【免费下载】ansys中荷载步的讲解
- 格式:pdf
- 大小:204.77 KB
- 文档页数:3
在Ansys中,子步和载荷步是非常重要的概念,对于进行复杂仿真分析的工程师来说,深入理解并正确设置子步和载荷步是非常关键的。
接下来,我将从深度和广度的角度,结合自己的理解和经验,详细解释这两个概念的含义和设置方法。
1. 子步的含义与设置方法让我们来理解什么是子步。
在Ansys中,子步是为了确保仿真收敛而进行的时间步长分割。
当仿真过程中存在非线性行为或者材料模型的非线性影响较大时,我们就需要使用子步来有效地控制仿真的精度和稳定性。
在设置子步时,首先需要考虑仿真的时间范围,并根据具体情况进行合理的分割。
一般来说,我们可以根据仿真模型的非线性程度和材料特性来确定子步的数量和大小。
对于高度非线性的模型,需要细分子步以确保仿真的准确性;而对于较为线性的模型,则可以适当减少子步以提高仿真效率。
在设置子步时,还需要考虑到各个载荷的作用情况,以确保在每个子步内能够充分考虑不同载荷的影响。
通过合理设置子步,可以有效地控制仿真的收敛性,并且提高仿真结果的准确性。
2. 载荷步的含义与设置方法载荷步是指在Ansys中对载荷进行分段加载的方法。
在工程仿真中,往往会面对需要分段加载的情况,这时就需要使用载荷步来对载荷进行合理分段,并进行逐步加载以观察结构的响应。
在设置载荷步时,首先需要考虑加载的类型和大小,然后根据具体的分析目的来确定载荷的分段情况。
通常情况下,我们可以根据结构的承载能力和材料的特性来确定载荷的分段加载,并且可以根据仿真的结果来调整载荷步的设置,以得到更加准确的分析结果。
总结和回顾通过对子步和载荷步的含义和设置方法的详细解释,我们可以看到,在Ansys中合理设置子步和载荷步对于确保仿真的准确性和稳定性是非常重要的。
通过合理分割子步和载荷,我们可以更好地控制仿真的收敛性和精度,并且可以更加准确地模拟结构的响应情况。
个人观点和理解在我的实际工程仿真经验中,我发现合理设置子步和载荷步可以大大提高仿真的精度和效率。
ansys中子步和载荷步的含义与设置方法在ANSYS中,子步和载荷步是用于模拟复杂工程问题的重要概念。
子步(Substep)是为了更精确地捕捉结构在非线性或动态情况下的行为而引入的一个概念。
而载荷步(Load Step)是将模拟分为多个连续的时间段或加载阶段,以模拟结构在不同加载条件下的响应。
子步是在每个载荷步中进一步细化时间,将一个载荷步划分为多个小的时间间隔。
这样做的目的是为了更准确地模拟结构在非线性或动态情况下的行为。
在每个子步中,ANSYS会根据结构的当前状态进行计算,然后根据所设定的子步数和时间步长进行迭代计算,直到达到收敛条件。
设置子步的方法主要包括以下几个步骤:1. 定义载荷步:在ANSYS中,首先需要定义每个载荷步所需的加载条件,如施加的力、位移或温度等。
这可以在ANSYS的预处理环境中完成。
2. 设置子步数和时间步长:根据结构的特性和所需的精度,确定所需的子步数和时间步长。
子步数越多,模拟结果越精确,但计算时间也会增加。
时间步长则决定了子步之间的时间间隔。
需要根据结构的动态响应特性来选择合适的时间步长。
3. 定义收敛条件:为了使计算得到准确的结果,需要设置适当的收敛条件。
在每个子步中,ANSYS会计算结构的响应,并与指定的收敛条件进行比较。
如果未达到收敛条件,则继续迭代计算直到满足收敛要求。
载荷步则用于将模拟划分为多个时间段或加载阶段,以模拟结构在不同加载条件下的响应。
在每个载荷步中,ANSYS会根据所定义的加载条件进行计算,并输出相应的结果。
设置载荷步的方法如下:1. 定义不同的加载条件:在ANSYS中,首先需要定义不同的加载条件,如施加的力、位移或温度等。
这可以在ANSYS的预处理环境中完成。
2. 排列和定义载荷步:根据实际情况,将不同的加载条件按照顺序排列,并为每个载荷步设置开始时间和结束时间。
开始时间可以根据前一载荷步的结束时间来确定。
3. 运行模拟:在设置完所有的载荷步之后,可以运行模拟并获取相应的结果。
ansys载荷类型在工程领域中,使用ANSYS软件进行有限元分析是一种常见的方法。
有限元分析是一种数值模拟技术,可以用于预测和评估结构或零件在各种载荷下的性能。
在ANSYS中,载荷类型是指施加在结构或零件上的外力或外部条件。
本文将介绍ANSYS中常见的载荷类型以及如何在模拟中使用它们。
1. 静态载荷静态载荷是指施加在结构或零件上的恒定外力。
在ANSYS中,可以通过以下几种方式施加静态载荷:1.1 点载荷点载荷是指作用在结构的一个点上的力或力矩。
在ANSYS中,可以通过在某个节点上施加一个力或力矩来模拟点载荷。
