大学高等数学_函数
- 格式:ppt
- 大小:1.39 MB
- 文档页数:48
大学高等数学第一章函数习题精讲数学作为一门基础学科,在大学的学习中扮演着重要的角色。
其中,高等数学作为数学学科中的重要组成部分,对于提高学生的数学素养和培养逻辑思维能力具有至关重要的作用。
大学高等数学第一章函数是学习高等数学的第一步,是打好数学基础的关键。
本文将对大学高等数学第一章函数习题进行精讲,帮助学生更好地理解和掌握相关知识。
第一节求函数的定义域和值域在函数的相关概念中,定义域和值域是非常重要的内容。
定义域指的是函数在哪些实数上有定义,而值域则是函数所能取到的所有值的集合。
在求函数的定义域和值域时,需要根据函数的具体特点来进行分析。
例题1:对于函数f(x) = √(x + 1),求函数的定义域和值域。
解析:首先,要使函数有意义,要求x + 1 ≥ 0,即x ≥ -1。
所以函数的定义域为 [-1, +∞)。
然后,考虑函数的值域,由于x + 1 ≥ 0,所以函数的平方根√(x + 1) ≥ 0,即函数的值域为[0, +∞)。
例题2:对于函数 g(x) = 1 / (x - 3),求函数的定义域和值域。
解析:首先,要使函数有意义,要求 x - 3 ≠ 0,即x ≠ 3。
所以函数的定义域为 (-∞, 3) ∪ (3, +∞)。
然后,考虑函数的值域,由于 x - 3 ≠ 0,因此函数 g(x) 可以取到任意实数值,所以函数的值域为 (-∞, +∞)。
第二节求函数的奇偶性在函数的研究中,了解函数的奇偶性是十分重要的。
奇函数是指满足 f(-x) = -f(x) 的函数,而偶函数是指满足 f(-x) = f(x) 的函数。
通过判断函数的奇偶性,可以简化计算和图像的分析。
例题3:判断函数 f(x) = x^3 是否为奇函数。
解析:对于任意实数 x,有 f(-x) = (-x)^3 = -x^3。
而 f(x) = x^3。
由于 f(-x) = -f(x),所以函数 f(x) = x^3 是一个奇函数。
例题4:判断函数 g(x) = x^2 + 3 是否为偶函数。
大学高等数学第一章函数函数是数学中的基础概念之一,广泛应用于各个学科领域。
本文将从函数的定义、分类和性质等方面进行论述,并探讨函数在现实生活和学术研究中的应用。
一、函数的定义函数是一种映射关系,将一个集合的每个元素都对应到另一个集合的唯一元素。
简单来说,函数就是一种输入和输出之间的关系。
数学上常用 f(x) 表示函数,其中 x 是自变量,f(x) 是函数的值。
二、函数的分类函数可以按照不同的变量类型进行分类,常见的分类包括:1. 数字函数:自变量和函数值都是实数的函数,如 f(x) = 2x + 1。
2. 向量函数:自变量是实数,函数值是向量的函数,如 f(t) = (cos t, sin t)。
3. 多元函数:自变量是多个实数,函数值是实数的函数,如 f(x, y) = x^2 + y^2。
4. 参数方程:自变量是参数,函数值是一组参数对应的点的坐标,如 x = 2t, y = 3t。
三、函数的性质函数具有以下一些重要性质:1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
2. 奇偶性:如果对于定义域内的任意 x,满足 f(-x) = -f(x),则函数是奇函数;如果满足 f(-x) = f(x),则函数是偶函数。
3. 单调性:如果对于任意的 x1 和 x2,当 x1 < x2 时有 f(x1) < f(x2),则函数是递增函数;如果满足 f(x1) > f(x2),则函数是递减函数。
4. 对称轴和顶点:对于二次函数 y = ax^2 + bx + c,它的对称轴是 x = -b/2a,顶点坐标为 (-b/2a, f(-b/2a))。
四、函数的应用函数在现实生活和学术研究中有着广泛的应用。
以下是一些例子:1. 物理学:函数用于描述运动过程中的位移、速度和加速度等物理量的关系。
2. 经济学:函数被用于模拟经济行为和预测市场走势,如供求函数、收益函数等。
第一章函数历年试题模拟试题课后习题(含答案解析)[单选题]1、设函数,则f(x)=()A、x(x+1)B、x(x-1)C、(x+1)(x-2)D、(x-1)(x+2)【正确答案】B【答案解析】本题考察函数解析式求解.,故[单选题]2、已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是().A、[1,3]B、[-1,5]C、[-1,3]D、[1,5]【正确答案】A【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题]3、设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为().A、[0,2]B、[0,16]C、[-16,16]D、[-2,2]【正确答案】D【答案解析】根据f(x)的定义域,可知中应该满足:[单选题]4、函数的定义域为().A、[-1,1]B、[-1,3]C、(-1,1)D、(-1,3)【正确答案】B【答案解析】根据根号函数的性质,应该满足:即[单选题]写出函数的定义域及函数值().A、B、C、D、【正确答案】C【答案解析】分段函数的定义域为各个分段区间定义域的并集,故D=(-∞,-1]∪(-1,+∞).[单选题]6、设函数,则对所有的x,则f(-x)=().A、B、C、D、【正确答案】A【答案解析】本题考察三角函数公式。
.[单选题]7、设则=().A、B、C、D、【正确答案】B【答案解析】令则,故[单选题]8、则().A、B、C、D、【正确答案】D【答案解析】[单选题]9、在R上,下列函数中为有界函数的是().xA、eB、1+sin xC、ln x【正确答案】B【答案解析】由函数图像不难看出在R上e x,lnx,tanx都是无界的,只有1+sinx可能有界,由于|sinx|≤1,|1+sinx|≤1+|sinx|≤2所以有界.[单选题]10、不等式的解集为().A、B、C、D、【正确答案】D【答案解析】[单选题]11、().A、B、C、D、【正确答案】A【答案解析】根据二角和公式,[单选题]12、函数的反函数是().A、B、C、D、【正确答案】A【答案解析】由所以,故.[单选题]13、已知则().A、B、C、D、【正确答案】C【答案解析】[单选题]14、已知为等差数列,,则().A、-2B、1C、3D、7【正确答案】A因为同理可得:故d=a4-a3=-2.[单选题]15、计算().A、B、C、D、【正确答案】A【答案解析】根据偶次根式函数的意义,可知,故[单选题]16、计算().A、0B、1C、2D、4【正确答案】C【答案解析】原式=[单选题]将函数|表示为分段函数时,=().A、B、C、D、【正确答案】B【答案解析】由条件[单选题]18、函数f(x)=是().A、奇函数B、偶函数C、有界函数D、周期函数【正确答案】C【答案解析】易知不是周期函数,,即不等于,也不等于,故为非奇、非偶函数.,故为有界函数.[单选题]19、函数,则的定义域为().A、[1,5]C、(1,5]D、[1,5)【正确答案】A【答案解析】由反正切函数的定义域知:,故定义域为[1,5].[单选题]20、下列等式成立的是()A、B、C、D、【正确答案】B【答案解析】A中(e x)2=,C中,D中[单选题]21、下列函数为偶函数的是()A、y=xsinxB、y=xcosxC、y=sinx+cosxD、y=x(sinx+cosx)【正确答案】A【答案解析】sinx是奇函数,cosx是偶函数。
