讲函数的定义域及表示方法
- 格式:doc
- 大小:280.00 KB
- 文档页数:4
函数概念与表示一、知识要点:1.函数的定义及“三要素”: 定义域、对应关系 、值域。
2.常用的函数表示法:(1)列表法:(2)图象法:(3)解析法(分段函数):(4)复合函数:(1)求函数定义域一般方法:①给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;②实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;③复合函数定义域: ,已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域。
由()a g x b ≤≤解出。
已知[()]f g x 的定义域[],a b ,求()f x 的定义域。
是()g x 在[],a b 上的值域 (2)求函数解析式的方法:①已知函数类型,求函数的解析式:待定系数法; ②已知复合关系,求函数的解析式:换元法、配凑法; ③已知函数图像,求函数解析式;数形结合法; (3)求函数值域的类型与求法:类型:①求常见函数值域;②复合函数的值域;③组合函数的值域。
$求法:①直接法、②配方法、 ③离常数法、④换元法、⑤逆求法、⑥判别式法、⑦数形结合。
二、基础练习:1、下各组函数中表示同一函数的有(1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。
2、函数y=x x x +-)1(的定义域为3、已知函数()f x 定义域为(0,2), 2()23f x +定义域 ;*4、(2009山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x则f (2009)的值为5、设函数1()f x =112223()(),x f x x f x x -==,,则123(((2007)))f f f = .三、例题精讲: 题型1:函数关系式例1.设函数).89(,)100()5()100(3)(f x x f x x x f 求⎩⎨⎧<+≥-=)变式1:已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.题型2:求函数解析式例2.(1)f(x +1)=x+2x ;求f(x)(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.](3)已知()f x 满足12()()3f x f x x+=,求()f x 。
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
人教版高一数学必修一第一单元知识点:函数及其表示数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,小编准备了人教版高一数学必修一第一单元知识点,希望你喜欢。
1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射.注意:一个方法求复合函数y=f(t),t=q(x)的定义域的方法:①若y=f(t)的定义域为(a,b),则解不等式得a两个防范(1)解决函数问题,必须优先考虑函数的定义域.(2)用换元法解题时,应注意换元前后的等价性.三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.人教版高一数学必修一第一单元知识点就为大家介绍到这里,希望对你有所帮助。
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
函数的定义及表示知识讲解一、函数1.函数的概念概念:设集合A 是一个非空数集,对A 中的任意的数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作()yf x ,xA 其中x 叫做自变量.自变量取值的范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()y f a ,所有函数值构成的集合{()}y yf x xA ,叫做这个函数的值域.2.函数的三要素:定义域,值域,对应法则3.函数的表示法1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;2)列表法:就是列出表格来表示两个变量的函数关系; 3)图象法:就是用函数图象表示两个变量之间的关系.4.求函数定义域注意事项1)分式的分母不应为零; 2)零的零次幂没有意义;3)开偶次方根的被开方数大于或者等于零; 4)对数式的真数大于零; 5)()=tan f x x 的定义域为{|}2x xk kZ ππ,;6)复合函数求定义域要保证复合过程有意义,最后求它们的交集.5.分段函数定义:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数.6.复合函数定义:若()∈,(),x a bu m n∈,那么[()]y f u=,(),=,()u g xy f x称为复合函数,u称为中间变量,它的取值范围是()g x的值域.注意:函数的定义域必须写成集合或区间的形式.二、映射,是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x在B 定义:设A B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射,这时称y是x在映射f的作用下的象,记作()f x,于是()y f xx称为y的原象,映射f也可记为::f A B()x f xf x构成的集合叫做映射f的其中A叫做映射f的定义域(函数定义域的推广).由所有象()f A.值域.通常记作()、以及对应法则,三者缺一不可;:f A B,集合A中每一个元素映射三要素:集合A B在集合B中都有唯一的元素与之对应,从A到B的对应关系为一对一或多对一,绝对不可以一对多,但也许B中有多余元素.三、函数求解析式1.换元法2.方程组法四、函数求值域1.直接法(分析观察法)2.函数单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.3.配方法:二次函数或可转化为二次函数的函数常用此方法来还求解,但在转化的过程中要注意等价性,特别是不能改变定义域.对于形如2y ax bx c (0)a或2()[()]()F x a f x bf x c (0)a类的函数的值域问题,均可使用配方法.4.分离常数法:当分式中分子分母都函数由参数时.可以采用分离常数法.5.换元法(代数/三角):对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑运用代数或三角代换,将所给函数化成值域简单的熟悉的容易确定的基本函数,从而求得原函数的值域. 对形如的函数,令;形如的函数,令;形如含的结构的函数,可利用三角代换,令,或令.6.判别式法:在函数定义域为R 时,把函数转化成关于的二次方程()0F x y ,;通过方程有实数根,判别式,从而求得原函数的值域.对形如21112222a xb xc ya xb xc (1a 、2a 不同时为零)的函数的值域,通常转化成关于x 的二次方程,由于方程有实根,即从而求得y 的范围,即值域.值得注意的是,要对方程的二次项系数进行讨论.注意:主要适用于定义在R 上的分式函数,但定义在某区间上时,则需要另行讨论.7.基本不等式法:利用基本不等式求函数值域, 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值.8.