F, N, node_num, Fx, Fy, Fz其中,F表示施加力的命令,N表示施加的是力,node_num表示节点编号,Fx、Fy、Fz表示力的分量。
1.2 面载荷面载荷是指作用在结构的一个面上的分布载荷。
在ANSYS中,可以通过在面上定义一个载荷分布来模拟面载荷。
F, Fx, Fy, Fz, node1, node2, node3, ...其中,F表示施加力的命令,Fx、Fy、Fz表示力的分量,node1、node2、node3等表示构成面的节点。
1.3 线载荷线载荷是指作用在结构的一条线上的分布载荷。
在ANSYS中,可以通过在线上定义一个载荷分布来模拟线载荷。
F, Fx, Fy, Fz, line_num其中,F表示施加力的命令,Fx、Fy、Fz表示力的分量,line_num表示线的编号。
2. 动态载荷动态载荷是指随时间变化的外力。
在ANSYS中,可以通过以下几种方式施加动态载荷:2.1 正弦载荷正弦载荷是指随时间变化的正弦函数形式的载荷。
在ANSYS中,可以通过以下命令施加正弦载荷:D, LCID, TYPE, FREQ, T1, T2, F0, AMP其中,D表示施加动态载荷的命令,LCID表示载荷的编号,TYPE表示载荷类型,FREQ表示载荷频率,T1、T2表示载荷作用的时间段,F0表示载荷的初始值,AMP表示载荷的振幅。
ansys载荷施加(2011-06-11 20:25:54)转载▼分类:ansys12.0学习教程标签:杂谈题目:加载2.1载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。
因此,在分析中指定合适的载荷条件是关键的一步。
在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。
2.2什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。
不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。
·DOF constraint(DOF约束)将用一已知值给定某个自由度。
例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。
·Force(力)为施加于模型节点的集中载荷。
例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。
·Surface load(表面载荷)为施加于某个表面上的分布载荷。
例如,在结构分析中为压力;在热力分析中为对流和热通量。
·Body load(体积载荷)为体积的或场载荷。
例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。
·Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。
主要在结构分析中使用。
·Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。
ANSYSWorkbench中的几种载荷的含义ANSYS Workbench 中的几种载荷的含义2010-10-29 22:03 字号:小大我要评论(0)1) 方向载荷对大多数有方向的载荷和支撑,其方向多可以在任意坐标系中定义:–坐标系必须在加载前定义而且只有在直角坐标系下才能定义载荷和支撑的方向.–在Details view中, 改变“Define By”到“Components”. 然后从下拉菜单中选择合适的直角坐标系.–在所选坐标系中指定x, y, 和z分量–不是所有的载荷和支撑支持使用坐标系。
2) 加速度 (重力)–加速度以长度比上时间的平方为单位作用在整个模型上。
–用户通常对方向的符号感到迷惑。
假如加速度突然施加到系统上,惯性将阻止加速度所产生的变化,从而惯性力的方向与所施加的加速度的方向相反。
–加速度可以通过定义部件或者矢量进行施加。
标准的地球重力可以作为一个载荷施加。
–其值为9.80665 m/s2 (在国际单位制中)–标准的地球重力载荷方向可以沿总体坐标轴的任何一个轴。
–由于“标准的地球重力”是一个加速度载荷,因此,如上所述,需要定义与其实际相反的方向得到重力的作用力。
3) 旋转速度旋转速度是另一个可以实现的惯性载荷–整个模型围绕一根轴在给定的速度下旋转–可以通过定义一个矢量来实现,应用几何结构定义的轴以及定义的旋转速度–可以通过部件来定义,在总体坐标系下指定初始和其组成部分–由于模型绕着某根轴转动,因此要特别注意这个轴。
