聚酰亚胺液晶高分子及液晶取向膜 (2)
- 格式:ppt
- 大小:1.82 MB
- 文档页数:46
聚酰亚胺液晶高分子及液晶取向膜聚酰亚胺(Polyimide)是一种广泛应用于液晶显示器(LCD)的高分子材料。
它具有优良的热稳定性、机械强度和化学稳定性,使其成为制备液晶取向膜以及液晶高分子的理想材料之一首先,聚酰亚胺的制备方法通常采用聚合反应。
首先,将酸酐和双胺混合,然后加入溶剂,在高温下进行缩聚反应,最终形成聚酰亚胺高分子。
这种高分子具有线性链结构,其中的酰胺键和酰亚胺键赋予了聚酰亚胺良好的热稳定性和化学稳定性。
液晶显示器中的液晶取向膜是由聚酰亚胺材料制备而成。
它的作用是通过特定的取向方法,使液晶分子在特定方向上排列,从而实现像素点的控制。
聚酰亚胺由于其分子链的特殊性,可以在制备过程中采用摩擦取向、溶剂取向或磁场取向等手段,使液晶分子保持一定的方向性。
这种取向膜能够提高液晶显示器的像素响应速度和色彩饱和度,提高显示效果。
除了用于液晶取向膜的制备外,聚酰亚胺也可以作为液晶高分子来应用。
液晶高分子是指将液晶分子与高分子有机物结合,形成一种具有液晶相和高分子特性的复合材料。
聚酰亚胺具有较高的玻璃化转变温度和稳定的液晶相,因此可以作为液晶高分子的基体材料。
通过在聚酰亚胺基体中掺入液晶分子,可以改变聚酰亚胺材料的光学、电学和热学性质,实现液晶高分子的多种应用,如电子器件、传感器等。
总之,聚酰亚胺是一种重要的高分子材料,广泛应用于液晶显示器的液晶取向膜和液晶高分子中。
它具有优良的热稳定性、机械强度和化学稳定性,能够提高液晶显示器的像素响应速度、色彩饱和度和显示效果,同时也为液晶高分子的应用提供了一种可靠的基体材料。
随着科技的不断发展,聚酰亚胺材料在液晶显示技术中的应用也将进一步扩展。
大世代面板聚酰亚胺配向膜材料关键技术及发展方向大世代面板聚酰亚胺(polyimide)配向膜材料是一种广泛应用于液晶显示器(LCD)和有机电激发光(OLED)屏幕制造中的重要材料。
其作用是帮助液晶分子或发光分子在显示器中形成特定的取向结构,从而提高显示效果。
关键技术:1. 聚酰亚胺材料合成:大世代面板配向膜需要具备高度的热稳定性、光学透明性和机械强度。
因此,关键技术是合成具有这些优良性能的聚酰亚胺材料。
2. 高效的涂布技术:大世代面板配向膜需要以高均匀性和高精度涂布在玻璃基板或聚合物基板上。
因此,关键技术是开发高效的涂布技术,如旋涂、喷涂、刮涂等,以确保膜层的均匀性和质量。
3. 表面处理技术:面板配向膜需要具备一定的表面能,以便与液晶分子或发光分子形成较好的相互作用。
关键技术是开发表面处理技术,如等离子体处理、化学修饰等,以改善材料的表面性能。
4. 高精度的取向结构控制技术:大世代面板配向膜需要形成一定的取向结构,以确保液晶分子或发光分子在屏幕中呈现所需的取向特性。
关键技术是开发高精度的取向结构控制技术,如模板法、光照法等,以实现准确的取向控制。
发展方向:1. 高分辨率和高刷新率:随着显示技术的不断进步,人们对面板配向膜的要求越来越高。
未来的发展方向是开发具有更高分辨率和更高刷新率的大世代面板配向膜,以满足高清晰度和平滑运动的需求。
2. 柔性可卷曲屏幕:柔性显示技术越来越受到关注,面板配向膜也需要适应柔性基板的要求。
发展方向是开发具有良好柔性性能的大世代面板配向膜,以实现可弯曲、可卷曲的屏幕制造。
3. 可耐高温和高湿环境:大世代面板配向膜在使用过程中需要具备高耐高温和高湿环境的性能。