高等数学函数讲解大学教材高等数学是大学数学学科中一门重要的课程,其中函数是一个关键概念。
函数是数学中的一种映射关系,它在数学和实际问题中都有广泛应用。
本文将对大学教材中关于高等数学函数的讲解进行介绍,帮助读者更好地理解和掌握这一概念。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合中的元素映射到另一个集合中的元素。
在大学教材中,函数的定义通常是这样的:设A和B是两个非空集合,如果按照某种确定的对应关系f,对于A中的每个元素x,都恰好有一个唯一的元素y与之对应,那么就称f是从A到B的一个函数。
函数通常用符号表示,如f(x)或者y = f(x)。
函数具有以下几个重要的性质:1. 定义域与值域:函数的定义域指的是自变量x的取值范围,值域指的是因变量y的取值范围。
2. 单调性:函数的单调性描述了函数在自变量增大时,因变量的变化趋势。
有增函数、减函数、严格增函数、严格减函数等概念。
3. 奇偶性:奇函数和偶函数是函数特殊的分类,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
4. 周期性:周期函数具有一定的周期,即f(x+T) = f(x),其中T是正常数。
二、常见的函数类型在大学教材中,常见的函数类型包括多项式函数、有理函数、指数函数、对数函数、三角函数、反三角函数等。
1. 多项式函数:多项式函数是由常数和自变量的幂次方乘积所组成的函数。
多项式函数的最高次项的次数决定了函数的阶数。
2. 有理函数:有理函数是多项式函数除以另一个多项式函数得到的函数。
有理函数的定义域为所有使得分母不为零的实数。
3. 指数函数:指数函数是以指数为变量的函数,形式为f(x) = a^x,其中a是一个正实数。
4. 对数函数:对数函数是指数函数的反函数,形式为f(x) = loga(x),其中a是一个大于0且不等于1的实数。
5. 三角函数:三角函数根据单位圆上点的坐标定义,包括正弦函数、余弦函数、正切函数等。
大一高数知识点基本定义高等数学(高数)作为大学数学课程的重要组成部分,是一门基础性课程。
在大一学习高数的过程中,我们需要掌握一些基本的知识点和定义。
本文将依次介绍大一高数中的基本定义,包括函数、极限、导数和微分等方面的知识。
一、函数的定义函数是一种数学映射关系,它将自变量的取值通过一个对应关系映射到因变量的值上。
函数可以用数学表达式或者图形来表示。
在高数中,我们常常用f(x)来表示函数,其中x是自变量,f(x)是因变量。
二、极限的定义在高数中,极限是指当自变量趋近于某个特定值时,函数的取值接近于某个确定的值。
极限可以用数学符号表示,例如lim(x→a) f(x) = L,表示当x趋近于a时,f(x)的极限是L。
三、导数的定义导数是函数在某一点上的变化率,表示为函数值对自变量的微小变化比例的极限。
导数可以用数学符号表示,例如f'(x)或者dy/dx,其中f'(x)表示函数f(x)的导数。
四、微分的定义微分是导数的一个应用,它常常用于研究函数在某一点上的局部性质。
微分可以用数学符号表示,例如df(x)或者dy,其中df(x)表示函数f(x)的微分。
五、连续的定义在高数中,连续是指函数在某一点上存在极限,并且这个极限与函数在该点的取值相等。
换句话说,如果函数在某一点连续,则函数值与极限值是相等的。
总结:大一高数知识点基本定义包括函数、极限、导数和微分等方面的内容。
在学习高数的过程中,我们需要理解这些基本定义的含义,并能够用数学符号来表示和应用。
只有掌握了这些基本概念,才能够深入学习和理解更高级的数学知识。
通过不断的练习和实践,我们可以逐渐提高对这些知识点的理解和运用能力。
希望本文对大一学习高数的同学有所帮助。
大学高等数学函数函数是数学中的重要概念,广泛应用于各个领域。
在大学高等数学学科中,函数的概念和性质是学生必须深入理解和掌握的内容之一。
本文将介绍函数的定义、基本性质以及常见函数类型的特点,帮助读者更好地理解和应用函数。
一、函数的定义函数是将一个集合的每个元素映射到另一个集合的规则。
一般来说,函数可以表示为$f: X \rightarrow Y$,其中$X$和$Y$分别表示自变量和因变量的集合。
对于自变量$x \in X$,通过函数$f$的映射,可以得到唯一的因变量$y \in Y$。
函数的定义包含了以下要素:1. 函数名:用字母表示,如$f$;2. 自变量集合:表示函数的输入,如$X$;3. 因变量集合:表示函数的输出,如$Y$;4. 函数规则:描述了自变量和因变量的映射关系。
二、函数的基本性质1. 定义域和值域:函数的定义域是自变量的取值范围,决定了函数的输入范围。
值域是函数的所有可能输出值的集合,决定了函数的输出范围。
2. 单调性:函数可以是增加的(严格单调递增或非严格单调递增)、减少的(严格单调递减或非严格单调递减)或不变的。
单调性可以通过函数的导数来判断。
3. 奇偶性:函数的奇偶性由函数的定义域关于原点的对称性决定。
如果对于定义域中的每个$x$,有$f(-x) = f(x)$成立,则函数为偶函数;如果对于定义域中的每个$x$,有$f(-x) = -f(x)$成立,则函数为奇函数。
4. 周期性:函数在自变量上以固定的周期重复。
周期性常见于三角函数等特定函数类型中。
三、常见函数类型1. 多项式函数:多项式函数是由常数和$x$的幂次幂乘积的和或差构成的函数。
多项式函数的最高次项决定了其次数。
2. 指数函数:指数函数是以常数为底的指数幂的函数。
指数函数的自变量为指数,因变量为指数的幂。
3. 对数函数:对数函数是指以某个正实数为底的对数运算的逆运算。
对数函数的自变量为函数值的幂。
4. 三角函数:三角函数是描述角度和边长之间关系的函数。
第 1 1 页页共 30 30 页页大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型类型: (1)数列: *()n a f n =; *1()n na f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x £ì=í>î; *00()(),x x f x F x x x a ¹ì=í=î;* (4)复合(含f )函数: (),()y f u u x j == (5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =ìí=î (7)变限积分函数: ()(,)xaF x f x t dt=ò (8)级数和函数(数一,三): (),n n n S x a x x ¥==ÎW å 2. 特征特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x Þ"--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数反函数与直接函数: 11()()()y f x x f y y f x --=Û=Þ=二. 极限性质: 1. 