–缺省旋转速度需要输入每秒所转过的弧度值。
这个可以在路径“Tools > Control Panel >Miscellaneous > AngularVelocity” 里改变成每分钟旋转的弧度(RPM)来代替。
4) 压力载荷:–压力只能施加在表面并且通常与表面的法向一致–正值代表进入表面 (例如压缩) ;负值代表从表面出来 (例如抽气等)–压力的单位为每个单位面积上力的大小5) 力载荷:–力可以施加在结构的最外面,边缘或者表面。
2.1 载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。
因此,在分析中指定合适的载荷条件是关键的一步。
在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。
2.2 什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。
不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。
·DOF constraint(DOF约束)将用一已知值给定某个自由度。
例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。
·Force(力)为施加于模型节点的集中载荷。
例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。
·Surface load(表面载荷)为施加于某个表面上的分布载荷。
例如,在结构分析中为压力;在热力分析中为对流和热通量。
·Body load(体积载荷)为体积的或场载荷。
例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。
·Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。
主要在结构分析中使用。
·Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。
例如,可施加磁场分析中计算出的磁力作为结构分析中的力载荷。
其它与载荷有关的术语的定义在下文中出现。
1.荷载步中荷载的处理方式无论是线性分析或非线性分析处理方式是一样的。
①对施加在几何模型上的荷载(如fk,sfa等):到当前荷载步所保留的荷载都有效。
如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。
②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam等):ansys缺省的荷载处理是替代方式,可用fcum,sfcum命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。
当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。
当采用累加方式时,施加的所有荷载都在本步有效。
特别注意的是,fcum只对在有限元模型上施加的荷载有效。
2.线性分析的荷载步从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。
由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。
①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况)②后续荷载步是在前步的基础上计算的(形式上!)。
以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。
不管你怎样理解,但计算结果是一样的。
(Ansys是怎样求解的,得不到证实。
是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样)也有先生问,想在第N步的位移和应力的基础上,施加第N+1步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。
ANSYS 入门教程(31) - 加载、求解及后处理技术(c)本文标签: 载荷步载荷子步载荷步文件载荷步求解4.2 荷载步选项及设置一、载荷步与相关概念与荷载有关的几个术语或概念为:荷载步(Load Steps)荷载子步(Substeps)斜坡荷载(Ramped Loads)阶跃荷载(Stepped Loads)时间(Time)及时间步(Time step)平衡迭代(Equilibrium Iterations)。