数形结合法:如果所给函数有较明显的几何意义(如两点间距离,直线的斜率)或当一个函数的图象易于作出时,可借助几何图形的直观性来求函数的值域.()1y f x =()f x t=,,,,0)y ax b a b c dac =+±≠均为常数t =[]cos ,0,x a θθπ=∈sin ,,22x a ππθθ⎡⎤=∈-⎢⎥⎣⎦x 0∆≥0≥∆经典例题一.选择题(共12小题)1.(2017秋•潮南区期末)下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .【解答】解:B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性, A ,C ,D 满足函数的定义, 故选:B .2.(2017秋•大观区校级期中)已知集合P={x |0≤x ≤4},集合N={y |0≤y ≤2},下列从P 到N 的各对应关系f 不是函数的是( ) A .f :x→y=12xB .f :x→y=13xC .f :x→y=23xD .f :x→y=√x【解答】解:f :x→y=12x ,是函数,f :x→y=13x ,是函数,f :x→y=23x ,不是函数,4→23×4=83∉N ;f :x→y=√x ,是函数, 故选:C .3.(2017秋•定远县期中)下列各式中,表示y 是x 的函数的有( ) ①y=x ﹣(x ﹣3); ②y=√x −2+√1−x ; ③y={x −1(x <0)x +1(x ≥0) ④y={0(x 为有理数)1(x 为实数)..A .4个B .3个C .2个D .1个【解答】解:根据函数的定义,当自变量x 在它的允许取值范围内任意取一个值,y 都有唯一确定的值与之对应,故①③表示y 是x 的函数;在②中由{x −2≥01−x ≥0知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x的函数;在④中若x=0,则对应的y 的值不唯一,可以等于0,也可以等于1,所以④不表示y 是x 的函数. 故选:C .4.(2017秋•凉州区校级期末)下列四组函数中,表示同一函数的是( )A .y=x 与y=√x 2B .y=2lgx 与y=lgx 2C .y =√x 33与y=xD .y=x ﹣1与y=x 2−1x+1【解答】解:要表示同一个函数,必须有相同的对应法则,相同的定义域和值域, 观察四个选项,得到A 答案中两个函数的对应法则不同,B 选项中两个函数的定义域不同,C 选项中两个函数相同,D 选项中两个函数的定义域不同, 故选:C .5.(2017秋•鹰潭期末)下列四组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=√x 2B .f (x )=lg x 2,g (x )=2lg xC .f (x )=x 2−1x−1,g (x )=x +1D .f (x )=√x +1•√x −1,g (x )=√x 2−1【解答】解:对于A ,∵g (x )=√x 2=|x|,f (x )=|x |,∴两函数为同一函数; 对于B ,函数f (x )的定义域为{x |x ≠0},而函数g (x )的定义域为{x |x >0},两函数定义域不同,∴两函数为不同函数;对于C ,函数f (x )的定义域为{x |x ≠1},而函数g (x )的定义域为R ,两函数定义域不同,∴两函数为不同函数;对于D ,函数f (x )的定义域为{x |x >1},而函数g (x )的定义域为{x |x <﹣1或x >1},两函数定义域不同,∴两函数为不同函数. 故选:A .6.(2018春•天心区校级期末)定义运算a*b ,a ∗b ={a(a ≤b)b(a >b),例如1*2=1,则函数y=1*2x的值域为()A.(0,1)B.(﹣∞,1)C.[1,+∞)D.(0,1]【解答】解:当1≤2x时,即x≥0时,函数y=1*2x=1当1>2x时,即x<0时,函数y=1*2x=2x1,x≥0∴f(x)={2x,x<0由图知,函数y=1*2x的值域为:(0,1].故选:D.7.(2018春•海州区校级期末)若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【解答】解:由题意:函数y=√ax2+2ax+3是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:{a>0f(−1)≤0⇒{a>0a−2a+3≤0解得:a≥3所以a的取值范围是[3,+∞).故选:B.8.(2017秋•沂南县期末)若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4B.3lnx+4C.3lnx D.3e x【解答】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.9.(2017秋•潮南区期末)若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为()A.1B.﹣1C.﹣32D.32【解答】解:∵f(x)满足关系式f(x)+2f(1x)=3x,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.10.(2017秋•咸阳期末)已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x﹣1D.f(x)=3x+4【解答】解:设t=x+1,∵函数f(x+1)=3x+2=3(x+1)﹣1∴函数f(t)=3t﹣1,即函数f(x)=3x﹣1故选:C.11.(2017秋•尖山区校级期末)已知f(x﹣2)=x2﹣4x,那么f(x)=()A.x2﹣8x﹣4B.x2﹣x﹣4C.x2+8x D.x2﹣4【解答】解:由于f(x﹣2)=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4,从而f(x)=x2﹣4.故选:D.12.(2017秋•潮南区期末)已知函数f(x)=√3x−13ax2+ax−3的定义域是R,则实数a的取值范围是()A.a>13B.﹣12<a≤0C .﹣12<a <0D .a ≤13【解答】解:由a=0或{a ≠0△=a 2−4a ×(−3)<0可得﹣12<a ≤0, 故选:B .二.填空题(共7小题)13.(2017春•陆川县校级期末)已知函数y=f (x 2﹣1)的定义域为(﹣2,2),函数g (x )=f (x ﹣1)+f (3﹣2x ).则函数g (x )的定义域为 [0,2) . 【解答】解:由函数y=f (x 2﹣1)的定义域为(﹣2,2), 得:﹣1≤x 2﹣1<3,故函数f (x )的定义域是[﹣1,3), 故﹣1≤x ﹣1<3,﹣1≤3﹣2x <3, 解得:0≤x <2,故函数g (x )的定义域是[0,2), 故答案为:[0,2).14.(2017•重庆模拟)设函数f (x )={log 2(−x2),x ≤−1−13x 2+43x +23,x >−1,若f (x )在区间[m ,4]上的值域为[﹣1,2],则实数m 的取值范围为 [﹣8,﹣1] . 【解答】解:函数f (x )的图象如图所示,结合图象易得 当m ∈[﹣8,﹣1]时, f (x )∈[﹣1,2].故答案为:[﹣8,﹣1].15.(2018•榆林三模)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[0,+∞),则a+1c +c+1a的最小值为 4 . 【解答】解:由题意知,a ,>0,△=4﹣4ac=0,∴ac=1,c >0,则a+1c +c+1a =a c +1c +c a +1a =(a c +c a )+(1a +1c)≥2+2√1ac =2+2=4,当且仅当a=c=1时取等号.