类型类型: *lim n n a ®¥; *lim ()x f x ®¥(含x ®±¥); *0lim ()x x x xf x ®(含0x x ±®) 2. 无穷小与无穷大无穷小与无穷大(注: 无穷量): 3. 未定型未定型: 000,,1,,0,0,0¥¥¥-¥×¥¥¥ 4. 性质性质: *有界性有界性, *保号性保号性, *归并性归并性第 2 2 页页 共 30 30 页页三. 常用结论: 四. 必备公式: 1. 等价无穷小等价无穷小: 当()0u x ®时, 2. 泰勒公式泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++; (5)22(1)(1)1()2!x x x o x a a a a -+=+++. 五. 常规方法: 前提前提: (1)准确判断准确判断0,,1,0M a ¥¥¥(其它如:00,0,0,¥-¥×¥¥); (2)变量代换(如:1t x=) 1. 抓大弃小抓大弃小()¥¥, 2. 无穷小与有界量乘积无穷小与有界量乘积 (M a ×) (注:1sin 1,x x£®¥) 3. 1¥处理(其它如:000,¥) 4. 左右极限左右极限(包括x ®±¥): (1)1(0)x x ®; (2)()xe x ®¥; 1(0)xe x ®; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比注意对比: 1ln lim 1x x x x ®-与0ln lim 1x x x x ®-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x xx xe e e e -++-=-) 第 3 3 页页 共 30 30 页页 (3)含变限积分; (4)不能用与不便用 7. 泰勒公式泰勒公式(皮亚诺余项): 处理和式中的无穷小处理和式中的无穷小处理和式中的无穷小 8. 极限函数极限函数: ()lim (,)n f x F x n ®¥=(Þ分段函数) 六. 非常手段非常手段 1. 收敛准则收敛准则: (1)()lim ()n x a f n f x ®+¥=Þ (2)双边夹: *n n n b a c ££, *,?n n b c a ® (3)单边挤: 1()n n a f a += *21?a a ³ *?n a M £ *'()0?f x > 2. 导数定义导数定义(洛必达?): 0lim'()x ff x x®= 3. 积分和积分和: 10112lim [()()()]()n nf f f f x dx n n nn ®¥+++=ò, 4. 中值定理中值定理: lim[()()]lim '()x x f x a f x a f x ®+¥®+¥+-= 5. 级数和级数和(数一三): (1)1n n a ¥=å收敛lim 0nn a ®¥Þ=, (如2!lim nnn n n ®¥) (2)121lim()n n n n a a a a ¥®¥=+++=å, (3){}n a 与11()n n n a a ¥-=-å同敛散同敛散七. 常见应用: 1. 无穷小比较无穷小比较(等价,阶): *(),(0)?nf x kx x ® (1)(1)()(0)'(0)(0)0,(0)n n f f ffa -=====Û()()!!n nna a f x x x x n n a =+ (2)0()x xn f t dt kt dtòò 2. 渐近线渐近线(含斜): (1)()lim ,lim[()]x x f x a b f x ax x®¥®¥==-()f x ax b a Þ++第 4 4 页页 共 30 30 页页 (2)()f x ax b a =++,(10x®) 3. 连续性连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质上连续函数性质 1. 连通性连通性: ([,])[,]f a b m M = (注:01l "<<, “平均”值:0()(1)()()f a f b f x l l +-=) 2. 介值定理介值定理: (附: 达布定理) (1)零点存在定理: ()()0f a f b <0()0f x Þ=(根的个数); (2)()0(())'0x a a f x f x dx =Þ=ò. 第二讲:导数及应用(一元)(含中值定理)一. 基本概念: 1. 差商与导数差商与导数: '()f x =0()()lim x f x x f x x®+-; 0'()f x =000()()lim x x f x f x x x ®-- (1)0()(0)'(0)lim x f x f f x ®-= (注:0()lim (x f x A f x ®=连续)(0)0,'(0)f f A Þ==) (2)左右导: ''00(),()f x f x -+; (3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+Þ= (1)可微Û可导; (2)比较,f df D 与"0"的大小比较(图示); 二. 求导准备: 1. 基本初等函数求导公式基本初等函数求导公式; (注: (())'f x ) 2. 法则法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤): 第 5 5 页页 共 30 30 页页 1. 定义导定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h®+-- (注: 00()(),x x F x f x x x a ¹ì=í=î, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导初等导(公式加法则): (1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xa F x f t dt =òò, 求:'()F x (注: ((,))',((,))',(())'xbba a a f x t dt f x t dt f t dt òòòòòò) (3)0102(),()x x f x y x x f x <ì=í³î,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式隐式((,)0f x y =)导: 22,dy d ydx dx (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导参式导(数一,二): ()()x x t y y t =ìí=î, 求:22,dy d ydx dx 5. 高阶导高阶导()()n f x 公式: 注: ()(0)n f 与泰勒展式: 2012()nnf x a a x a x a x =+++++()(0)!n nf a n Þ=四. 各类应用: 1. 斜率与切线斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线) 2. 物理物理: (相对相对)变化率-速度; 3. 曲率曲率(数一二): 23"()(1'())f x f x r =+(曲率半径, 曲率中心, 曲率圆) 4. 边际与弹性边际与弹性(数三): (附: 需求, 收益, 成本, 利润)第 6 6 页页 共 30 30 页页五. 单调性与极值(必求导) 1. 