与土木工程相同的概念如荷载工况和荷载组合等,将在后处理中予以介绍。
1. 荷载步、荷载子步和平衡迭代荷载步是为求解而定义的荷载配置,可根据荷载历程(时间和空间)在不同的荷载步内施加不同的荷载。
例如在结构线性静态分析中,可将结构自重和外荷载分两步施加到结构上,第一个荷载步可施加自重,第二个荷载步可施加外荷载等。
荷载子步是在某个荷载步之内的求解点(由程序定义荷载增量),不同分析中荷载子步有不同的目的。
例如在线性静态或稳态分析中,使用子步逐渐增加荷载可获得精确解;在瞬态分析中,使用子步可得到较小的积分步长,以满足瞬态时间积累法则;在谐分析中,使用子步可获得不同频率下的解。
平衡迭代是在给定子步下为了收敛而进行的附加计算。
在非线性分析中,平衡迭代作为一种迭代修正具有重要作用,迭代计算多次收敛后得到该荷载子步的解。
2. 斜坡荷载和阶跃荷载当在一个荷载步中设置一个以上子步时,就必须定义荷载是斜坡荷载或是阶跃荷载。
阶跃荷载指荷载全值施加在第一个荷载子步,其余荷载子步内荷载保持不变。
对于荷载步2 按要求是由荷载步1 的全值荷载突然卸载,而程序实际上是从荷载步1 的终点到荷载步 2 的第一个子步内完成的,所以可增加荷载步 2 的子步数(减小时间增量)以模拟突然卸载过程。
斜坡荷载指在每个荷载子步,荷载逐渐增加,在该荷载步结束时达到荷载全值。
载荷步内子步的荷载采用线性内插。
3. 时间及时间步在所有静态和稳态分析中,不管是否与时间“真实”相关,ANSYS 都使用时间作为跟踪参数。
2.1 载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。
因此,在分析中指定合适的载荷条件是关键的一步。
在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。
2.2 什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。
不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。
²DOF constraint(DOF约束)将用一已知值给定某个自由度。
例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。
²Force(力)为施加于模型节点的集中载荷。
例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。
²Surface load(表面载荷)为施加于某个表面上的分布载荷。
例如,在结构分析中为压力;在热力分析中为对流和热通量。
²Body load(体积载荷)为体积的或场载荷。
例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。
²Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。
主要在结构分析中使用。
²Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。
例如,可施加磁场分析中计算出的磁力作为结构分析中的力载荷。
其它与载荷有关的术语的定义在下文中出现。
ANSYS中关于初应力和荷载步设置的算例[转载]ANSYS中关于初应力和荷载步设置的算例(2011-02-2016:30:41)转载▼标签:转载原文地址:ANSYS中关于初应力和荷载步设置的算例作者:WaterSprite偶初学ANSYS,看了网站上几个朋友关于应力和加载方式的讨论,自己做了一个小算例,现在发上来和大家共同讨论一下这方面的问题。
算例为一个地基+地基上面的一块方块墙吧,先通过一次计算仅加边界条件和自重,计算得到自重应力场,并输出初应力文件用来模拟初应力场。
然后施加应力和自重并进行计算,此时的位移基本为0,即消除了初位移,所得应力场即为自重应力场。
在些基础上进一步施加墙上法向面荷载,并进行第二步计算,得到的位移应该是仅有面荷载引起的位移。
关于初应力想说明的几点:1、初应力只能加在第一个荷载步,用命令流和GUI方式均可。
但在求解前不能退出求解器,如果加了初应力后退出求解器到前处理器或者后处理器后再回到前处理器,刚才施加的初应力就没有了,必须再次施加。
2、也可以不用初应力而直接分两个荷载步进行计算,如第一步仅计算自重,第二步再加面荷载后进行计算,在后处理中用工况组合来得到“净位移”,但工况组合中的应力结果似乎是不正确的。
