地质统计学(6)_普通克里格法-cjg2011
- 格式:ppt
- 大小:671.00 KB
- 文档页数:36
地统计(Geostatistics)又称地质统计,是在法国著名统计学家G. Matheron大量理论研究的基础上逐渐形成的一门新的统计学分支。
它是以区域化变量为基础,借助变异函数,研究既具有随机性又具有结构性,或空间相关性和依赖性的自然现象的一门科学。
凡是与空间数据的结构性和随机性,或空间相关性和依赖性,或空间格局与变异有关的研究,并对这些数据进行最优无偏内插估计,或模拟这些数据的离散性、波动性时,皆可应用地统计学的理论与方法。
地统计学与经典统计学的共同之处在于:它们都是在大量采样的基础上,通过对样本属性值的频率分布或均值、方差关系及其相应规则的分析,确定其空间分布格局与相关关系。
但地统计学区别于经典统计学的最大特点即是:地统计学既考虑到样本值的大小,又重视样本空间位置及样本间的距离,弥补了经典统计学忽略空间方位的缺陷。
地统计分析理论基础包括前提假设、区域化变量、变异分析和空间估值。
第一章品位与储量计算第一节概述投资一个矿床开采项目,首先必须估算其品位和储量。
一个矿床的矿量、品位及其空间分布是对矿床进行技术经济评价、可行性研究、矿山规划设计以及开采计划优化的基础,是矿山投资决策的重要依据。
因此,品位估算、矿体圈定和储量计算是一项影响深远的工作,其质量直接影响到投资决策的正确性和矿山规划及开采计划的优劣。
从一个市场经济条件下的矿业投资者的角度看,这一工作做不好可能导致两种对投资者不利的决策:(1)矿体圈定与品位、矿量估算结果比实际情况乐观,估计的矿床开采价值在较大程度上高于实际可能实现的最高价值,致使投资者投资于利润远低于期望值,甚至带来严重亏损的项目。
(2)与第一种情况相反,矿床的矿量与品位的估算值在较大程度上低于实际值,使投资者错误地认为在现有技术经济条件下,矿床的开采不能带来可以接受的最低利润,从而放弃了一个好的投资机会。
然而,准确地估算出一个矿床的矿量、品位绝非易事。
大部分矿体被深深地埋于地下,即使有露头,也只能提供靠近地表的局部信息。
二、克里格法(Kriging)转载克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h 处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y 的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
读书_地质统计学1地质统计学介绍地质统计学是结合地质学、统计学的交叉边缘学科,它是以区域变量理论为基础,以变异函数为主要工具,采用不同的克立格方法,研究那些在空间上既有随机性又有结构性的自然现象的学科。
因此,只要是研究空间分布数据的结构性和随机性,并对这些数据进行最优无偏内插估计时,均可应用地质统计学理论及其相应方法。
形象一些的说就是一个矿山的矿体在各个方向上矿石品位是不均匀的,这就是随机性,同时又是有规律可循的这就是结构性。
我们利用统计学中的变异函数进行研究,搭建一个数学模型在三个方向上反应这种矿体分布变化,然后采用各种克里格法进行研究也就是对数据进行最优无偏内插估计。
在矿业工作,尤其是矿山地质工作中,经常要研究的问题是:查明矿床成矿的控矿因素;了解矿化的空间分布规律;制定合理的勘探或取样网度;查明矿体中有用、有害组分或矿体厚度的空间分布模型;确定矿床总体储量的估计量、局部块段储量的估计量以及估计引起的误差等。
诸如此类问题均可借助地质统计学的理论、方法进行研究。
2克立格法介绍克立格法是一种求线性最优无偏内插估计量的方法。
具体地说,就是在考虑了信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构之后,为了达到线性无偏和最小估计方差的估计,而对每一样品分别赋于一定的权系数,最后进行加权平均来估计块段品位的方法。
地质统计学特点4克里格法的储量计算按照矿床开采要求把矿体划分为许多体积相等,几何形态相同的块段,充分利用待估块段周围的品位或厚度的数据,用加权平均法计算待估块段的平均参数,其所用的权系数与传统加权平均法的权不同,是一种无偏估计量,估计误差的方差最小,用克里格方程组解出最优权系数,最大限度地减少平均参数的误差,提高估算储量的精度,具有传统的储量计算方法无可比拟的优越性。
