综述-铝合金疲劳及断口分析报告
- 格式:doc
- 大小:100.00 KB
- 文档页数:13
目录1 绪论 (1)1.1断口分析的意义 (1)1.2 对显微组织及断口缺陷的理论分析 (1)1.3研究方法和实验设计 (3)1.4预期结果和意义 (3)2 实验过程 (4)2.1 生产工艺 (4)2.1.1 加料 (4)2.1.2 精炼 (4)2.1.3 保温、扒渣和放料 (5)2.1. 4 单线除气和单线过滤 (5)2.1. 5连铸 (6)2.2 实验过程 (6)2.2. 1 试样的选取 (6)2.2.2 金相试样的制取 (8)2.2.3 用显微镜观察 (9)2.3 观察方法 (10)2.3.1显微组织的观察 (10)2.3.2 对断口形貌的观察 (11)3 实验结果及分析 (11)3.1对所取K模试样的观察 (11)3.2 金相试样的观察及分析 (12)3.2.1 对显微组织的观察 (12)3.2.2 断口缺陷 (16)结论 (24)致 (25)参考文献 (26)附录 (28)1 绪论1.1断口分析的意义随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。
长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。
尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。
然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。
这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。
所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。
铝合金材料的疲劳研究进展徐超,杨尚磊(上海工程技术大学材料工程学院上海 201620)摘要:综述了铝合金材料的疲劳研究进展,介绍了铝合金材料的疲劳裂纹萌生机制和特性、裂纹扩展规律及其扩展阶段的研究进展,同时概述了裂纹疲劳行为的影响因素和微观机理方面的最新研究进展,最后从裂纹萌生和扩展机制以及微观机理等方面概述了铝合金疲劳行为研究趋势。
关键词:铝合金疲劳裂纹萌生和扩展微观机理0 前言材料的疲劳性能指标是许多构件设计的重要依据之一,为此从微观上分析研究材料疲劳裂纹萌生和扩展特点以及他们与材料本证微观结构之间的关系具有重要指导意义[1]。
由疲劳引起的焊接构件表面产生的裂纹萌生、扩展和断裂,都会导致一系列严重的影响,致使整个系统出现失效现象。
疲劳行为的研究已经成为材料学中的一个重要分支,由于其存在的广泛性,越来越受到国内外众多学者的关注。
铝合金由于密度小、比强度高,耐蚀性好,在汽车、列车、船舶、航空、航天等领域得到了广泛的应用,同时还具有良好的成形工艺性和焊接性,因此铝合金成为在工业中应用最广泛的一类有色金属材料[2]。
铝合金材料的疲劳破坏是汽车、列车、船舶、航空、航天领域中经常遇到的现象,所以对铝合金的疲劳行为的研究更具有重要意义。
目前对铝合金疲劳裂纹的萌生、扩展和断裂的微观特征以及疲劳寿命的预测研究也相当广泛,因此,本文对铝合金材料的疲劳研究进行了综述。
2 铝合金材料的疲劳研究现状2.1 疲劳裂纹的萌生由于交变载荷的循环作用,疲劳裂纹的萌生过程往往发生在材料存在缺陷或薄弱区域以及高应力区,其通过不均匀的滑移或位移,从微细小裂纹形成而逐渐长大扩展至断裂。
主要可能存在以下形式:对一般的工业合金,在交变应力作用下第二相、夹杂物与基体界面开裂;对纯金属或单相合金,尤其是单晶体,材料表面的滑移带集中形成驻留滑移带就会形成开裂;当经受较高的应力或应变幅时,晶界结合力在低于晶内滑移应力下,晶界或亚晶界处易发生开裂;另外,对高强度合金,也会由于夹杂物、第二相本身属于脆性相从而发生开裂。