3、如果用LSSOLVE从荷载文件进行求解,在写荷载文件时初应力的设置并不会写入荷载文件,所以,在命令流或者GUI方式下在求解前必须显示指定加载初应力。
关于荷载步设置的几点建议:1、在GUI方式下,每次进入求解器进行求解似乎都是开始一个新的分析(这一点偶也不是很明白)。
如果不退出求解器,即便不改变约束和荷载,只要求解一次,就会多一个荷载步结果,但所有结果是一样的;如果退出求解器后再进来,求解就重新开始(根据时间值)。
2、对点、线、面、体荷载都有替换和叠加两种方式,在替换方式下,在同一位置重复加荷载,只有最后一次加的荷载有效;在叠加方式下,在同一位置重复加荷载,所有荷载会叠加后共同作用在结构上。
2.1 载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。
因此,在分析中指定合适的载荷条件是关键的一步。
在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。
2.2 什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。
不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。
·DOF constraint(DOF约束)将用一已知值给定某个自由度。
例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。
·Force(力)为施加于模型节点的集中载荷。
例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。
·Surface load(表面载荷)为施加于某个表面上的分布载荷。
例如,在结构分析中为压力;在热力分析中为对流和热通量。
·Body load(体积载荷)为体积的或场载荷。
例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。
·Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。
主要在结构分析中使用。
·Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。
例如,可施加磁场分析中计算出的磁力作为结构分析中的力载荷。
其它与载荷有关的术语的定义在下文中出现。
ANSYS多载荷步分析流程中国机械CAD论坛 dengguide1. 流程概述1.1 线弹性计算按照ANSYS帮助文件中的叙述,ANSYS中有3种方法可以用于定义和求解多载荷部问题:(1)多次求解法,每一个载荷步运行一次求解;(2)载荷步文件法,通过LSWRITE命令将每一个载荷步输出为载荷步文件,然后通过LSSOLVE命令一次求解所有的载荷步;(3)矩阵参数法,通过矩阵参数建立载荷-时间列表,然后再加载求解。
按照以上方法进行线弹性结构分析时,每一个载荷步的求解结果都是独立的,前后载荷步的求解结果之间没有相互关系,后一载荷步的求解结果并不是在前一个载荷步计算结果的基础之上叠加的。
例如,2个载荷步都定义150 MPa内压并不会在容器上产生300 MPa内压的累积效果。
换一个角度理解,对于线弹性结构分析也没有必要将300 MPa内压拆分为2个载荷步计算,直接定义1个300MPa的载荷步并在求解设置中定义和输出2个载荷子步,可以分别得到150MPa和300MPa内压对应的结构响应。
1.2 弹塑性计算当结构有塑性变形产生时,由于结构弹塑性响应与载荷历程相关,同一载荷值可能对应不同的位移和应变值,在进行多载荷步求解时必须考虑响应的前后累积效应。
例如,对厚壁容器进行自增强弹塑性分析必须考虑应变强化效应的影响。
ANSYS中有3中方法可以实现弹塑性连续分析。
第1、2种方法就是载荷步文件法和矩阵参数法,具体设置同线弹性计算时相同,一旦有塑性变形产生程序会自动累积多次加载效应。
第3种方法是重启动法,在第1个载荷步计算结果的基础上,重新定义载荷并运行重启动计算。
在与线弹性求解不同的是,多次求解法不能直接用于弹塑性多载荷步计算。
下面我们将通过一个具体的算例来具体说明结构的多载荷步弹塑性分析。
2. 算例验证一根均匀圆棒两端受到均匀的轴向拉应力P,圆棒半径为5 mm、长度为10 mm,材料为如图1所示的双线性等向强化材料,弹性模量E=200 GPa,泊松比μ=0,屈服强度sσ=200 E=100 GPa,计算圆棒上的轴向应变ε。
基于ANSYS有限元多载荷步结构的分析摘要多载荷步结构分析是ANSYS有限元分析的关键部分,本文以二维悬臂梁杆为例,分析了其在不同时刻的载荷下的应力分布,总结了多载荷步问题的求解方法。