总结:地质统计学主要是在结构分析的基础上,采用各种克立格法(kriging)来评估或解决各种(包括矿业领域的)实际问题。
地质统计分析法(即克立格法)点击数:次更新日期:2009-8-19 16:32:21 中国选矿技术网我要评论( 0) 【摘要】:法国数学家G.马特龙创立并发展了一门新的边缘地质学科-地质统计学,其实质是以矿石品位和矿石储量的精确估计为目的,以矿体参数(变量),值的空间相关为基础,以区域化变量为核心,以变异函数为基本工具的数学地质方法。
文章描述了克立格法的应用条件、基本原理、实施过程和该法的主要优点。
法国数学家G.马特龙创立并发展了一门新的边缘地质学科-地质统计学,其实质是以矿石品位和矿石储量的精确估计为目的,以矿体参数(变量),值的空间相关为基础,以区域化变量为核心,以变异函数为基本工具的数学地质方法。
这种方法是南非采矿工程师D.C.克立格于一九五一年首次提出来的,故得名为克立格方法。
克立格方法是利用邻近若干个钻孔(或坑道)的样品品位来估计处于这些样品中间的某个块段(成某个点)的品位。
应用这种方法,可以根据少量样品的品位资料把一个矿床中成千上万个开采块段的品位和储量统统地计算出来。
从地质勘探的角度来看,地质统计学就是在地质变量具有二重性(随机性和规律性)变化的条件下建立起来的一套解决问题的统计方法。
它把矿床或矿体中的地质参数看成是用随机函数来描述的随机变量的空间变化,即区域化变量。
应用变差图来描述区域化变量的随机变化和规律变化,然后根据变差图所提供的矿床变化性进行克立格方法插值,从而计算出矿床中所有块段的品位和储量。
克立格法是一种无偏的、误差最小的最优化的储量计算方法,在储量计算的同时,我们可以得到一个相应的估计误差。
一、克立格法的优点应用克立格法进行储量计算,具有下列明显的优点:(一)在多数情况下,应用克立格法所计算的矿石品位和矿石储量数字要比传统的方法精确得多。
如某铜矿山,勘探资料用克立格预测的同平均品位为2.14%,而用传统方法预测的品位为2.51%~3.20%,但根据出售的铜计算的实际品位为2.04%,说明克立格法计算达到了相当精确的程度。
地质统计学Kriging法在GPS高程拟合中的应用探讨摘要:本文以某工业园区项目的GPS水准测量数据,利用地质统计学中的Ordinary Kriging方法,进行了GPS高程异常拟合的不同方案试验研究,结果发现普通克立格方法合理拟合方案下的估计精度可满足测量规范要求,推荐应用于GPS高程异常拟合工程。
关键词:地质统计学GPS高程拟合GPS高程转换实质上主要是通过求取地面点的高程异常值,然后将外业GPS测量的大地高减去内业获取的高程异常值即可得到实用的正常高。
而高程异常是地球重力场的重要参数之一,从理论上讲,实现GPS大地高向正常高转换的最好方法是综合利用GPS测量数据、重力测量数据、地球重力场模型和其他数学方法,而对于一般单位而言,在无法获取必要的重力资料的情况下,数学拟合方法仍然是目前进行GPS高程转换的首选方案。
关于GPS高程的转换问题,测绘界的许多专家学者提出了多种解决办法。
这些方法归纳起来主要有:重力法、GPS 水准法(数学模型拟合法)、数学模型抗差估计法、数学模型优化方法、GPS三角高程法、平差转换法、整体平差法、神经网络法等。
如常用的移动加权平均法、曲线拟合法、曲面拟合法均属于数学模型拟合法。
以上诸多方法在应用过程中均取得了一定的成效,但各自也都存在一些缺点。
主要由于受地球区域密度分布异常、地表地形的复杂程度等因素的影响,有的方法理论精度很高,但与实际情况的吻合程度不高;而有的方法计算过程比较复杂,且实际效果也不够理想。
因此,如何来进行高精度的GPS高程拟合与转换仍然是测量工程实践中需要不断研究和探讨的问题。
本文在介绍地质统计学基本理论及普通克立格Ordinary Kriging方法的原理及应用基础上,以某测区的实测GPS高程异常数据为例,进行了基于普通克立格方法的GPS高程拟合的相关试验分析与研究,按照不同已知高程异常点数据个数设计了四种方案,并对四种方案的拟合结果进行对比分析,证实了普通克立格方法用于GPS高程异常拟合的可行性,并探讨了普通克立格方法高程异常拟合的精度,以及已知高程异常点数量、分布与高程拟合精度的关系。