∴a+1c +c+1a的最小值为4.16.(2017秋•南阳期中)函数f (x )=x ﹣√1−x 的值域是 (﹣∞,1] .【解答】解:设√1−x =t ,则t ≥0,f (t )=1﹣t 2﹣t ,t ≥0,函数图象的对称轴为t=﹣12,开口向下,在区间[0,+∞)上单调减,∴f (t )max =f (0)=1,∴函数f (x )的值域为(﹣∞,1].故答案为:(﹣∞,1].17.(2017秋•天心区校级期末)已知函数f (x +1)=3x +2,则f (x )的解析式是 f (x )=3x ﹣1 .【解答】解:令x+1=t,则x=t﹣1,∴f(t)=3(t﹣1)+2=3t﹣1,∴f(x)=3x﹣1.故答案为f(x)=3x﹣1.18.(2017秋•清河区校级期中)已知a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b=1.【解答】解:∵a、b为实数,集合M={ba,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,∴1通过映射可得1∈N,解得a=1,b a →ba∈N,可得ba=0,解得b=0,∴a+b=1,故答案为1;19.(2018•开封一模)f(x)={2e x−1,x<2log3(x2−1),x≥2.则f(f(2))的值为2.【解答】解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为2三.解答题(共1小题)20.(2016春•江阴市期末)已知函数f (x )满足f (x +1)=lg (2+x )﹣lg (﹣x ).(1)求函数f (x )的解析式及定义域;(2)解不等式f (x )<1.【解答】解:(1)由已知令t=x +1,则f (t )=lg (t +1)﹣lg (1﹣t ), 即f (x )=lg (x +1)﹣lg (1﹣x );由{x +1>01−x >0得到﹣1<x <1,所以函数定义域为(﹣1,1); (2)f (x )=lg (x +1)﹣lg (1﹣x )=lg 1+x 1−x <1,即{1+x 1−x <10−1<x <1,解得﹣1<x <911.。
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A 到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法要点一、函数的概念例1、设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②例2、下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1D.f(x)=•,g(x)=例3、下列集合A,B及其对应法则,不能构成函数的是()A.A=B=R f(x)=|x|B.A=B=RC.A={1,2,3,4),B={2,3,4,5,6}f(x)=x+1D.A={x|x>0},B={1}f(x)=x0答案:C A B练习1、下列四个图形中不可能是函数y=f(x)图象的是()A.B.C.D.2、已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f (x)的图象的只可能是()A.B.C.D.3、下列四组函数中的f(x)和g(x)相等的是()A.B.C.D.4、下列对应是从集合A到B的函数的是()A.A=N,B=R,对应关系f:“求平方根”B.A=N*,B=N*,对应关系f:x→y=|x﹣3|C.A=R,B={0,1},对应关系f:D.A=Z,B=Q,对应关系5、中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={﹣1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①,②y=x+1,③y=|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是()A.①③B.①②C.③④D.②④要点二、函数的定义域例4、函数的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)例5、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3]D.[﹣2,1]例6、若函数y=的定义域为R,则a的取值范围为()A.(0,4]B.[4,+∞)C.[0,4] D.(4,+∞)答案: B A C 练习6、函数f (x )=+的定义域为( )A .(﹣3,0]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣3,0]D .(﹣∞,﹣3)∪(﹣3,1] 7、函数f (x )=(x ﹣5)0+(x ﹣2)的定义域为( )A .{x ∈R |2<x <5或x >5}B .{x ∈R |x >2}C .{x ∈R |x >5}D .{x ∈R |x ≠5且x ≠2}8、若函数f (x )的定义域为[1,2],则函数y=f (x 2)的定义域为( ) A .[1,4]B .[1,] C .[﹣,] D .[﹣,﹣1]∪[1,]9、若函数f (3﹣2x )的定义域为[﹣1,2],则函数f (x )的定义域是( ) A .B .[﹣1,2]C .[﹣1,5]D .10、已知函数的定义域为R ,则实数a 的取值范围是( ) A .(0, B .(﹣∞,C .,+∞)D .[1,+∞)要点三、函数的解析式例7 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2) f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式(3) 定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. (4)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.练习11、已知函数,则( )A .f (x )=x 2+2x +1B .f (x )=x 2﹣2x +3(x ≥1)C .f (x )=x 2﹣2x +1D .f (x )=x 2+2x +3(x ≥1)12、若函数f (x )满足f ()=x ,则f (x )的解析式为( )A.f(x)=(x≠1)B.f(x)=,(x≠﹣1)C.f(x)=(x≠1)D.f(x)=(x≠﹣1)13、已知函数f(x)=2x+3,若f(g(x))=6x﹣7,则函数g(x)的解析式为()A.g(x)=4x﹣10B.g(x)=3x﹣5C.g(x)=3x﹣10D.g(x)=4x+414、若函数f(x)对于任意实数x恒有3f(x)﹣2f(﹣x)=5x+1,则f(x)=.15、已知f(x)是定义在R上的奇函数,当x>0时,f(x)=+1,则f(x)=.答案:1、C 2、D 3、C 4、C 5、C 6、C 7、A 8、D 9、C 10、C 11、B 12、A 13、B 14、x+1。
教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。
函数定义域值域及表示(1)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(2)区间的概念及表示法设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.例题讲解[例1] 求下列函数的定义域:⑴y =⑵y(3)x x x x f -+=0)1()( (4)g(x)=211+-++x x[例2] 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。