关键字ANSYS ;有限元分析;多载荷步0引言ANSYS是当前使用最广泛,功能最强大的有限元软件,对工程结构在各种外荷载作用下可进行全面分析,并能对结构的变形、位移及应力分布结果通过图像和图表表示,为系统的优化提供可靠依据。
而在整个有限元分析中,如何正确施加载荷以及选择合适的求解方式至关重要,直接影响到分析结果的正确性。
1ANSYS载荷分析ANSYS中将载荷分为六大类:自由度约束、集中力载荷、面载荷、体载荷、惯性载荷以及耦合场载荷。
为获得模型分析的正确计算结果就要对施加的载荷做相关的配置,在单载荷步系统中,载荷通过一个载荷步施加即可满足求解。
而对于实际大多数的有限元模型分析中,载荷的加载为多载荷步,需要多次施加不同的载荷步才能满足要求。
2多载荷步求解对于多载荷步的问题,有两种可行的方法:1)顺序求解法。
先加载第一个载荷步,然后求解。
接着加载第二个载荷步,再求解。
以此类推;2)多载荷步文件法。
为每一个载荷步设置一个载荷文件,然后让ANSYS 自动依次读取每个载荷步文件并求解。
显然第二种方法自动化程度较高,本文采取第二种方法以一端固定的悬臂梁杆为例进行分析。
从零时刻起,给悬臂梁杆右部自由端施加随时间变化的应力,在ANSYS中施加多载荷步,确定不同时刻的应力分布。
力的载荷历程如图1.本例为实体静态分析,多载荷步之间的联系是时间,因此在每个载荷步结束点赋予时间值。
根据图1,在0s~5s时间内,集中力从0开始线性增加到5000N,接着该力不变持续的时间段为5s~10s,在最后的10-15S的时间段跳跃到50000N。
根据时间的不同,将载荷分为3步。
0s~5s为第一步加载过程,5s~10s为第二步加载过程,10s~15s为第三步加载过程。
使用ANSYS模拟地震荷载的方法选用东营胜利油田CB11B平台的ANSYS模型对模态分析和动力分析中的操作方法进行介绍。
渤海CB11B平台是一座4腿导管架平台,包括上部甲板模块、导管架和桩基三部分。
甲板面标高为+9.00m,水深为10.5m。
桩腿的单向斜度10:1,入泥1.5m。
模拟地震荷载首先需要有地震的加速度数据,这里采用迁安波,迁安波为渤海的地震波,见文件eqq1.txt。
其时程图见图1。
注:该文件只有一列,即加速度值。
图1.加速度时程图第一步要把地震加速度数据输入ANSYS软件。
下拉菜单中Parameters-Array Parameters-Define/Edit-Add, 在Par中输入所定义数组名称(eqq);输入数组选择Array;在I、H、K No.中输入数组的行数、列数、维数,所输入的行数应该与eqq1文件中的加速度数据个数相等,列数与维数在这里均为1。
下拉菜单中Parameters-Array Parameters-Read From File, 选择Array,点击OK;ParR中输入数组名称(eqq);在File, ext, dir Read from file中浏览到地震加速度文件eqq1.txt所在的位置;Ncol Number of columns中输入1;最后一行中输入数据格式后点击OK(G10.4代表加速度数据总共十位,小数点后有四位.例如如:+1.2532,即G7.4)。
下拉菜单中Parameters-Array Parameters-Define/Edit-Add,选择数组文件名eqq后点击Edit,可以看到地震的加速度数据文件eqq1.txt已经被输入到数组eqq 中了。
点击Close关闭。
第二步要把地震加速度数据输入结构。
注意首先要把water table清空。
要以命令流的方式把地震加速度数据输入结构:FINISH/PREP7NT=500 %总计算步数DT=0.01 %时间步长,NT*DT即为总的计算时间/SOLUANTYPE,TRANS %以命令流的方式选择瞬态动力学分析TRNOPT,FULL*DO,I,1,NT,1 %循环开始TIME,I*DTKBC,0NSUB,1ALPHAD,0.1 %输入阻尼系数alphaBETAD,0.0028 %输入阻尼系数betadACEL,EQQ(I),0,0 %输入X、Y、Z向的地震加速度数据,这里只在X方向加了加速度。
1.荷载步中荷载的处理方式无论是线性分析或非线性分析处理方式是一样的。
①对施加在几何模型上的荷载(如fk,sfa 等):到当前荷载步所保留的荷载都有效。
如果前面荷载步某个自由度处有荷载,而本步又在此自由度处施加了荷载,则后面的替代前面的;如果不是在同一自由度处施加的荷载,则施加的所有荷载都在本步有效(删除除外!)。