发展方向是开发具有更高热稳定性和湿度稳定性的材料,以满足极端环境下的应用需求。
总之,大世代面板聚酰亚胺配向膜材料的关键技术是聚酰亚胺材料合成、高效的涂布技术、表面处理技术和高精度的取向结构控制技术。
未来的发展方向包括高分辨率和高刷新率、柔性可卷曲屏幕、以及耐高温和高湿度环境的性能。
聚酰亚胺在液晶显示器中的应用------聚酰亚胺液晶取向剂HPI目录第一部分液晶及液晶显示材料相关知识 (3)一、液晶信息概况 (3)二、聚酰亚胺液晶取向剂基础知识 (5)三、聚酰亚胺取向剂国内市场需求 (10)四、LCD配向膜材料市场规膜 (10)五、聚酰亚胺取向剂各企业销售占比 (11)五、聚酰亚胺三类液晶聚向剂价格 (12)六、聚酰亚胺液晶取向剂主要生产企业 (12)第二部分主要企业介绍 (13)一、日本化学工业株式会社 (13)二、日本合成橡胶株式会社(JSR) (18)三、北京波米科技有限公司 (20)四、大立高分子工业股份有限公司 (24)五、厦门映日光电科技有限公司 (28)六、葆力孚化工科技有限公司 (33)七、深圳道尔顿科技有限公司 (35)第三部分投资估算与市场分析 (37)一、投资估算 (37)二、市场分析 (37)第四部分电话调研信息及个人观点............................................................ 错误!未定义书签。
一、电话调研信息............................................................................................ 错误!未定义书签。
二、个人观点.................................................................................................... 错误!未定义书签。
第一部分液晶及液晶显示材料相关知识一、液晶信息概况1、液晶的概念液晶是处于固态和液态之间具有一定有序性的有机物质, 具有光电动态散射特性; 它有多种液晶相态, 例如胆甾相, 各种近晶相, 向列相等。
其中开发最成功的、市场占有量最大、发展最快的是向列相液晶显示器。
[19]中华人民共和国国家知识产权局[12]发明专利申请公布说明书[11]公开号CN 101050367A [43]公开日2007年10月10日[21]申请号200710049059.X [22]申请日2007.05.10[21]申请号200710049059.X[71]申请人四川大学地址610065四川省成都市武侯区一环路南一段24号[72]发明人汪映寒 白星 [74]专利代理机构成都科海专利事务有限责任公司代理人邓继轩[51]Int.CI.C09K 19/38 (2006.01)G02F 1/1337 (2006.01)权利要求书 2 页 说明书 11 页[54]发明名称一种聚酰亚胺液晶取向剂的制备方法[57]摘要本发明公开了一种聚酰胺酸液晶取向剂的制备方法,其特点是该方法包括以下工艺步骤:在室温和氮气保护下,依次将1~10重量份特定二胺溶于50~100重量份有机溶剂中,再加入10重量份有机四羧酸二酐于反应釜中,反应0.1~1小时;然后在混合物溶液中加入1~10重量份有机二胺,继续反应2~24小时得到聚酰胺酸溶液;用50~400重量份有机溶剂和50~500重量份有机流平剂混合加入该聚酰胺酸溶液中得到固含量为1~5%的聚酰胺酸液晶取向剂。