函数定义域值域及表示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT函数定义域值域及表示(1)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(2)区间的概念及表示法设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.例题讲解[例1] 求下列函数的定义域:⑴y=⑵y=(3)x x x x f -+=0)1()( (4)g(x)=211+-++x x[例2] 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。
1. 函数的定义设A 、B 是两个非空数集,如果按照某种确定的对应关系f ,使得对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数.记作:()x f y =,A x ∈.其中x 叫自变量,它的取值范围叫做函数的定义域;如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()a f y =或a x y =,所有函数值构成的集合{}|(),y y f x x A =∈叫做这个函数的值域.☆ 函数的三要素:定义域、对应关系和值域;其中对应关系是核心,定义域是根本,当定义域和对应关系一确定,则值域也就确定了.2. 映射 设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 的作用下的象,记作()x f ,于是y =()x f ,x 称作y 的原象.映射f 也可以记为B A f →:,→x ()x f ,其中A 叫做映射f 的定义域(函数定义域的推广),由所有象()x f 构成的集合叫做映射f 的值域,通常记作()A f .3.一一映射:如果映射f 是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A 到集合B 的一一映射.4.函数与映射:对定义域内每个自变量的值,根据确定的法则对应唯一的函数值,函数值也在一个数集内变化.于是函数也就是数集到数集的映射.映射是函数概念的推广,函数是一种特殊的映射.这里要注意:在映射中,要求元素的对应形式是“多对一”或“一对一”,一一映射中元素的对应形式必须是“一一对应关系”.5.函数的表示方法:表示函数常用的方法有列表法、解析法和图象法三种.列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 图象法:对于函数()x f y =(A x ∈)定义域内的每一个x 值,都有唯一的y 值与它对应.把这两个对应的数构成有序实数对()y x ,作为点P 的坐标,即P ()y x ,,则所有这些点的集合F 叫做函数()x f y =的图象,即{}(,)|(),F P x y y f x x A ==∈.这就是说,如果F 是函数()x f y =的图像,则图像上的任一点的坐标()y x ,都满足函数关系()x f y =;反之,满足函数关系()x f y =的点()y x ,都在图象F 上.这种用“图形”表示函数的方法叫做图象法.解析法:如果在函数()x f y =, A x ∈中,()x f 是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).6.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数,如⎩⎨⎧≤+>-=0,230,12x x x x y 、423-+=x y 等.7.求函数定义域:在中学阶段,所研究的函数大都是能用解析式表示的,如果未加特殊说明,函数的定义域就是指能使函数解析式有意义的所有实数x 的集合,在实际问题中,还必须考虑自变量x 所代表的具体量的允许范围.①分母不为零;②偶次方根下非负;③对数函数真数大于零;④0x y =,0≠x . 研究函数时常会用到区间的概念:定义名称 符号数轴表示{}b x a x ≤≤ 闭区间 []b a ,{}b x a x << 开区间 ()b a ,{}b x a x <≤ 半开半闭区间 )[b a ,{}b x a x ≤<半开半闭区间](b a ,例题1:求下列函数的定义域(1)()43-=x xx f (2)()2x x f =(3)()2362+-=x x x f (4)()14--=x x x f☆ 如何判断两个函数是否为同一个函数:①看定义域是否相同,如果相同再看对应关系(解析式)是否一样.例题2:下列哪一组中的函数()x f 与()x g 相等?(1)()1-=x x f , ()12-=xx x g (2)()2x x f =, ()()4x x g =(3)()2x x f = , ()36x x g =例题3:画出下列函数的图象,并写出函数的定义域和值域.(1)x y 3= (2)xy 8=(3)54+-=x y (4)762+-=x x y例题4:已知函数()62-+=x x x f . (1)点(3,14)在()x f 的图象上吗? (2)当4=x 时,求()x f 的值; (3)当()2=x f 时,求x 的值.例题5:已知()12+=x x f ,则()()1-f f 的值等于( ) A.2 B.3 C.4 D.5例题6:已知函数()x f 的定义域为()0,1-,则函数()12+x f 的定义域为( )A.()1,1-B.⎪⎭⎫ ⎝⎛--21,1 C.()0,1- D.⎪⎭⎫⎝⎛1,21例题7:用区间表示下列数集: (1){}=≥1x x (2){}=≤<42x x (3){}=≠->21x x x 且 例题8:求下列函数的值域.(1)()1123≤≤-+=x x y ; (2)()x x f -+=42(3)x x y 422+--=例题9:已知函数()2211x x x f -+=.(1)求()x f 的定义域; (2)若()2=a f ,求a 的值;(3)求证:()x f x f -=⎪⎭⎫⎝⎛1求函数解析式(1) 配凑法求函数解析式:形如()[]x g f y =的函数解析式,一般也可以用换元法;例题1:已知函数()x x x f 21+=+,求()x f ;例题2:已知函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求()x f ;(2) 换元法求函数解析式:形如()[]x g f y =的函数解析式;例题3:已知()x x f 2sin cos 1=-,求()x f 的解析式.(3) 待定系数法求函数解析式:已知所求函数类型;例题4:已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f .(4) 方程组法求函数解析式:已知()x f 和⎪⎭⎫⎝⎛x f 1的关系式或者()x f 和()x f -的关系式.例题5:已知函数()x f 的定义域为()∞+,0,且()112-⎪⎭⎫⎝⎛=x x f x f ,求()x f ;函数的单调性与最值1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.如果函数()x f y =在区间D 上是增函数或减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值. 用定义法判断函数的单调性 例题1:已知函数()12-=x x f []()6,2∈x ,求函数的最大值和最小值.例题2:用定义法判断函数()12++=x x x f 在区间)(∞+-,1上的单调性.