判别判别(驻点0'()0f x =): (1) '()0()f x f x ³Þ; '()0()f x f x £Þ; (2)分段函数的单调性分段函数的单调性 (3)'()0f x >Þ零点唯一; "()0f x >Þ驻点唯一(必为极值,最值). 2. 极值点极值点: (1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00xx x x x x f x f x f x x x x x ®®®¹¹¹Þ=的特点) (2)二阶导(0'()0f x =) 注(1)f 与',"f f 的匹配('f 图形中包含的信息); (2)实例: 由'()()()()f x x f x g x l +=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明不等式证明(()0f x ³) (1)区别: *单变量与双变量单变量与双变量? *[,]x a b Î与[,),(,)x a x Î+¥Î-¥+¥? (2)类型: *'0,()0f f a ³³; *'0,()0f f b £³ (3)注意: 单调性Å端点值Å极值Å凹凸性. (如: max ()()f x M f x M £Û=) 4. 函数的零点个数函数的零点个数: 单调Å介值介值 六. 凹凸与拐点(必求导!): 1. "y Þ表格; (0"()0f x =) 2. 应用应用: (1)泰勒估计泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论结论: ()()'()()0F b F a F f x x =Þ==第 7 7 页页 共 30 30 页页 2. 辅助函数构造实例辅助函数构造实例: (1)()f x Þ()()x a a F x f t dt=ò (2)'()()()'()0()()()f g f g F x f x g x x x x x +=Þ= (3)()'()()()'()0()()f x fg f g F x g x x x x x -=Þ= (4)'()()()0f f x l x x +=Þ()()()x dxF x e f x l ò=; 3. ()()0()n ff x x =Û有1n +个零点(1)()n fx -Û有2个零点个零点 4. 特例特例: 证明()()n f a x =的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定) 5. 注: 含12,x x 时,分家!(柯西定理) 6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b "Î,[,]a b x $Î,使:'()f c x = 八. 拉格朗日中值定理拉格朗日中值定理 1. 结论结论: ()()'()()f b f a f b a x -=-; (()(),'()0a b j j x j x <Þ$'>) 2. 估计估计: '()f f x x =九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x x =+-+-+-; 2. 应用应用: 在已知()f a 或()f b 值时进行积分估计值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数原函数()F x : (1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+ò第 8 8 页页 共 30 30 页页 注(1)()()x aF x f t dt=ò(连续不一定可导); (2)()()()()xx aax t f t dt f t dt f x -ÞÞòò (()f x 连续) 2. 不定积分性质不定积分性质: (1)(())'()f x dx f x =ò; (())()d f x dx f x dx =ò (2)'()()f x dx f x c =+ò; ()()df x f x c=+ò二. 不定积分常规方法 1. 熟悉基本积分公式熟悉基本积分公式熟悉基本积分公式 2. 基本方法基本方法: 拆(线性性) 3. 凑微法凑微法(基础): 要求巧要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2dxd x x = 4. 变量代换变量代换: (1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x =+==+= (2)作用与引伸(化简): 21x x t ±-= 5. 分部积分分部积分(巧用): (1)含需求导的被积函数(如ln ,arctan ,()xaxxf t dtò); (2)“反对幂三指”: ,ln ,n axnx e dxxxdxòò (3)特别: ()xf x dxò (*已知()f x 的原函数为()F x ; *已知已知'()()f x F x =) 6. 特例特例: (1)11sin cos sin cos a x b x dx a x b x ++ò; (2)(),()sin kx p x e dx p x axdxòò快速法; (3)()()n v x dx u x ò 三. 定积分: 1. 概念性质概念性质: (1)积分和式(可积的必要条件:有界, 充分条件:连续) 第 9 9 页页 共 30 30 页页 (2)几何意义(面积,对称性,周期性,积分中值) (3)附: ()()b a f x dx M b a £-ò, ()()()bba af xg x dx Mg x dx £òò) (4)定积分与变限积分, 反常积分的区别联系与侧重反常积分的区别联系与侧重 2: 变限积分变限积分()()xa x f t dt F =ò的处理(重点) (1)f 可积ÞF 连续, f 连续ÞF 可导可导 (2)(())'xa f t dt ò()f x =; (()())'()xx aax t f t dt f t dt-=òò; ()()()xa f x dt x a f x =-ò (3)由函数()()xaF x f t dt=ò参与的求导, 极限, 极值, 积分(方程)问题问题 3. N L -公式: ()()()ba f x dx Fb F a =-ò(()F x 在[,]a b 上必须连续!) 注: (1)分段积分分段积分, 对称性(奇偶), 周期性周期性 (2)有理式, 三角式, 根式根式 (3)含()ba f t dt ò的方程. 4. 变量代换变量代换: ()(())'()ba f x dxf u t u t dt ba=òò (1)00()()()aaf x dx f a x dx x a t =-=-òòòò, (2)0()()()[()()]a a aa af x dx f x dx x t f x f x dx--=-=-=+-òòò (如:4411sin dx xpp -+ò) (3)2201sin nn n n I xdx I n p--==ò, (4)2200(sin )(cos )f x dxf x dx pp=òò; 200(sin )2(sin )f x dxf x dx pp=òò, (5)00(sin )(sin )2xf x dx f x dx p pp =òò, 5. 