分析铸造Al合金热疲劳开裂的形成机理及对策铸造Al合金热疲劳开裂是一种严重的质量问题,对于铸件的可靠性和使用寿命具有重大影响。
本文将分析铸造Al合金热疲劳开裂的形成机理,并提出相应的对策。
一、铸造Al合金热疲劳开裂的形成机理铸造Al合金在高温下容易发生热疲劳开裂,其形成机理主要包括以下几个方面:1.热应力效应:在高温下,铸件内部由于温度梯度和热膨胀不均等原因,会产生较大的热应力,导致铸件出现应力集中区域。
当热应力超过铸件材料的承载能力时,就会引起裂纹的产生和扩展。
2.晶界氧化:在高温下,铸造Al合金晶界处容易发生氧化反应,形成氧化物。
这些氧化物会引起晶界强化和晶界脆化,导致晶界疲劳裂纹的形成和扩展。
3.热疲劳循环加载:在高温下,铸造Al合金受到热循环加载,即温度的周期性升降,这会导致铸件内部的应力不断变化,并最终引起热疲劳开裂。
二、对铸造Al合金热疲劳开裂的对策为了解决铸造Al合金热疲劳开裂的问题,可以采取以下对策措施:1.合理设计铸件结构:在铸件设计过程中,应考虑到热应力的分布情况,避免在铸件中出现应力集中区域。
合理设计铸件结构可以减少热应力的积累,降低开裂的概率。
2.优化铸造工艺参数:在铸造过程中,应优化浇注温度、浇注速度、冷却速率等工艺参数,以减少热应力和晶界氧化的产生。
合理的铸造工艺参数可以改善铸件的热疲劳性能,降低开裂风险。
3.合理选择合金元素:合金元素的添加可以改善铸造Al合金的热疲劳性能。
例如,添加少量的镁元素可以提高铝合金的热塑性和热疲劳强度,降低热疲劳开裂的风险。
4.热处理优化:通过合理的热处理工艺,可以改善铸造Al合金的晶界结构,减少晶界氧化和晶界脆化的发生。
同时,热处理还可以通过调整组织结构,提高材料的抗热疲劳性能。
5.应力消除处理:在铸造Al合金后,可以进行应力消除处理,通过加热和冷却过程调整铸件的内部应力分布,降低开裂的风险。
6.增加铸件表面保护层:在高温环境下,为铸件增加一层保护层,可以减少铸件的氧化反应,延缓晶界氧化的发生。
铝合金疲劳断裂的断口特征铝合金,听起来就像是个高大上的词儿,其实它在我们的生活中随处可见。
无论是手机外壳、飞机机身,还是咱们家里的锅碗瓢盆,都可能用到了铝合金。
那么,这东西咋就能用得那么广泛呢?说白了,铝合金轻巧、耐腐蚀又坚固,是个相当“靠谱”的小伙伴。
不过,俗话说“金无足赤”,铝合金也有它的软肋,那就是疲劳断裂。
今天就来唠唠这个事儿,看看铝合金的断口特征,别说,听起来就有点儿悬乎,但其实没那么复杂。
1. 什么是疲劳断裂?简单点儿说,疲劳断裂就是材料在长期受力的情况下,会发生慢慢的“累”,最后彻底崩溃。
想象一下,你连续跑步跑了好几天,膝盖总是压榨、折磨,最后也会跟你闹脾气。
铝合金也是这个道理!这种疲劳可不是一朝一夕的事儿,而是随着时间的推移,材料内部产生一些微小的裂纹,慢慢积累、扩大,最终导致断裂。
1.1 断裂的表现谈起断裂的表面,这可真是高手之作。
铝合金的疲劳断裂,往往先从一个小小的“伤口”开始,随着时间推移,裂纹越长越大,看得人心里发毛。
这种表面上呈现出的颜色和形状,跟我们平常看到的伤口似乎有些像,且裂纹的走向、深度、宽度都有差别。
嗨呀,看到这些特征,真让人不禁感叹,科技背后藏着太多故事呢。
1.2 断口特征的细节从技术角度看,这个断口通常是“一层一层”剥落的。
就像剥洋葱一样,外层炸掉之后,里面的东西也开始“出风头”。
这时候,断裂表面看到的那种粗糙感,标志着疲劳的存在。
而如果是新鲜的断裂,表面光滑得像个镜子,这就是铝合金被突然断裂的结果,嘿嘿,有点儿像一场小型的爆炸,真是让人瞠目结舌。
2. 为什么铝合金会疲劳断裂?哎,生活不易,材料也一样难。
铝合金疲劳断裂,最主要的原因就是各种应力。
不管是咱们日常使用中产生的静态应力,还是偶尔的冲击,时间久了,铝合金就像人一样,受不了的。
尤其在一些高强度环境下,铝合金真的容易变成“脆弱的小白兔”,到最后一触即发,炸成碎片。