函数单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.2x 1x 1x 2x函数的奇偶性一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么函数()x f 就叫做偶函数.(偶函数的图象一定是关于 对称)一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么函数()x f 就叫做奇函数.(奇函数的图象一定是关于 对称) 判断函数的奇偶性方法:1.不对称:函数()x f 为非奇非偶函数;2.对称例题8:判断下列函数的奇偶性.(1)()4x x f = (2)()5x x f = (3)()xx x f 1+= (4)()21xx f = (5)()1122-+-=x x x f (6)()2433xx x f -+-=()x f y =求出定义域判断定义域是否关于原点对称 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧①()()x f x f =-,则()x f 为偶函数 ②()()x f x f -=-,则()x f 为奇函数③若以上两个式子都不满足,则()x f 为非奇非偶函数④若以上两个式子都满足,则()x f 既是奇函数又是偶函数函数。
函数定义域的标准写法函数定义域是指在数学中,给定函数的自变量的取值范围。
正确定义函数的定义域对于解题和理解函数的性质非常重要。
本文将介绍函数定义域的标准写法,并探讨一些常见的函数及其定义域。
一、在数学中,函数定义域通常使用数学符号表示。
对于实数函数,我们可以使用集合表示法,即用一对大括号{}来表示定义域。
例如,对于函数f(x),如果x的取值范围是所有实数,则定义域可以表示为D={x | x∈R},其中R表示实数集合。
对于有限区间上的函数,我们可以使用区间表示法来表示定义域。
常见的区间表示法有三种:开区间、闭区间和半开半闭区间。
1. 开区间表示法:用圆括号()表示,表示取值范围不包括边界点。
例如,对于函数g(x),如果x的取值范围是开区间(1, 5),则定义域可以表示为D=(1, 5)。
2. 闭区间表示法:用方括号[]表示,表示取值范围包括边界点。
例如,对于函数h(x),如果x的取值范围是闭区间[0, 3],则定义域可以表示为D=[0, 3]。
3. 半开半闭区间表示法:一侧使用圆括号(),一侧使用方括号[],表示一侧包括边界点,一侧不包括边界点。
例如,对于函数k(x),如果x的取值范围是半开半闭区间[2, 5),则定义域可以表示为D=[2, 5)。
除了使用集合表示法和区间表示法外,我们还可以使用不等式来表示函数的定义域。
例如,对于函数m(x),如果x的取值范围满足不等式条件0≤x<4,则定义域可以表示为D: 0≤x<4。
二、常见函数及其定义域的例子1. 线性函数:y = ax + b,其中a和b是常数。
线性函数的定义域是所有实数,即D={x | x∈R}。
2. 平方函数:y = x²。
平方函数的定义域是所有实数,即D={x |x∈R}。
3. 开方函数:y = √x。
开方函数的定义域是非负实数,即D=[0, +∞)。
4. 有理函数:y = f(x) / g(x),其中f(x)和g(x)是多项式函数,且g(x)≠0。
函数的概念及表示方法一、 知识梳理1、函数:设A 、B 是两个非空的数集,如果按照某种对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作A x x f y ∈=,)(2、对于函数A x x f y ∈=,)(,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域。
3、函数的三要素:定义域、值域和对应关系。
4、表示函数常用的三种方法是解析法、图像法和列表法5、在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系,这样的函数通常叫做分段函数6、分段函数的定义域是各段定义域的并集,其值域是各段值域的并集二、 典例精析例1、 下列式子是否能确定y 是x 的函数?(1)222=+y x (2)111=-+-y x (3)x x y -+-=12例2、 下列各题中的两个函数相等吗?请说明理由。
(1)()2)()(x x g x x f ==, (2)3)(39)(2+=--=x x g x x x f ,例3、已知集合{}{}54321,,,,==B A ,则从A 到B 的函数)(x f 有 个例3、 求下列函数的定义域(1)21)(-=x x f (2)241)(+-∙-=x x x f (3)()x x x y -+=01 (4)213)(+++=x x x f例4、(1)若函数)(x f 的定义域为[]41,,求)2(+x f 的定义域(2)已知)1(+x f 的定义域为[]30,,求)(x f 的定义域例4、 已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 取值范围变式:已知函数862++-=k kx kx y 的定义域是R ,求实数k 的取值范围例5、 求下列函数的值域:(1){}5432112,,,,,∈+=x x y (2)1+=x y (3)1+=x x y (4)2211xx y +-= (5)245x x y -+= (6)12--=x x y (7)152222++++=x x x x y例6、 函数⎪⎩⎪⎨⎧≥<<--≤+=222112)(2x x x x x x x f ,,, 中,若3)(=x f ,则x 的值为例7、 作出下列函数的图像:(1)112-+=x x y (2)122+-=x x y变式:讨论关于x 的方程)(342R a a x x ∈=+=的实数解的个数例8、 求下列函数的解析式(1) 已知)(x f 是二次函数,且1)()1(2)0(-=-+=x x f x f f ,,求)(x f(2) 已知x x x f 2)1(+=+,求)(x f(3) 已知函数x x x x x f 11)1(22++=+,求)(x f (4) 已知3)(2)(3+=-+x x f x f ,求)(x f三、 过关精炼1、下列说法中,不正确的是( )A 、函数的值域中每一个数在定义域中都有数与之对应B 、函数的定义域和值域一定是不含0的集合C 、定义域和对应法则完全相同的函数表示同一个函数D 、若函数的定义域中只有一个元素,则值域也只含有一个元素2、函数x x y 22-=的定义域为{}3210,,,,那么其值域为( ) A 、{}301-,,B 、{}3210,,,C 、{}31≤≤-y yD 、{}30≤≤y y 3、与x y =为同一个函数的是( )A 、()2x y =B 、2x y =C 、()⎩⎨⎧<->=)0(0x x x x y D 、x y = 4、若)()2(32)(x f x g x x f =++=,,则)(x g 等于( )A 、12+xB 、12-xC 、32-xD 、72+x5、一个面积为2100cm 等腰梯形,上底长为xcm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A 、)0(50>=x x yB 、)0(100>=x x yC 、)0(50>=x x yD 、)0(100>=x x y6、已知a a f x x f ,则,16)(13)(=+==7、函数⎪⎩⎪⎨⎧≥<≤<≤=)2(3)21(2)10(2)(2x x x x x f 的值域8、求下列函数的值域(1)x x y 422+--= (2)3222-+=x x y(3){})3210(16322,,,∈-++-=x x x x x y。