用本发明制备的聚酰胺酸液晶取向剂制备液晶盒,液晶分子的预倾角为4~20°,该液晶取向剂可用于扭曲向列液晶显示器、超扭曲向列液晶显示器。
200710049059.X权 利 要 求 书第1/2页 1.一种聚酰亚胺液晶取向剂的制备方法,其特征在于该方法包括以下步骤,其中所述原料份数均为重量份数:有机四羧酸二酐 10份特定二胺 1~10份有机二胺 1~10份有机溶剂 100~500份有机流平剂 50~500份并按下述工艺步骤及工艺参数制备(1)聚酰胺酸液晶取向剂的制备在室温和氮气保护下,依次将1~10份特定二胺溶于50~100份有机溶剂中,再加入10份有机四羧酸二酐于反应釜中,反应0.1~1小时;然后向该混合物溶液中加入1~10份有机二胺,继续反应2~24小时得到聚酰胺酸溶液;用50~400份有机溶剂和50~500份有机流平剂混合加入该聚酰胺酸溶液中得到固含量为1~5%的聚酰胺酸液晶取向剂;(2)液晶盒的制备:将上述方法制得的聚酰胺酸液晶取向剂溶液均匀旋涂于洁净的I T O玻璃上,依次将该I T O玻璃基板放在温度60~120℃预烘10~60m i n,在温度200~250℃亚胺化处理1~3h,然后用摩擦机摩擦该I T O玻璃基板上的聚酰亚胺薄膜,并用含有5~20u m间隔子的光固化胶将两片I T O玻璃基板沿摩擦方向反平行粘结成盒,灌入液晶,随后用光固化胶封口,获得液晶盒;该聚酰亚胺的化学结构式如下:200710049059.X权 利 要 求 书 第2/2页 其中,n=20~400,x=0~1,D1为有机四羧酸二酐除去四个羧基后剩余的部分,D2为有机二胺除去二个胺基后剩余的部分,B1、B2分别为苯环或环己烷,R为-C F3或-OCF3。
聚酰亚胺液晶取向剂信息汇总
流畅
聚酰亚胺液晶取向剂(PAN Alignment Agents)是一种特殊的化学物质,由一系列的聚酰亚胺分子构成,它是液晶电视屏幕的至关重要的材料之一、聚酰亚胺液晶取向剂可以促使液晶分子垂直排列,从而获得良好的取向性。
它也被称为“吸收剂”或“取向剂”。
聚酰亚胺液晶取向剂的主要优点在于能够实现低温取向。
它可以实现低温取向,排列晶体的时间只需要几秒钟,而传统的取向技术需要经过一段时间的温度控制,以取向晶体,这使得取向过程时间大为缩短,大大提高了整个取向过程的效率。
同时,它也有利于节省电力,由于它具有低耗能的特性,使其成为相对环保的一种方法。
聚酰亚胺液晶高分子及液晶取向膜
一、聚酰亚胺液晶高分子
聚酰亚胺液晶(LCP)是一种能够形成液晶结构的热塑性高分子,它以其具有高熔点、高耐热性、高机械强度等特点,在电子和光学领域的应用也日益广泛,如电子信号器件、计算机电路、有机太阳能电池、液晶显示器、激光存储器件和光学系统等。
聚酰亚胺(LCP)的液晶性能主要取决于其结构中的聚酰亚胺链,其结构可以分为三种基本形式:块状、针形和团簇。
块状结构具有较高的熔点和机械强度,针形和团簇结构能够较容易地形成液晶相,并且拥有良好的折射率变化特性。
此外,聚酰亚胺也可以与其他无机填料用于增强其性能,如高抗蚀性。
聚酰亚胺(LCP)在光学领域的应用也非常广泛,它可以形成液晶取向膜,以控制可见光的传播方向。
具体来说,液晶取向膜是由一层弹性的聚酰亚胺(LCP)膜和无机填料构成的,该膜能够将可见光反射,从而实现高精度的光学取向。
液晶取向膜具有良好的折光率变化性能和高可靠性,可以在大角度空间范围内实现完全的光学取向,并具有良好的湿度耐受性和机械强度,在有利的温度条件下可以长期稳定工作,为高技术应用提供了可靠的保障。