2.1 环境因素的干扰别小看了环境因素,温度、湿度甚至是化学物质都能给铝合金带来“小麻烦”。
文献综述(2011级)设计题目铝合金疲劳及断口分析学生姓名胡伟学号*********专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
塑性加工金属学实验综述——6061铝合金性能研究铝,是一种化学元素。
它的化学符号是Al,它的原子序数是13。
铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。
在金属品种中,仅次于钢铁,为第二大类金属。
它具有特殊的化学、物理特性,不仅重量轻,质地坚,而且具有良好的延展性、导电性、导热性、耐热性和耐核辐射性,是国民经济发展的重要基础原材料。
铝的比重为 2.7,密度为 2.72g/cm3,约为一般金属的1/3。
由于铝的塑性很好,具有延展性,便于各种冷、热压力加工,它既可以制成厚度仅为0.006 毫米的铝箔,也可以冷拔成极细的丝。
通过添加其它元素还可以将铝制成合金使它硬化,强度甚至可以超过结构钢,但仍保持着质轻的优点。
航空、建筑、汽车三大重要工业的发展,要求材料特性具有铝及其合金的独特性质,这就大大有利于这种新金属铝的生产和应用。
近一个世纪的历史进程中,铝的产量急剧上升,到了20世纪60年代,铝在全世界有色金属的产量上超过了铜而位居首位,这它的用途涉及到许多领域,大至国防、航天、电力、通讯等,小到锅碗瓢盆等生活用品。
它的化合物用途非常广泛, 不同的含铝化合物在医药、有机合成、石油精炼等方面发挥着重要的作用。
人们根据不同的需要,研制出了许多铝合金,在许多到了铝合金。
根据铝合金的加工工艺特性,纯铝按其纯度分为高纯铝、工业高纯铝和工业纯铝三类。
铝合金按加工方法可以分为形变铝合金和铸造铝合金。
形变铝合金塑性好,适宜于压力加工。
形变铝合金按照其性能特点和用途可分为防锈铝(LF)、硬铝(LY)、超硬铝(LC)和锻铝(LD)四种。
变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。
不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括工业纯铝(1000系列); Al-Mn合金(3000系列); Al-Si合金(4000系列); Al-Mg合金(5000系列)。
文献综述(2011级)设计题目铝合金疲劳及断口分析学生胡伟学号201111514专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者部,尤其是部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
铝合金解理断口铝合金是一种常见的金属材料,具有较高的强度和良好的耐腐蚀性能。
在工程应用中,铝合金常被用作结构材料,用于制造飞机、汽车、船舶等各种工业产品。
在铝合金的加工和使用过程中,经常会出现断裂现象,即铝合金的断口。
本文将以铝合金解理断口为题,探讨铝合金断口的特点、成因和分析方法。
一、铝合金断口的特点铝合金的断口通常呈现出以下几种特点:1. 断口形状多样:铝合金的断口形状可以是平整的、粗糙的、呈现韧突的或者呈现韧性断裂的样貌。
2. 断口颜色明显:铝合金的断口颜色通常呈现出银白色或者灰黑色,有时也会有一些氧化物的颜色。
3. 断口表面有特征:铝合金的断口表面上常常可以观察到沿晶断裂、穿晶断裂或者韧突的特征。
4. 断口有裂纹:铝合金的断口上通常可以观察到裂纹的存在,有时甚至可以发现一些疲劳裂纹或者应力腐蚀裂纹。
二、铝合金断裂的成因铝合金的断裂通常有以下几个成因:1. 力学性质:铝合金的断裂与其力学性质有关,包括材料的强度、韧性、硬度等特性。
2. 加工工艺:铝合金在加工过程中可能会出现过度加工、变形不均匀、应力集中等问题,导致断裂。