第二讲 函数的定义域及表示方法【本课重点】1.会求常见函数的定义域2、掌握函数的三种表示方法,并会用解析法研究两个变量的函数关系。
3、掌握分段函数的概念及表示方法。
【知识梳理】1.设B A ,是两个______的___集,如果按照某种____的对应关系f , 对于集合A 中的_______数x ,在集合B 中都有______的数)(x f 和它对应,那么就称________为从集合A 到集合B 的一个函数,记作_________,其中,x 叫做_____,x 的取值范围叫做________; 与x 对应的y 值叫做_____, 函数值的取值范围叫做________,显然_____是______的子集.2.函数的定义域、值域(1)一次函数)0(≠+=a b ax y 的定义域是________,值域是________.(2)二次函数)0(2≠++=a c bx ax y 的定义域是________,0>a 时,值域是________. '0〈a 时,值域是________.(3)反比例函数y=xk (k 0≠)的定义域是______________,值域是______________. 3.区间的概念设b a ,是两个实数,而且b a <,我们规定:(1)满足不等式b x a ≤≤的实数x 的集合叫做________,表示为________,数轴表示为______.(2)满足不等式b x a <<的实数x 的集合叫做________,表示为________,数轴表示为______.(3)满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做________,分别表示为__________,数轴分别表示为________________,这里,实数b a ,叫做区间的端点.(4) “∞”读作________,“∞-”读作________,“∞+”读作________,实数集R 区间表示为__________.(5)集合{}a x x ≥|区间表示为________,集合{}b x x <|区间表示为________.4.求函数解析式的方法:直接法、配凑法、换元法、方程组法、待定系数法、赋值法 <【开心自测】1.已知函数2()1x f x x =-,则f(x 2)为 ( ) A.221x x - B. 241x x - C. 441x x - D. 21x x - 2.已知函数1()(1)1x f x x x +=≠±-且,则函数f(-x)为 ( ) A.1()f x (x) C. 1()f x - (x) 3.已知221()(2)m m f x m m x +-=+⋅,当m= ________时,f(x)为正比例函数; 当m= ________时,f(x)为反比例函数; 当m= ________时,f(x)二次函数.4.已知一次函数f(x)=ax+b,满足f(2)=0,f(-2)=1,则f(x)=______________【典例练讲】!例1已知函数213)(+++=x x x f (1)求函数的定义域 ;(2) 求)32(),3(f f -的值; (3) 当0>a 时,求)1(),(-a f a f 的值.例2.(1)已知一次函数f(x)满足f[f(x)]=4x+3,求f(x).(2)已知二次函数f(x)满足f(0)=1,f(x+1)-f(x)=2x+2,求f(x).&例3.(1)已知函数f(x)满足2(23)2f x x x -=-+,求f(x).(2)已知函数f(x)满足2211()f x x x x -=+,求f(x). >例4(1)已知函数()()()()⎪⎩⎪⎨⎧<=>+=0,00,0,1x x x x x f π ,求(1)()()()1-f f f 的值,$(2)根据下图写出解析式(图是直线的一部分与抛物线的一部分组成)例5(备选题)(1)设f(x)是R 上的函数,且满足f(0)=1,并且对任意实数x 、y 有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式(2)已知函数f(x)的定义域为{|1}x x o x ≠≠且,且满足1()2()1f x f x x-=-,求f(x)的解析式.练习(1)已知3f(x)-2f(-x)=-2x+1,求f(x).(2)已知对任意实数x,y 都有f(x+y)=2f(y)+x 2+2xy-y 2+3x-3y,求f(x)的解析式【能力提升】1.已知函数()1x f x x =-,函数g(x)=f[f(x)],下列命题中正确的是 ( ) , A.()1x g x x =- B.1()12x g x x -=- C. ()12x g x x=- D.以上三个均不正确 2.已知函数g(x)=1-2x,221[()]x f g x x -=,则1()2f 的值是 ( )3.已知f(x)=11x+则f(f(x))的定义域为 ( ) A.{x|x ≠-1,x ∈R} B. {x|x ≠-1且x ≠0, x ∈R}C.{x|x ≠0,x ∈R}D. {x|x ≠-1且x ≠-2, x ∈R}4.函数f(x) 满足f(ab)=f(a)+f(b),且f(2)=m,f(3)=n,则f(72)的值为____5.已知函数2(1)()2(11)(1)x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩,则1{[()]}2f f f -=_______ 6、(1)已知二次函数()x f y =的最大值等于13,且()()513=-=f f ,求()x f 的解析式。
课前案基本知识梳理1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦ ;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的⑧ .(2)函数的三要素:⑨ 、值域和对应关系.(3)相等函数:若两个函数的⑩ 相同,且 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 ,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒 一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为 .(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为 ;当a<0时,值域为.(3)y= (k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.课中案一、目标导引1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.二、牛刀小试判断正误(正确的打“√”,错误的打“×”)1.判断正误(正确的打“√”,错误的打“✕”).(1)函数=x 0是同一个函数. ( )(2)f (x 是一个函数. ( )(3)若两个函数的定义域与值域相同,则这两个函数相等. ( )(4)函数y =f (x )的图象与直线x =1的交点最多有1个.( )2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )3.(新教材人教A 版必修第一册P65例2改编)函数f (x 21x-( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( )A.(-1,1)B. 11,2⎛⎫-- ⎪⎝⎭ C.