围内反射或辐射的能量。
这些数据形成了一个高光谱数据立方体,其中的每个像素都包含了多个波段的光谱信息。
高光谱遥感数据的采集过程包括以下几个步骤:•辐射校正:对于每个波段的数据,需要进行辐射校正,将辐射强度转换为辐射亮度温度或辐射亮度值。
•大气校正:由于大气对辐射的吸收和散射会对数据产生影响,需要进行大气校正以消除这些影响。
•几何校正:将采集到的数据进行几何校正,使其与地表物质之间的关系更加精确。
•光谱校正:由于传感器的响应可能会随时间而变化,需要进行光谱校正以使数据具有更高的精度和一致性。
3. 应用领域高光谱遥感技术在许多领域中都有广泛的应用,下面将介绍其中的几个主要领域。
3.1 农业高光谱遥感可以提供农作物的生长状况和营养需求的信息,帮助农民制定合理的施肥和灌溉计划。
通过监测作物的反射光谱,可以检测到病虫害的存在并进行预警。
此外,高光谱遥感还能够分析土壤特性,评估土壤质量和植被覆盖度。
3.2 环境监测高光谱遥感可以用于监测和评估环境变化及污染状况。
通过分析海洋、湖泊和河流的水质,可以检测到水体中的有害物质和蓝藻水华等问题。
同时,利用高光谱遥感技术还可以监测空气质量,识别并追踪大气污染源。
3.3 建筑与城市规划高光谱遥感可以提供高精度的地物分类和识别能力,有助于建筑和城市规划的设计与评估。
通过分析建筑物材料的光谱特征,可以对建筑物进行3D建模和监测。
此外,在城市规划中,高光谱遥感可以用于检测土地利用、土地覆盖和城市扩展等方面的变化。
3.4 自然资源管理高光谱遥感技术在自然资源管理中有广泛的应用。
利用高光谱遥感数据,可以对森林、湿地和荒漠等自然环境进行监测和分析。
高光谱遥感原理
高光谱遥感是一种使用高光谱仪器获取地物和目标物质光谱信息的遥感技术。
它通过获取不同波长范围内的光谱数据,从而分析和识别地表物质的成分、结构和特征。
高光谱遥感利用高光谱仪器(例如光谱辐射计或光谱成像仪)能够分辨不同的波长,从紫外线到红外线范围的电磁波谱。
这些仪器通常使用分光技术将不同波长范围的光分解成若干个独立的光谱带,可以获取到数百个波段的光谱数据。
在高光谱遥感中,遥感仪器通过航空或卫星平台获取地面上的光谱信息。
当光线照射到地面物体上时,不同的物质会对不同波长的光有特定的反射、散射或吸收特性,形成其独特的光谱信号。
高光谱仪器能够测量并记录这些光谱信号的强度。
通过分析和解译高光谱数据,可以确定地表物质的组成、含量和分布。
不同的物质对不同波段的光具有特定的光谱特征,这些特征可以用来区分不同的地物类型,如植被、岩石、水体等。
高光谱遥感也可以用于环境监测、农业管理、矿产勘探等领域。
总之,高光谱遥感原理是利用高光谱仪器获取地物光谱信息,通过分析和解译这些光谱数据来识别和研究地表物质的特征和属性。
高光谱遥感• • • •高光谱遥感的基本概念 高光谱遥感器及平台简介 高光谱遥感技术 高光谱应用概况高光谱遥感的基本概念• 高光谱分辨率(简称为高光谱)遥感或成像光 谱遥感技术的发展是过去二十年中人类在对地 观测方面所取得的重大技术突破之一,是当前 遥感的前沿技术。
它是指利用很多很窄的电磁 波波段获取许多非常窄且光谱连续的图像数据 的技术,融合了成像技术和光谱技术,准实时 地获取研究对象的影像和每个像元的光谱分布。
国际遥感界认为光谱分辨率在10-1λ数量级范围内的为多 光谱(Multispectral),这样的遥感器在可见光和近红外光谱区 只有几个波段,如美陆地卫星TM和法国SPOT卫星等; 光谱分 辨率在10-2λ的遥感信息称之为高光谱(Hyperspectral)遥感。
由 于其光谱分辨率高达纳米(nm)数量级,往往具有波段多的特 点,即在可见到近红外光谱区其光谱通道多达数十甚至超过 100以上。
随着遥感光谱分辨率的进一步提高,在达到10-3λ 时,遥感即进入了超高光谱(Ultraspectral)阶段 、光谱区域(nm) : 400 700 1100 2500 5500 14000VIS VNIRPIRMIRSunlight 光谱分辨率 波段数 多光谱 高光谱 5-10 100-200 Δλ/λ 0.1 0.01 VNIR 50-100 5-20IRTMIR 100-200 10-50IRT 1000-2000 100-500高光谱遥感的基本概念高光谱遥感起源于20世纪70年代初的多光谱遥 感,它将成像技术与光谱技术结合在一起,在对目标 的空间特征成像的同时,对每个空间像元经过色散 形成几十乃至几百个窄波段以进行连续的光谱覆 盖,这样形成的遥感数据可以用“图像立方体”来形 象的描述.同传统遥感技术相比, 其所获取的图像包 含了丰富的空间,辐射和光谱三重信息。
高光谱遥感的基本概念高光谱遥感的基础是波谱学,早在20世纪初波 谱学就被用于识别分子和原子的结构。
高光谱遥感技术应用的原理1. 引言高光谱遥感技术是一种基于光谱信息的遥感技术,通过对地面物体反射、辐射或辐射传输特性进行监测和分析,实现对地表目标的信息获取。
该技术具有高光谱分辨率、高光谱信噪比以及高光谱空间分辨率等特点,因此在农业、环境监测、地质勘探等领域得到了广泛的应用。
2. 高光谱遥感技术的原理高光谱遥感技术利用地物在不同波段上的反射光谱特征来获取地面目标的相关信息。
其原理包括光谱分辨和光谱解译两个过程。
2.1 光谱分辨光谱分辨是高光谱遥感技术的核心环节之一,包括数据采集、数据处理和数据解译三个步骤。
2.1.1 数据采集高光谱遥感技术通过传感器记录地表目标的反射光谱,传感器可以是飞机、卫星或无人机等设备。
传感器在不同波段上接收地物的辐射能量,并将其数字化储存。