②对施加在有限元模型上的荷载(如f,sf,sfe,sfbeam 等):ansys缺省的荷载处理是替代方式,可用fcum,sfcum 命令修改,可选择三种方式:替代(repl)、累加(add)、忽略(igno)。
当采用缺省时,对于同一自由度处的荷载,后面施加的荷载替代了前面施加的荷载(或覆盖);而对于不是同一自由度的荷载(包括集中或分布荷载),前面的和本步的都有效。
当采用累加方式时,施加的所有荷载都在本步有效。
特别注意的是,fcum 只对在有限元模型上施加的荷载有效。
2.线性分析的荷载步从荷载步文件(file.snn)中可以看到,本步的约束条件和荷载情况,而其处理与上述是相同的。
由于线性分析叠加原理是成立的,或者讲每步计算是以结构的初始构形为基础的,因此似乎可有两种理解。
①每个荷载步都是独立的:你可以根据你本步的约束和荷载直接求解(荷载步是可以任意求解的,例如可以直接求解第二个荷载步,而不理睬第一个荷载步:lssolve,2,2,1),其结构对应的是你的约束和荷载情况,与前后荷载步均无关!(事实上,你本步可能施加了一点荷载,而前步的荷载继续有效,形成你本步的荷载情况)②后续荷载步是在前步的基础上计算的(形式上!)。
以荷载的施加先后出发,由于本步没有删除前面荷载步的荷载,你在本步仅仅施加了一部分荷载, 而结构效应是前后荷载共同作用的结果。
不管你怎样理解,但计算结果是一样的。
(Ansys是怎样求解的,得不到证实。
是每次对每个荷载步进行求解,即[K]不变,而[P]是变化的,且[P]对应该荷载步的所有荷载向量呢?或是[P]对应一个增量呢?不用去管他,反正结果一样) 也有先生问,想在第N 步的位移和应力的基础上,施加第N+1 步的荷载,如何?对线性分析是没有必要的,一是线性分析的效应是可以叠加的,二是变形很小(变形大时不能采用线性分析)。
总之,线性分析是可以理解为后续步是在前步的基础上计算的(当然都基于初始构形)。
3.非线性分析时的荷载步如下两点是要明确的:①对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关。
②后续荷载步计算是在前步的基础上(以前步的构形和应力为基础)计算的。
关于①:设置荷载步,并顺序求解;设置荷载步,直接求解荷载步 2;不用荷载步,直接同时施加所有荷载;使用重启动,不设荷载步,顺序求解;使用生死单元等方法,其求解结果相同。
通过计算证明了荷载顺序不影响最终结果,从这里也证明了保守系统的计算结果与荷载路径无关。
关于②:虽然从file.snn 比较看,除了非线性分析的设置外,几乎与线性分析的荷载步文件没有什么差别,但如果顺序求解,则后续荷载步中用于每个子步计算的荷载=前步荷载不变+本步新施加的荷载按子步内插值。
而不是在本步有效的所有荷载点点施加。
举例1:重力和预应力分为两个荷载步,在求预应力作用时,重力不变,而将预应力按子步要求施加;所以这样计算即为考虑了重力的先作用,而预应力则在重力作用的基础上计算的。
即第二荷载步中的每个子步所对应的荷载=重力+预应力总荷载/nsubst,而不是=(重力+预应力总荷载)/nsubst.举例2:设一悬臂梁,先在1/2 处作用2000 为第一荷载步,且设nsubst=10,time=1;然后悬臂端再作用3000,且nsubst=20,time=2,为第二荷载步。
顺序求解,则3000 即在2000 先作用的基础上计算的,即当time=1.6 时,这时子步的荷载=2000+3000/20*(1.6-1.0)*20=3800,而不是(2000+3000) *0.6=3000。
但小弟还有一点疑问,“对于保守系统(无能量耗散),最后结果与荷载的施加顺序(或荷载历史、或加载路径)无关”,几乎所有的书上都是这么说的。
就结构工程上而言,如果在小变形、弹性状态下,那么没有疑问,确实如此!但如果在大变形的情况下(即使仍在弹性状态)呢?最后结果还与加载顺序无关吗?小弟捉摸不定!比如一根刚性杆左端铰接并加转动弹簧约束,现在有一个来在支座左上方的拉力和一个垂直向下的压力作用在右端,拉力较小,压力很大。
分两种加载次序:1)如果拉力先作用,拉动弹簧逆时针转动了90 度以上,然后压力作用,如果不改变压力的作用点,则杆躲过了压力的作用。
拉杆保持那个大于90 度的角度。
(如果让压力的作用跟随右端点位置的变化,ansys好像是这样做的,这样同下一个加载顺序2)比改变了加载条件,姑且也讨论一下:这样弹簧会继续转动,最终右端转到左端。
)2)压力先作用,然后拉力作用。
由于压力很大,拉力较小,杆件几乎不会转动,保持原位。
这个例子无疑是一个保守系统,机械能没有耗散!但由于加载顺序不同,就出现了最终位形的大大不同。