分部积分分部积分分部积分 (1)准备时“凑常数” (2)已知'()f x 或()xaf x =ò时, 求()baf x dx ò 6. 附: 三角函数系的正交性: 第 10 10 页页 共 30 30 页页四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +¥+¥-¥-¥òòò (()f x 连续) (2)()ba f x dx ò: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散; 3. 计算: 积分法积分法ÅN L -公式Å极限(可换元与分部) 4. 特例: (1)11p dx x +¥ò; (2)101pdx xò 五. 应用: (柱体侧面积除外柱体侧面积除外) 1. 面积面积, (1)[()()];b a S f x g x dx=-ò (2)1()dcS f y dy -=ò; (3)21()2S r d b aq q =ò; (4)侧面积:22()1'()b aS f x f x dx p =+ò 2. 体积体积: (1)22[()()]b x a V f x g x dx p =-ò; (2)12[()]2()dby caV f y dyxf x dx p p-==òò (3)0x x V =与0y y V = 3. 弧长弧长: 22()()ds dx dy =+ (1)(),[,]y f x x a b =Î 21'()bas fx dx =+ò (2)12(),[,]()x x t t t t y y t =ìÎí=î 2122'()'()t t s x t y t dt =+ò (3)(),[,]r r q q a b =Î: 22()'()s r r d baq q q=+ò 4. 物理物理(数一,二)功,引力,水压力,质心, 5. 平均值平均值(中值定理): (1)1[,]()ba f ab f x dx b a =-ò; (2)0()[0)lim xx f t dt f x®+¥+¥=ò, (f 以T 为周期:0()Tf t dt f T=ò) 第 11 11 页页 共 30 30 页页 第四讲: 微分方程一. 基本概念基本概念 1. 常识常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程变换方程: (1)令()'""x x t y Dy =Þ=(如欧拉方程) (2)令(,)(,)'u u x y y y x u y =Þ=Þ(如伯努利方程) 3. 建立方程建立方程(应用题)的能力的能力 二. 一阶方程: 1. 形式形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b = 2. 变量分离型变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =Þ=+òò (2)“偏”微分方程: (,)zf x y x ¶=¶; 3. 一阶线性一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 0()01()[()()]()xx p x dxxx M x ey M x q x dx y M x ò=Þ=+ò (2)变化: '()()x p y x q y +=; (3)推广: 伯努利(数一) '()()y p x y q x y a+= 4. 齐次方程齐次方程: '()yy x=F (1)解法: '(),()y du dx u u xu ux u u x =Þ+=F =F -òò (2)特例: 111222a xb yc dy dx a x b y c ++=++第 12 12 页页 共 30 30 页页 5. 全微分方程全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y¶¶=¶¶ 6. 一阶差分方程一阶差分方程(数三): 1*0()()xx x x xn x xy ca y ay b p x y x Q x b+=ì-=Þí=î 三. 二阶降阶方程二阶降阶方程 1. "()y f x =: 12()y F x c x c =++ 2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=Þ== 3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=Þ==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构通解结构: (1)齐次解: 01122()()()y x c y x c y x =+ (2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c l l ++= (2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程. 3. 欧拉方程欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =Þ=-=五. 应用(注意初始条件): 1. 几何应用几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距切线和法线的截距 2. 积分等式变方程积分等式变方程(含变限积分); 可设可设 ()(),()0xa f x dx F x F a ==ò第 13 13 页页 共 30 30 页页 3. 导数定义立方程导数定义立方程: 含双变量条件()f x y +=的方程的方程 4. 变化率变化率(速度) 5. 22dv d x F ma dt dt=== 6. 路径无关得方程路径无关得方程(数一): Q Px y ¶¶=¶¶ 7. 级数与方程级数与方程: (1)幂级数求和; (2)方程的幂级数解法:21201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念二元微分学概念 1. 极限极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y D =++D =+D =+ (2)lim ,lim ,limy x x y f f f f f xyD D D ==D D (3)22,lim()()x y f df f x f y df x y D -++ (判别可微性判别可微性) 注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例特例: (1)22(0,0)(,)0,(0,0)xyx y f x y ì¹ï+=íï=î: (0,0)点处可导不连续; 第 14 14 页页 共 30 30 页页 (2)22(0,0)(,)0,(0,0)xy f x y x y ì¹ï=+íï=î: (0,0)点处连续可导不可微; 二. 偏导数与全微分的计算: 1. 显函数一显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)x x y z ; (3)含变限积分含变限积分 2. 复合函数的一复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y = 熟练掌握记号''"""12111222,,,,f f f f f 的准确使用的准确使用 3. 