3. 缺陷存在:铝合金中可能存在一些微观或者宏观的缺陷,如夹杂物、气孔、夹层等,这些缺陷会成为断裂的起始点。
4. 应力作用:外界应力的作用也是导致铝合金断裂的原因之一,如拉伸、压缩、弯曲等应力。
三、铝合金断口的分析方法对于铝合金的断口,可以通过以下几种方法进行分析:1. 断口形貌观察:通过显微镜观察铝合金的断口形貌,分析断口的特征,判断断裂类型和断裂机理。
2. 化学分析:通过对铝合金断口的化学成分进行分析,了解铝合金中的杂质含量以及可能存在的元素偏析情况。
3. 组织分析:通过金相显微镜观察铝合金的组织结构,分析晶粒大小、相分布、孪生等组织特征。
4. 断口硬度测试:通过硬度测试仪对铝合金的断口硬度进行测试,判断断裂的韧性和强度。
在进行铝合金断口分析时,需要综合运用以上多种方法,全面了解断口的特点和成因,从而准确判断断裂的原因,为改善铝合金的性能和提高产品质量提供依据。
铝合金时效成形微观组织和性能及疲劳断裂特征的开题报告论文题目:铝合金时效成形微观组织和性能及疲劳断裂特征研究一、论文研究背景和意义铝合金因具有高强度、良好的可加工性和耐腐蚀性,广泛应用于汽车、飞机等行业。
近年来,为了提高铝合金的性能和降低成本,时效成形技术得到了越来越广泛的应用,但对于时效成形后的铝合金微观组织和性能及疲劳断裂特征的了解还比较有限。
对于这些问题的深入研究,有助于进一步优化时效成形工艺参数,提高铝合金材料的性能和便于产品设计和开发。
二、研究目的和内容本论文旨在研究铝合金时效成形后的微观组织和性能及疲劳断裂特征,具体包括:1.铝合金时效成形工艺的建立和优化,包括成形温度、成形时间等工艺参数的优化。
2.时效成形后铝合金的微观组织和性能的分析和表征,包括晶粒尺寸、硬度、拉伸强度、冲击韧性等方面的研究。
3.对于时效成形后的铝合金材料进行疲劳试验,并分析其疲劳寿命、疲劳断裂的特征和机制。
三、预期研究结果通过本论文的研究,可以得到以下预期结果:1.建立铝合金时效成形工艺的优化流程,提高生产效率和材料使用效率。
2.分析铝合金时效成形后的微观组织和性能变化,为产品设计和研发提供参考。
3.深入探讨铝合金时效成形后的疲劳断裂特征和机制,为产品寿命评估和改进提供理论依据。
四、论文研究方法和技术路线本论文的研究方法主要包括材料制备、工艺优化、显微观察、力学性能测试和疲劳试验等步骤。
具体的技术路线如下:1.选择适合时效成形的铝合金材料。
2.通过正交试验等方法,优化时效成形工艺参数,得到最优的工艺方案。
3.采用光学显微镜、扫描电镜等显微观察技术,研究铝合金材料的微观组织变化。
4.通过硬度测试、拉伸试验、冲击试验等力学性能测试,分析时效成形后铝合金材料的力学性能变化。
5.进行疲劳试验,并观察疲劳断裂的特征和机制。
五、论文进度计划1. 题目确定和问题的确定阶段(2周)2.文献综述和调研阶段(3周)3.材料制备和工艺优化阶段(4周)4.微观组织和力学性能测试阶段(4周)5.疲劳试验阶段(4周)6.数据分析和结果总结阶段(3周)7.论文撰写与修改阶段(6周)预计论文完成时间为八个月。
金属材料疲劳与断裂行为的研究与分析引言:金属材料在工程领域中扮演着至关重要的角色,然而,其长期受力与损伤的过程中,金属可能会经历疲劳与断裂行为。
疲劳与断裂是金属材料失效的主要形式之一,对金属材料的可靠性和耐久性提出了严峻的挑战。
因此,深入了解金属材料的疲劳与断裂行为是非常重要的。
本文将从疲劳机制、疲劳寿命预测和断裂行为分析三个方面进行讨论,以便提供关于金属材料疲劳与断裂行为的综合研究与分析。
一、疲劳机制:疲劳是由金属受到交替应力加载后,在相对较小的应力水平下发生的失效过程。
疲劳失效是由汇集的微观损伤逐渐积累形成裂纹并扩展最终导致材料断裂。
金属疲劳过程中的微观损伤主要包括晶体内部的位错累积和裂纹的扩展。
位错的累积导致了晶体结构的畸变,使材料内部出现了一系列的变形和塑性变化。