这是不是说如果出现了大变形,即使是在保守系统中,加载顺序是会影响最终的作用结果呢?1.你的问题不是杠题,是很好的问题!实际上你说的那种情形不对,例如先斜拉,则转动过90 度,然后施压,要注意在施压时必定先抵消你的向上的拉,则结构应该回来了,故不会出现仍大于90 度的状态。
所以与你先施压的效果是一样的。
如果我理解的不对,请你将图放上来讨论。
2.下面是一个悬臂梁的问题,有点类似于你的问题。
即先用M 将其转动大于90 度,然后施加向下的荷载,其最后结果与加载路径无关。
下面是简图和命令流。
3.对于非线性分析(保守系统),因为分析是建立在结构变形后基础上的,其荷载的作用会随构形不同而变化,但最终的平衡位置是惟一的。
越跃失稳在极值点是临界的,大于极值点越跃到另外的平衡位置,小于则在越跃前的平衡位置。
因我不属于力学高手,有些问题可能说的不够准确,见谅。
finish/clearl0=1000b0=10h0=20/prep7k,1k,2,l0l,1,2et,1,beam3mp,ex,1,2.0e5mp,prxy,1,0.3r,1,b0*h0,b0*h0*h0*h0/12,h0lesize,all,,,20lmesh,alldk,1,all/soluoutres,all,allnlgeom,onautots,offtime,1nsubst,10fk,2,mz,5000000lswrite,1time,2fk,2,fy,-3000nsubst,20lswrite,2lssolve,1,2,1finish/post11.保守系统和非保守系统:如果输入系统的总能量在载荷移去后复原,则为保守系统;如果能量被系统消耗,则是非保守系统。
一个保守系统的分析是与过程无关的。
(In help: If all energy put into a system by external loads is recovered when the loads are removed, the system is said to be conservative. If energy is dissipated by the system, the system is said to be nonconservative. An analysis of a conservative system is path independent.) 也就是说,不论过去的历史如何,只要积累到当前的变形,结构应力相同;并且在卸载后,结构将恢复到初始状态。
考虑到弹性的定义,故对于弹性(线弹和非线弹)分析结构的最终变形和应力与加载次序无关。
而几何非线性属于弹性范围,是故也是一样的。
2.对于真诚先生“打绳结”问题,次序对结果确是有影响的。
但打结后是不能自动恢复的,恐怕这个例子不属于保守系统的范围。
似乎是拓扑问题,而不是结构分析问题,呵呵。
3. 真诚先生“ANSYS可以用重启动来实现无论是静力还是动力的增量分析”一句,也对,是可以用该方法实现增量分析,但似乎重启动的真正目的不在此。
因为ansys荷载步的分析就能实现“增量分析”,却为何用重启动呢?疑有杀鸡用宰牛刀之嫌。
所以我还是认为“保守系统的最终结果与加载历史无关”,并且“后续荷载步计算是在前步的基础上计算的”。
如有不当,请继续指正!1.荷载步中的荷载处理方式如上,同一自由度处的荷载(包括荷载作用点和方向呀)可替代、累加等。
2.后续荷载步是在前荷载步的基础上进行计算的,而不仅仅是荷载子步,从上述举例中可以看出来。
现在看你的例子,假如就是替代方式的50 和100,不管你在荷载步文件中看到是什么,则求解时第二荷载步时,50 是基础,即其后的每个子步是50+(100-50)划分的增量。
To wendy:1.对仅仅是约束不断变化的结构,其求解使用简单的荷载步是不能解决的;2.使用初应力也不理想,因为施加上初应力后变形不符或变形相符但应力又不符了;对于结构不变而改变约束和荷载的处理,建议如下:1.不使用荷载步,使用系列solve 求解,并且通过time 识别,且不要离开solu 层;2.当你计算完第一工况后,删除原有部分约束(保证结构几何不变),将原有部分约束处的反力施加在结构上(通过*get 得到),求解之;3.增加新的约束,施加新的荷载,求解之;4.最后通过post1 得到结果,则每个time 整时,就是当前的累加效应。
上述对于线性分析和非线性分析都是可行的。
当然对于线性分析因为叠加原理可用,可采用多种方法实现这种分析,例如可各自独立求解,然后叠加,或用荷载工况处理等。
其他: 1.通过荷载步、初应力、restart 等简单的做法(指不处理约束反力等)是不行的; 2.对新帖的内容不甚明白,故无法解释。
VOFFST。