隐函数隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =ìí=î (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别) 2. 条件极值条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: (,)(,)0z f x y x y j =Å=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y l lj =+, 求驻点即可. 3. 有界闭域上最值有界闭域上最值(重点). (1)(,){(,)(,)0}z f x y M D x y x y j =ÅÎ=£ (2)实例: 距离问题距离问题第 15 15 页页 共 30 30 页页四. 二重积分计算: 1. 概念与性质概念与性质(“积”前工作): (1)Dd s òò, (2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称字母轮换对称; *重心重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶奇偶 2. 计算计算(化二次积分): (1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用极坐标使用(转换): 22()f x y + 附: 222:()()D x a y b R -+-£; 2222:1x yD a b+£; 双纽线222222()()x y a x y +=- :1D x y +£ 4. 特例特例: (1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +òò, 且已知D 的面积D S 与重心(,)x y 5. 无界域上的反常二重积分无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L s WÞW W G S ò): 1. “尺寸”: (1)D Dd S s Ûòò; (2)曲面面积(除柱体侧面); 2. 质量质量, 重心(形心), 转动惯量; 3. 为三重积分为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念级数概念第 16 16 页页 共 30 30 页页 1. 定义定义: (1){}n a , (2)12n n S a a a =+++; (3)l im lim n n S ®¥ (如1(1)!n nn ¥=+å) 注: (1)lim nn a ®¥; (2)nq å(或1n a å); (3)“伸缩”级数:1()n n a a +-å收敛{}n a Û收敛. 2. 性质性质: (1)收敛的必要条件: lim 0n n a ®¥=; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +®®Þ®Þ®; 二. 正项级数正项级数 1. 正项级数正项级数: (1)定义: 0n a ³; (2)特征: n S ; (3)收敛n S M Û£(有界) 2. 标准级数标准级数: (1)1p n å, (2)ln kn n a å, (3)1ln kn n å 3. 审敛方法审敛方法: (注:222ab a b £+,ln ln baa b=) (1)比较法(原理):np ka n(估计), 如1()nf x dx ò; ()()P n Q n å (2)比值与根值: *1lim n n n u u+®¥ *lim nn n u ®¥ (应用: 幂级数收敛半径计算) 三. 交错级数(含一般项): 1(1)n n a +-å(0n a >) 1. “审”前考察: (1)0?n a > (2)0?n a ®; (3)绝对(条件)收敛? 注: 若1lim 1n n n a a r +®¥=>,则nu å发散发散 2. 标准级数标准级数: (1)11(1)n n +-å; (2)11(1)n pn +-å; (3)11(1)ln n pn +-å 3. 莱布尼兹审敛法莱布尼兹审敛法(收敛?) (1)前提: na å发散; (2)条件: ,0nn a a ®; (3)结论: 1(1)n n a +-å条件收敛. 第 17 17 页页 共 30 30 页页 4. 补充方法补充方法: (1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +®®Þ®Þ®. 5. 注意事项注意事项: 对比对比对比 na å; (1)nna -å; na å; 2n a å之间的敛散关系之间的敛散关系四. 幂级数: 1. 常见形式常见形式: (1)nn a x å, (2)0()n n a x x -å, (3)20()nn a x x -å 2. 阿贝尔定理阿贝尔定理: (1)结论: *x x =敛*0R x x Þ³-; *x x =散*0R x x Þ£- (2)注: 当*x x =条件收敛时*R x x Þ=- 3. 收敛半径收敛半径,区间,收敛域(求和前的准备) 注(1),nn n n a na x x n åå与n n a x å同收敛半径同收敛半径 (2)nn a x å与20()nn a x x -å之间的转换之间的转换 4. 幂级数展开法幂级数展开法: (1)前提: 熟记公式(双向,标明敛域) (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx fÞ=+ò (4)考察原函数: 0()()xg xf x dxò()'()f x g x Þ= 5. 幂级数求和法幂级数求和法(注: *先求收敛域, *变量替换变量替换): (1)(),S x =+åå (2)'()S x =,(注意首项变化) (3)()()'S x =å, (4)()"()"S x S x Þ的微分方程的微分方程第 18 18 页页 共 30 30 页页 (5)应用:()(1)n n n n a a x S x a SÞ=Þ=ååå. 6. 方程的幂级数解法方程的幂级数解法方程的幂级数解法 7. 经济应用经济应用(数三): (1)复利: (1)nA p +; (2)现值: (1)nA p -+ 五. 傅里叶级数(数一): (2T p =) 1. 傅氏级数傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ¥==++å 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x Þ(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdx ppp pp p p pp ---ì=ïï==íï=ïîòòò 4. 题型题型: (注: ()(),?f x S x x =Î) (1)2T p =且(),(,]f x x p p =Î-(分段表示) (2)(,]x p p Î-或[0,2]x p Î (3)[0,]x p Î正弦或余弦正弦或余弦 *(4)[0,]x p Î(T p =) *5. 2T l = 6. 