(-1,0) D. 1,12⎛⎫ ⎪⎝⎭5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1三、例题讲解考点一 函数、映射概念的理解例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y = 11x + ,x ∈A ,y ∈B ;②A = *1|N 2a a ⎧⎫∈⎨⎬⎩⎭ ,B= *1|,N nb b n ⎧⎫=∈⎨⎬⎩⎭,对应关系f :a →b ,b= 1a ;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆.其中是从A 到B 的映射的为 ( )A.①③B.②④C.①④D.③④(2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y 2B.y y =xx 2+1 D.y 变式练习1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根;②A =R,B =R, f :x →x 的倒数;③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2.其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③2.( )A.f (x )=|x |,g (x f (x g (x 2C.f (x )=211x x --g (x )=x +1 D.f (x g (x考点二 函数的定义域例2 (1)函数f (x x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2](2)函数f (x 2563x x x -+- 的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]角度二 已知函数定义域,求参数的取值范围例3 (1)(2019河北衡水联考)若函数y = 2143mx mx mx -++ 的定义域为R,则实数m 的取值范围是 ( )A. 30,4⎛⎤ ⎥⎝⎦30,4⎛⎫ ⎪⎝⎭ C. 30,4⎡⎤⎢⎥⎣⎦ D. 30,4⎡⎫⎪⎢⎣⎭(2)若函数f (x 2ax abx b ++的定义域为{x |1≤x ≤2},则a +b 的值为 角度三 抽象函数的定义域例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f 12x ⎛⎫+ ⎪⎝⎭ +f12x ⎛⎫- ⎪⎝⎭的定义域是.考点三 函数的解析式例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ).(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).变式练习(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.考点四 分段函数例6 已知函数f(x)=229,1,4,1,x ax xx a xx⎧-+≤⎪⎨++>⎪⎩ 若f(x)的最小值为f(1),则实数a的取值范围是.角度二 已知函数值,求参数的值(或取值范围)例7 设函数f(x)= 22,0,1,0,x x xx x⎧+<⎨+≥⎩则f(-1)= ; 若f(a)>f(a-1),则实数a的取值范围是 .变式练习(2018课标全国Ⅰ文,12,5分)设函数f(x)=2,0,1,0,x xx-⎧≤⎨>⎩ 则满足f(x+1)<f(2x)的x的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)课后案1.下面可以表示以M={x|0≤x≤1}为定义域,以N={x|0≤x≤1}为值域的函数图象的是( )2.(2020河北邢台模拟,理2)已知集合A={x|lg(x2-x-1)>0},B={x|0<x<3},则A∩B=( )A.{x|0<x<1}B.{x|x<-1}∪{x|x>0}C.{x|2<x<3}D.{x|0<x<1}∪{x|2<x<3}3.已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]4.下列各组函数中,表示同一函数的是( )A.f(x)=e ln x,g(x)=xB.f(x)=,g(x)=x-2C.f(x)=,g(x)=sin xD.f(x)=|x|,g(x)=5.若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是( )A.[-8,-3]B.[-5,-1]C.[-2,0]D.[1,3]6.已知函数f(x)=的值域为R,则实数a的取值范围是( )A.(-∞,-1]B C D7.(2020重庆模拟,理13)已知函数f(x)=ln(-x-x2),则函数f(2x+1)的定义域为 .8.(2020辽宁大连一中6月模拟,文3)设f(x)=且f(2)=4,则f(-2)= .9.设函数f(x)=若f(t+1)>f(2t-4),则实数t的取值范围是 .10.已知函数f(x)满足2f(x)+f(-x)=3x,则f(x)= .B组11.(2020广东华师大附中月考)已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]12.(2020河北衡水中学检测)已知函数f(x)=若实数a满足f(a)=f(a-1),则f=( )A.2B.4C.6D.813.(2020山东济南三模,5)“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即国内生产总值(GDP)被公认为是衡量国家经济状况的最佳指标,下表是我国2015—2019年GDP数据:年份20202020201516171819国内生产总值/万亿68.8974.6483.291.9399.09根据表中数据,2015—2019年我国GDP的平均增长量为( ) A.5.03万亿 B.6.04万亿C.7.55万亿D.10.07万亿14.已知函数f(x)=则f= .课后案答题纸A组1234567. 8.9. 10.B组1234.。
函数的概念与表示
(一)函数的概念:在一个变化的过程中有两个变量x和y,如果给定了一个x值,
相应的就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
说明:1.符号y=f(x)的意义:x是自变量,f表示对应法则,y是x的函数;遂于定义域
内的每一个x的值,在对应法则f的作用下,都有唯一确定的y的值和它对应,和x值对应的y的值用f(x)表示
2.f(x)与f(a)的区别:f(x)表示自变量x的函数,f(a)表示当x=a是对应的函数值。
(二)函数的三要素:1)定义域 2)值域 3)对应法则
其中值域被定义域与对应法则唯一确定,因此我们常说函数有两要素,即定义域和对应法则,对应法则是函数的核心,定义域是函数的灵魂。
(三)两个函数相等的条件:1)定义域想同 2)对应法则相同;即对应定义域内的每一个x,他们都有相同的函数值。
(四)区间的概念
设a,b属于R,且a<b
(五)函数的表示方法。
第二讲 函数的定义域及表示方法
【本课重点】
1.会求常见函数的定义域
2、掌握函数的三种表示方法,并会用解析法研究两个变量的函数关系。
3、掌握分段函数的概念及表示方法。
【知识梳理】
1.设B A ,是两个______的___集,如果按照某种____的对应关系f , 对于集合A 中的_______数x ,在集合B 中都有______的数)(x f 和它对应,那么就称________为从集合A 到集合B 的一个函数,记作_________,其中,x 叫做_____,x 的取值范围叫做________; 与x 对应的y 值叫做_____, 函数值的取值范围叫做________,显然_____是______的子集.