裂纹的扩展是疲劳过程中的关键步骤,裂纹的扩展速率与应力强度因子和材料的断裂韧性密切相关。
二、疲劳寿命预测:疲劳寿命预测是确定金属材料在一定应力水平下能够承受多少次应力循环才会发生断裂的关键问题。
常见的疲劳寿命预测方法主要包括基于应力和应变的疲劳寿命预测和基于损伤评估的疲劳寿命预测。
基于应力和应变的疲劳寿命预测方法主要根据试验得到的应力和应变历程来计算相应的疲劳寿命。
而基于损伤评估的疲劳寿命预测方法则基于损伤累积理论,将微观损伤累积与宏观疲劳寿命进行关联。
这些方法可以通过模拟疲劳试验、应用损伤累积模型以及进行试验验证,对金属材料的疲劳寿命进行预测。
三、断裂行为分析:金属材料在疲劳过程中的断裂行为对于工程结构的安全和可靠性至关重要。
断裂行为的分析需要考虑到断裂的机制和断裂韧性。
断裂机制主要包括韧突和韧面断裂两种形式。
韧突断裂是由于材料的塑性行为导致断裂过程中发生大量能量的耗散,形成一个粗糙的表面。
而韧面断裂则是由于材料的脆性行为导致断裂过程中几乎没有能量的耗散,形成一个相对平滑的断口。
断裂韧性则是描述材料抵抗断裂的能力。
通常使用断裂韧性指标如塞克斯克曼断裂韧性来评估材料的断裂行为。
摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。
采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。
试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。
铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。
断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。
铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。
铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。
关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌1 前言铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。
铸造铝合金构件的主要问题是存在孔隙、氧化物和非金属夹杂物等缺陷[4],这些缺陷强烈影响构件的服役性能。
铸造A356铝合金的力学性能取决于构件中相的特性及其分布,缺陷的性质、数量和尺寸。
尽管铸造A356铝合金的力学性能及其疲劳性能得到了广泛的研究[4-9],但仍然有一些问题有待于进一步研究予以澄清,比如,铸造铝合金在拉伸过程中裂纹的萌生及其扩展的定量分析有待进一步的建立。
在疲劳载荷加载中,短裂纹扩展行为取决于应力状态和组织结构特征,比如,硅粒子和α-Al形态、分布及其大小,缺陷的性质、分布、数量及其大小。
文献综述(2011级)设计题目铝合金疲劳及断口分析学生姓名胡伟学号*********专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
在此段时间,美国学者在AlZnMg1 合金的基础上,加入了Zr、Mn、Cr 等元素,研制出了7004和7005合金,具有优良焊接性和抗应力腐蚀性能,广泛应用于焊接行业。
唯一不足的是,工艺性能较差。
日本科学家尝试降低合金中Mg含量,提高Zn/Mg值,研制出了ZK60和ZK61合金,使合金的焊接性和工艺性能提高,但是降低了很大的强度。
同时期内,前苏联也研制出了1915、1933合金,强度也是偏低。
为了克服强度低的缺点,20世纪70年代又研制出7020合金,具有高强度,焊接性好的性能。
以后,人们把注意力集中在了Al-Zn-Mg 系铝合金上。