附产品附产品: ()f x Þ01()cos sin 2n n n a S x a nx b nx ¥==++å 第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算向量基本运算第 19 19 页页 共 30 30 页页 1. 12k a kb +; (平行b a l Û=) 2. a ; (单位向量(方向余弦) 1(cos ,cos ,cos )aaaa b g =) 3. a b ×; (投影:()a a b b a ×=; 垂直垂直:0a b a b ^Û×=; 夹角夹角:(,)a b ab a b ×=) 4. a b ´; (法向:,n a b a b=´^; 面积面积:S a b =´) 二. 平面与直线平面与直线 1.平面平面P (1)特征(基本量): 0000(,,)(,,)M x y z n A B C Å= (2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D p -+-+-=Þ+++= (3)其它: *截距式截距式1x y za b c++=; *三点式三点式三点式 2.直线直线L (1)特征(基本量): 0000(,,)(,,)M x y z s m n p Å= (2)方程(点向式): 000:x x y y z z L m n p ---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=ìí+++=î (4)其它: *二点式二点式; *参数式参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-ìï=+-Îíï=+-î) 3. 实用方法实用方法: (1)平面束方程: 11112222:()0A x B y C z D A x B y C z D p l +++++++=第 20 20 页页 共 30 30 页页 (2)距离公式: 如点如点0(,)M x y 到平面的距离000222Ax By Cz Dd A B C+++=++ (3)对称问题; (4)投影问题. 三. 曲面与空间曲线(准备) 1. 曲面曲面曲面 (1)形式S : (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F a b g =Þ (或(,1)x y n z z =--) 2. 曲线曲线曲线 (1)形式():()()x x t y y t z z t =ìïG =íï=î, 或(,,)0(,,)0F x y z G x y z =ìí=î; (2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =´) 3. 应用应用应用 (1)交线, 投影柱面与投影曲线; (2)旋转面计算: 参式曲线绕坐标轴旋转参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面常用二次曲面 1. 圆柱面圆柱面: 222x y R += 2. 球面球面: 2222x y z R ++= 变形: 2222x y R z +=-, 222()z R x y =-+, 3. 锥面锥面: 22z x y =+ 变形: 222x y z +=, 22z a x y =-+ 4. 抛物面抛物面: 22z x y =+, 第 21 21 页页 共 30 30 页页 变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面双曲面: 2221x y z +=± 6. 马鞍面马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用偏导几何应用 1. 曲面曲面曲面 (1)法向: (,,)0(,,)x y z F x y z n F F F =Þ=, 注: (,)(,1)x y z f x y n f f =Þ=- (2)切平面与法线: 2. 曲线曲线曲线 (1)切向: (),(),()(',',')x x t y y t z z t s x y z ===Þ= (2)切线与法平面切线与法平面 3. 综合综合: :G 00F G =ìí=î , 12s n n=´ 六. 方向导与梯度(重点) 1. 方向导方向导(l 方向斜率): (1)定义(条件): (,,)(cos ,cos ,cos )l m n p a b g =Þ (2)计算(充分条件:可微): cos cos cos x y z uu u u la b g ¶=++¶ 附: 0(,),{cos ,sin }z f x y l q q==cos sin x y z f f lq q ¶Þ=+¶ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lq q q q¶=++¶ 2. 梯度梯度(取得最大斜率值的方向) G : (1)计算: (2)结论结论()b 取l G =为最大变化率方向; 第 22 22 页页 共 30 30 页页 ()c 0()G M 为最大方向导数值. 第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Wòòò) 1. W 域的特征(不涉及复杂空间域): (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心关于重心 (2)投影法: 22212{(,)}(,)(,)xyD x y x y R z x y z z x y =+£Å££ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+£Å££ (4)其它: 长方体长方体, 四面体四面体, 椭球椭球椭球 2. f 的特征: (1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法选择最适合方法: (1)“积”前: *dvWòòò; *利用对称性(重点) (2)截面法(旋转体): ()baD z I dzfdxdy=òòò(细腰或中空, ()f z , 22()f x y +) (3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdyfdz=òòò (4)球坐标(球或锥体): 220sin ()RI ddf d paqj jr r=×××òòò, (5)重心法(f ax by cz d =+++): ()I ax by cz d V W =+++ 4. 应用问题应用问题: (1)同第一类积分: 质量质量, 质心, 转动惯量, 引力引力 (2)Gauss 公式公式 二. 第一类线积分(Lfds ò) 1. “积”前准备: 第 23 23 页页 共 30 30 页页 (1)Lds L =ò; (2)对称性; (3)代入“L ”表达式表达式 2. 计算公式计算公式: 22()[,]((),())'()'()()b a L x x t t a b fds f x t y t x t y t dt y y t =ìÎÞ=+í=îòò 3. 补充说明补充说明: (1)重心法: ()()Lax by c ds ax by c L ++=++ò; (2)与第二类互换: LLA ds A drt ×=×òò 4. 