2.1.2 数据处理数据处理是光谱分辨过程的关键步骤,包括辐射定标、大气校正和几何校正等。
辐射定标是将数字化的辐射能量转换为辐射亮度,大气校正则是消除大气等因素对辐射亮度的影响,几何校正用于纠正传感器位置和姿态带来的影响。
2.1.3 数据解译数据解译是对高光谱影像图进行光谱特征提取、光谱分类和目标识别等过程。
光谱特征提取是将影像中的光谱信息与地物特征进行关联,光谱分类是将不同地物的光谱特征划分为不同的类别,目标识别则是根据光谱特征进行地物的识别和定位。
2.2 光谱解译光谱解译是根据光谱信息对地物进行分类和识别的过程。
该过程包括光谱库的建立、光谱曲线的拟合和光谱特征的提取等步骤。
2.2.1 光谱库的建立光谱库是包含不同地物光谱特征的数据库,通过采集不同地物的光谱信息,构建光谱库,为后续的光谱解译提供参考。
2.2.2 光谱曲线的拟合光谱曲线的拟合是将采集到的光谱数据与光谱库中的光谱特征进行比对和匹配,找出与之最相似的地物光谱曲线。
2.2.3 光谱特征的提取光谱特征的提取是对光谱曲线中的特征进行统计和分析,如光谱平均值、光谱峰值和光谱波宽等,从而得出地物的光谱特征。
高光谱遥感是高光谱分辨率遥感(Hyperspectral Remote Sensing)的简称。
它是在电磁波谱的可见光,近红外,中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术(Lillesand & Kiefer 2000)。
其成像光谱仪可以收集到上百个非常窄的光谱波段信息。
简介高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。
高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。
发展国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为多光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为高光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspeetral)阶段。
我国高光谱遥感的发展遥感对地观测要解决的两个重要问题,一是几何问题,二是物理问题。
前者正是摄影测量的目标,后者则要回答观测的对象是什么?这就是遥感问题。
图像和光谱是人们在纷繁的大千世界中认识事物,以至识别所要寻求的对象最重要的两种依据。
图像为解决地物的几何问题提供了基础,光谱往往反映了地物所特有的物理性状。
现代遥感技术的发展,使得地物的成像范围不仅延伸到人们不可见的紫外和红外波长区,而且可以在人们需要的任何波段独立成像或连续成像。
高光谱遥感的光谱分辨率高于百分之一波长达到纳米(nm)数量级,其光谱通道数多达数十甚至数百。
高光谱或成像光谱技术就是将由物质成分决定的地物光谱与反映地物存在格局的空间影像有机地结合起来,对空间影像的每一个像素都可赋予对它本身具有特征的光谱信息。
遥感影像和光谱的合一,实现了人们认识论中逻辑思维和形象思维的统一,大大提高了人们对客观世界的认知能力,为人们观测地物、认识世界提供了一种犀利手段,这无疑是遥感技术发展历程中的一项重大创新。
高光谱在遥感技术的应用高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一•作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。
随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。
本文主要阐述高光谱遥感的特点和主要应用。
1高光谱遥感孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。
[1]高光谱遥感具有较高的光谱分辨率,通常达到10〜2入数量级。
[2]1.1高光谱遥感特点综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点:(1)波段多,波段宽度窄。
成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。
[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm)成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。
[4](2)光谱响应范围广,光谱分辨率高。
成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。
[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。
精细的光谱分辨率反映了地物光谱的细微特征。
(3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。
在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1条完整、连续的光谱曲线,即所谓的“谱像合一”。
(4)数据量大,信息冗余多。
高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。
(5)数据描述模型多,分析更加灵活。
高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。