2.函数的定义域、值域
(1)一次函数)0(≠+=a b ax y 的定义域是________,值域是________.
(2)二次函数)0(2≠++=a c bx ax y 的定义域是________,0>a 时,值域是
________.
0〈a 时,值域是________.
(3)反比例函数y=x
k (k 0≠)的定义域是______________,值域是______________. 3.区间的概念
设b a ,是两个实数,而且b a <,我们规定:
(1)满足不等式b x a ≤≤的实数x 的集合叫做________,表示为________,数轴表示为______.
(2)满足不等式b x a <<的实数x 的集合叫做________,表示为________,数轴表示为______.
(3)满足不等式b x a <≤或b x a ≤<的实数x 的集合叫做________,分别表示为__________,数轴分别表示为________________,这里,实数b a ,叫做区间的端点.
(4) “∞”读作________,“∞-”读作________,“∞+”读作________,实数集R 区间表示为__________.
(5)集合{}a x x ≥|区间表示为________,集合{}b x x <|区间表示为________.
4.求函数解析式的方法:直接法、配凑法、换元法、方程组法、待定系数法、赋值法
【开心自测】
1.已知函数2()1
x f x x =-,则f(x 2)为 ( ) A.221x x - B. 241x x - C. 4
41
x x - D. 21x x - 2.已知函数1()(1)1
x f x x x +=≠±-且,则函数f(-x)为 ( ) A.1()f x B.-f(x) C. 1()
f x - D.-f(x) 3.已知221()(2)m m f x m m x +-=+⋅,当m= ________时,f(x)为正比例函数; 当
m= ________时,f(x)为反比例函数; 当m= ________时,f(x)二次函数.
4.已知一次函数f(x)=ax+b,满足f(2)=0,f(-2)=1,则f(x)=______________
【典例练讲】
例1已知函数2
13)(+++=x x x f (1)求函数的定义域 ;(2) 求)32
(),3(f f -的值; (3) 当0>a 时,求)1(),(-a f a f 的值.
例2.(1)已知一次函数f(x)满足f[f(x)]=4x+3,求f(x).
(2)已知二次函数f(x)满足f(0)=1,f(x+1)-f(x)=2x+2,求f(x).
例3.(1)已知函数f(x)满足2
(23)2f x x x -=-+,求f(x).
(2)已知函数f(x)满足22
11()f x x x x -=+
,求f(x).
例4(1)已知函数()()()()⎪⎩
⎪⎨⎧<=>+=0,00,0,1x x x x x f π ,求(1)()()()1-f f f 的值,
(2)根据下图写出解析式(图是直线的一部分与抛物线的一部分组成)
例5(备选题)(1)设f(x)是R 上的函数,且满足f(0)=1,并且对任意实数x 、y 有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式
(2)已知函数f(x)的定义域为{|1}x x o x ≠≠且,且满足1()2()1f x f x x
-=-,求f(x)的解析式.
练习(1)已知3f(x)-2f(-x)=-2x+1,求f(x).
(2)已知对任意实数x,y 都有f(x+y)=2f(y)+x 2+2xy-y 2+3x-3y,求f(x)的解析式
【能力提升】
1.已知函数()1x f x x
=
-,函数g(x)=f[f(x)],下列命题中正确的是 ( ) A.()1x g x x =- B.1()12x g x x -=- C. ()12x g x x =- D.以上三个均不正确
2.已知函数g(x)=1-2x,2
21[()]x f g x x
-=,则1()2f 的值是 ( ) A.1 B.3 C.15 D.30
3.已知f(x)=11x
+则f(f(x))的定义域为 ( ) A.{x|x ≠-1,x ∈R} B. {x|x ≠-1且x ≠0, x ∈R}
C.{x|x ≠0,x ∈R}
D. {x|x ≠-1且x ≠-2, x ∈R}
4.函数f(x) 满足f(ab)=f(a)+f(b),且f(2)=m,f(3)=n,则f(72)的值为____
5.已知函数2(1)()2
(11)(1)x x f x x x x -<-⎧⎪=-≤≤⎨⎪>⎩,则1{[()]}2
f f f -=_______ 6、(1)已知二次函数()x f y =的最大值等于13,且()()513=-=f f ,求()x f 的解析式
(2)已知()212,()(3)4f x x a g x x =+=
+,若g[f(x)]=21x x ++,求a 的值 (3)()
x x x f 21+=+, 求()()1+x f x f , 7、已知函数()f x 在[]1,2-的图象如图所示,求此函数的表达式()f x
8.已知函数)(x f 的定义域是(0,2],求函数)1(2-x f 的定义域 .
9.设A={x|02≤≤x },B={y|01≤≤y },从A 到B 对应法则f ,下列对应不是函数的是( ).
(A)f: x x y 21=→ (B) f: x x y 4
1=→ (C) f: x 2)1(-=→x y (D) f: x 2x y =→ y
x o -1
1
-1 2。