应用范围应用范围应用范围 (1)第一类积分第一类积分 (2)柱体侧面积柱体侧面积 (),Lz x y ds ò三. 第一类面积分(fdS åòò) 1. “积”前工作(重点): (1)dS S=S òò; (代入代入:(,,)0F x y z S =) (2)对称性(如: 字母轮换, 重心) (3)分片分片 2. 计算公式计算公式: (1)22(,),(,)(,,(,))1xyxy x yD z z x y x y D I f x y z x y z z dxdy =ÎÞ=++òò (2)与第二类互换: A ndSA d S S S×=×òòòò四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +ò (其中其中L 有向) 1. 直接计算直接计算: ()()x x t y y t =ìí=î,2112:['()'()]t t t t t I Px t Qy t dt®Þ=+ò 常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: 第 24 24 页页 共 30 30 页页 (1)()LDQ P Pdx Qdy dxdy xy¶¶+=-¶¶òòò; (2)()L A B ®ò: *P Q y y ¶¶=Þ¶¶换路径; *P Q y y ¶¶¹Þ¶¶围路径围路径 (3)Lò(x y Q P =但D 内有奇点) *LL =òò(变形) 3. 推广推广(路径无关性):P Qy y ¶¶=¶¶ (1)Pdx Qdy du +=(微分方程)()BA L AB u ®Û=ò(道路变形原理) (2)(,)(,)LP x y dx Q x y dy +ò与路径无关(f 待定): 微分方程微分方程. 4. 应用应用应用 功(环流量):IF dr G=×ò (G 有向t ,(,,)F P Q R =,(,,)d r ds dx dy dz t ==) 五. 第二类曲面积分: 1. 定义定义: Pdydz Qdzdx RdxdyS ++òò, 或(,,)R x y z dxdySòò (其中其中S 含侧) 2. 计算计算: (1)定向投影(单项): (,,)R x y z dxdySòò, 其中:(,)z z x y S =(特别:水平面); 注: 垂直侧面, 双层分隔双层分隔 (2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(S 不投影): (cos ,cos ,cos )n a b g = 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z¶¶¶=++¶¶¶ (2)Gauss 公式: S 封闭外侧, W 内无奇点内无奇点 (3)注: *补充“盖”平面:0SS +òòòò; *封闭曲面变形Sòò(含奇点) 4. 通量与积分通量与积分: 第 25 25 页页 共 30 30 页页A d S åF =×òò (S 有向n ,(),,A P QR =,(,,)d S ndS dydz dzdx dxdy ==) 六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz G++ò 1. 参数式曲线参数式曲线G : 直接计算(代入) 注(1)当0rot A =时, 可任选路径; (2)功(环流量):IF drG=×ò 2. Stokes 公式: (要求: G 为交面式(有向), 所张曲面所张曲面å含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z¶¶¶=Ñ´=´¶¶¶ (2)交面式(一般含平面)封闭曲线: 00F G =ìÞí=î同侧法向{,,}x y z n F FF =或{,,}x y zG G G ; (3)Stokes 公式(选择): ()A drA ndSG å×=Ñ´×òòò (a )化为Pdydz Qdzdx RdxdyS++òò; (b )化为(,,)R x y z dxdySòò; (c )化为fdS åòò高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xay=),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
§1函数本节内容:一、邻域二、函数的概念1.δ(,)U aδ2.定义2:—点a的去心δ邻域二、函数的概念 f ——定义在D 上的函数;D ——定义域;x ——自变量;y ——因变量;()f x 0——x 0处的函数值;.指数函数 是常数(,,)xy a a a a =>≠01 对数函数是常数log (,,)a y x a a a =>≠01三角函数sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x======反三角函数y x =(一1.2.(b)对任意μ,函数图形都过点(1,1);当0μ>时,图形过点(0,0)和(1,1);(c)当0μ>时,幂函数在(0,)+∞为单调递增函数;而0μ<时,幂函数在(0,)+∞为单调递减函数; (d)幂函数为无界函数. 3.幂函数的运算性质:(a)a a a αβαβ+⋅=;(二1.2.调递增函数,图1-3而01<<时,指数函数为单调递减函数;a(d)指数函数为无界函数;(e)指数函数是非奇非偶函数.3.指数函数的运算性质:(三1.2.x递增函数;而01<<时,对数函数为单调递减函数;a(d)对数函数为无界函数;(e)对数函数是非奇非偶函数. Array3.(四1.yy余弦函数.==的图形与性质:sin,cosy x y x2.y y tan ,cot y x y x ==的图形与性质:定3.sec ,csc y x y x ==:1sec cos y x x ==——正割函数; 1csc sin y x x==——余割函数.(五)反三角函数1.arcsin ,arccos y x y x ==:arcsin y x =——反正弦函数;arccos y x =——反余弦函数.arcsin y x =的值域为[2,2]ππ-,arccos y x=的值域为[0,]π;(b)arcsin ,arccos y x y x ==均为单调函数;(d)arcsin y x =为奇函数,arccos y x =为非奇非偶函数.2.arctan ,arccot y x y x ==:(a)arctan ,arccot y x y x ==的定义域均为R , arctan y x =的值域为(2,2)ππ-,arccot y x =的值域为(0,)π;(c)arctan ,arccot y x y x ==均为有界函数; (d)arctan y x =为奇函数,arccot y x =为非奇非偶函数. 设,则y 1.⎧⎪⎨⎪⎩则函数[()]y f x ϕ=称为由()y f u =及()u x ϕ=复合而成的复合函数,其中u 称为中间变量.2.写出下列复合函数的复合过程,并求其定义域.(1)arctan()=2;y xy x=2; (2)sin()(3)(sin)=2.y x五、初等函数1.定义:由常数及基本初等函数经过有限次四则运算及有限次的复合步骤所构成并且可以用一五类基本初等函数的图形与性质;复合函数的定义与复合函数的分解;初等函数的定义.。