20世纪80年代初,美国科学家先后在7075合金的基础上,为了解决实际生产中抗应力腐蚀敏感性较高的问题,以及满足某些特殊需要,调整了部分合金元素的含量,发展了许多新型合金。
相比之下,国内对7系铝合金的研究起步较晚,在20实际80年代,由东北和北京研究院研制Al-Zn-Mg 系铝合金。
目前主要有7050、7075、7175等合金产品。
20 世纪90 年代中期,北京航空材料研究所采用常规半连续铸造法试制出7A55 超高强铝合金,近几年又研制出强度更高的7A60 合金。
而在Al2Zn2Mg 系铝合金的研制上,国内基本都是仿制,很少自行开发。
1.3 铝合金疲劳的分类1.3.1 疲劳的定义疲劳断裂是由于交变载荷、应力下引起的延时断裂,其断裂应力水平往往低于材料的抗拉强度σb,有时甚至低于屈服强度σs。
一般情况下,疲劳破坏不发生明显的塑性变形,其变形主要是脆性断裂,是一种没有预兆、十分危险的破坏形式,难以检测、预防。
铝合金的疲劳,按疲劳破坏原因可分为三类:热疲劳、腐蚀疲劳和机械疲劳。
1.3.2热疲劳铝合金的热疲劳是在交变应力和热应力共同作用下产生的疲劳破坏。
外部约束和内部约束是产生热疲劳的两个必要条件,外部约束即阻碍材料自由膨胀,内部约束即产生温度梯度,使材料膨胀,但由于约束从而产生热应力与热应变,经过一定的循环次数,导致裂纹的萌生、扩展。
张文孝等研究了LD8铝合金的同相和异相热疲劳特性,应用弹塑性断裂力学方法对不同状态下热疲劳寿命进行了探讨。
1.3.3腐蚀疲劳长期在化工行业使用或者海水中使用的金属材料,处于腐蚀的环境中,此外还承受交变载荷作用,与正常环境下的金属材料相比,腐蚀性环境和交变载荷同时作用,会显著降低材料的疲劳性能,从而产生构件的破坏,以至于最终断裂。
宫玉辉等研究了不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响,发现腐蚀环境对裂纹扩展有较明显的加速作用,但不同环境腐蚀和不同温度对材料的低周疲劳性能影响不大。
王成等将不同浓度硅酸钠添加到铝合金中,发现其可以抑制铝合金的点蚀、减少裂纹源,提高铝合金在氯化钠溶液中抗点蚀的能力及腐蚀疲劳寿命,但对铝合金的腐蚀疲劳裂纹的扩展无法抑制。
1.3.4机械疲劳机械零部件在外加应力或者应变作用下将会产生机械疲劳,经长时间工作后,即使所受应力小于材料屈服点,仍然会产生裂纹,或者产生断裂。
在循环应力水平较低时,弹性应变起主导作用,此时疲劳寿命较长,称之为高周疲劳,也称应力疲劳;在循环应力水平较高时,塑性应变起主导作用,此时疲劳寿命较短,称之为低周疲劳,也称塑性疲劳。
李睿等对2024-T3铝合金孔板进行了高低周复合疲劳试验,研究发现随着高低周循环次数增大,复合疲劳寿命有显著的降低,并建立了高低周循环次数和应力幅比与高低周复合疲劳寿命之间的关系式,但其只考虑了载荷循环次数对疲劳的影响,没有全面综合其他影响疲劳寿命的因素。
1.4 疲劳破坏过程及机理金属设备疲劳过程的开始,即疲劳裂纹的萌生称为疲劳源。
疲劳源是材料微观组织永久损伤的核心,当裂纹开始萌生后,逐渐长大并与其它裂纹合并,然后形成肉眼可见的宏观裂纹,称为主裂纹,此时裂纹萌生阶段结束。
之后,进入裂纹扩展阶段,首先开始稳定扩展,裂纹达到临街尺寸后,随着进一步的交变应力、应变作用下,金属材料无法承受,裂纹开始突然间失稳,材料瞬间产生破坏,发生断裂。
简而言之,疲劳破坏过程分为:裂纹萌生,裂纹扩展和失稳断裂三个阶段。
每个阶段具体如下:裂纹萌生:由于应力集中,疲劳裂纹首先起源于材料内部微观结构最薄弱的额区域,或者应力较高的区域。
裂纹萌生初期,长度小于0。
05mm~0。
1mm,此裂纹称为疲劳裂纹核。
随着疲劳进行,微观裂纹逐渐发展成宏观裂纹,肉眼可见。
铝合金材料疲劳裂纹萌生主要部位有滑移带、晶界、相界面三种裂纹扩展:疲劳裂纹萌生结束后,将进入裂纹扩展阶段。
此阶段又分为两个部分,首先是裂纹沿主滑移系,以纯剪切方式向内扩展,扩展速率极低,其延伸范围在几个晶粒长度之间。
其次,在晶界的阻碍作用下,使扩展方向逐渐垂直于主应力即拉应力方向,并形成疲劳条纹或称为疲劳辉纹,一条辉纹就是一次循环的结果。
第一阶段的裂纹扩展速度慢,长度小,所以该阶段的形貌特征并不明显。
而第二阶段的穿晶扩展,其扩展速率随循环周次增加而增大,扩展程度也较为明显,多数材料的第二阶段可用电子显微镜观察到疲劳条纹,有些甚至能用肉眼观察到。
不同材料的疲劳条纹各不相同,形貌也是种类繁多,有与裂纹扩展方向垂直略呈弯曲并相互行的沟槽状花样,有断口比较平滑而且分布有贝纹或海滩花样,有时则呈现以源区为中心的放射线,疲劳条纹是疲劳断口最有代表性的特征。
一般情况下,疲劳裂纹扩展区在整个断口所占面积较大。
疲劳裂纹扩展阶段是材料整个疲劳寿命的主要组成部分。
不同铝合金材料裂纹扩展的两个阶段也有不同的寿命,在材料表面光滑试件中,第一阶段的扩展时间占整个疲劳寿命的绝大部分;而在有缺口的试件中,第一阶段几乎可以忽略,第二阶段的传播是整个疲劳裂纹扩展的寿命。
裂纹失稳:疲劳裂纹扩展到一定长度即临界长度时,材料表面不足以承受外部载荷,在下一次加载中将发生失稳扩展,导致快速断裂。
这一阶段是构件寿命的最后阶段,失稳扩展到断裂这一短暂过程对于构件寿命的贡献是可以忽略的,裂纹最后失稳快速扩展所形成的断口区域称为瞬断区,材料性质不同,断口相貌也截然不同。
1.5 疲劳寿命的影响因素1.5.1材料内因疲劳特性与合金成分有关,成分决定了合金组织以及强化效果;同时,合金的显微组织也冶金过程中的缺陷也对合金疲劳有很大程度的影响,裂纹源可能由夹杂物,晶粒大小,晶粒偏析,晶界疏松引起。
张涛等研究了Al-Si系铸造铝合金疲劳性能,发现铸造过程难以避免的孔洞及Si颗粒大小、形貌均对铸造铝合金材料疲劳裂纹的萌生有重要影响;Zhai[7]通过对铝锂合金疲劳性能各向异性的研究发现,在轧制方向强度低,疲劳性能也最差,疲劳裂纹多沿方向萌生,而在厚度方向强度较高,鲜见裂纹的萌生,疲劳性能也自然最佳;时效处理是改善铝合金性能的有效途径,由于其改变了合金微观组织结构,自然也对合金疲劳特性影响颇大;Sharma等通过对不同时效处理后的AA 2219 铝合金进行疲劳试验,结果表明自然时效及欠时效处理后的合金疲劳性能较好,鲜见疲劳裂纹的萌生;而峰时效和过时效处理后的合金,其多出萌生疲劳裂纹切裂纹扩展速率较高,疲劳性能不佳。
1.5.2构件状态合金的疲劳特性也跟表面粗糙度、材料尺寸、几何形状。
表面凹凸。
壁厚均匀性有关。
Suraratchai等对影响铝合金疲劳寿命的因素进行了研究,其对合金表面粗糙度进行了有限元分析,结果表明由于材料表面凹凸不平而引起的应力集中,是损害疲劳寿命的源头;肖骥研究了7475铝合金板材的疲劳性能,在疲劳试验中表现最好的T-L平面上的试件进行了喷丸处理,结果发现,经过喷丸处理之后,并不是一定提高了试件的疲劳强度,在喷丸处理的过程中,在引入残余压应力的同时,也破坏了试件表面的平整度。
残余压应力将提高试件的疲劳强度,而过高的粗糙度,将使试件表面很容易成为裂纹源。
1.5.3工作条件载荷的大小和加载方式及加载频率是合金材料疲劳寿命的决定性因素。
刘岗等研究了2E12铝合金在不同应力水平下的疲劳性能及疲劳裂纹扩展速率,结果表明缺口的存在降低了疲劳强度,随着应力比的提高,疲劳强度也大幅度改善;蹇海根等通过金相、电镜扫描显微技术对比了不同应力下铝合金的疲劳断口显微组织,发现疲劳裂纹萌生处与材料表面的距离随加载应力升高而减小,加载应力越高,疲劳源区面积越小,裂纹扩展区的疲劳辉纹间距越大,且随着应力的增大,断口上疲劳裂纹扩展区的面积减小,瞬断区的面积增大。
同时材料寿命也受工作环境如温度、周边介质等因素影响。
Gasqueres等[13]通过对AA 2024铝合金疲劳裂纹扩展规律的研究发现,正常室温下,疲劳裂纹扩展进入第二阶段后,将环境温度调至223 K,裂纹长大又转为第一阶段的扩展规律,而且此时裂纹的扩展受到温度和气压的共同影响。