通用串口通讯程序设计
- 格式:pdf
- 大小:314.96 KB
- 文档页数:13
V B串口通信程序设计典型实例利用VB开发串口通信程序既可以使用MSComm控件也可以调用Windows API函数实现。
不过,只要MSComm控件可以被选用,我们推荐选择此控件实现,因为MSComm控件的功能和API调用一样强,甚至比它还好且使用起来更加简单。
在本章提供的串口通信程序设计中,除了PC与PC串口通信外,PC与单片机、PC与智能仪表、PC与PLC、PC与GSM短信模块等串口通信任务的实现均采用MSComm控件。
6.1 PC与PC串口通信程序设计当两台串口设备通信距离较近时,可以直接连接,最简单的情况,在通信中只需3根线(发送线、接收线、信号地线)便可实现全双工异步串行通信。
本设计通过两台PC串口3线连接,介绍了利用API函数和MSComm控件设计串口通信程序的方法,包括字符与文件的发送与接收。
6.1.1 PC与PC串口通信程序设计目的(1)掌握PC与PC串口通信的线路连接方法。
(2)利用MSComm控件和API函数实现PC与PC串口通信的程序设计方法。
6.1.2 PC与PC串口通信程序设计用软、硬件本设计用到的硬件和软件清单如表6-1所示。
表6-1设计用软、硬件6.1.3 PC与PC串口通信程序硬件线路图线路说明,在计算机通电前,按图6-1所示将两台PC通过串口线连接起来:计算机A 串口COM1端口的TXD与计算机B串口COM1端口的RXD相连,计算机A串口COM1端口的RXD与计算机B串口COM1端口的TXD相连,计算机A串口COM1端口的GND与计算机B串口COM1端口的GND相连。
图6-1 PC与PC串口通信线路6.1.4 设计任务利用MSComm控件和VB API函数编写程序实现PC与PC串口通信。
任务要求,两台计算机互发字符并自动接收,如一台计算机输入字符串“Please return abc123”,单击“发送字符”命令,另一台计算机若收到,就输入字符串“abc123”,单击“发送字符”命令,信息返回到第一组的计算机。
单片机串口通信设计方案1.绪论1.1课题背景及意义目前,单片机的发展速度大约每两、三年要更新一代,集成度增加一倍,功能翻一番。
其发展速度之快、应用范围之广已达到了惊人的地步,它已渗透到生产和生活的各个领域,应用非常广泛。
在汽车、通信、智能仪表、家用电器和军事设备的智能化以及实时过程控制等方面,单片机都扮演着非常重要的角色[1]。
因此单片机的设计开发具有广阔的前景。
所以,对于电气类学生而言,学习一种单片机的开发是十分必要的。
而51系列的单片机,随着半导体技术的发展,其处理速度更快,性能更优越,在工业控制领域上占据十分重要的地位,通过对51系列单片机的学习而掌握单片机开发的过程是一种不错的选择。
然而单片机是一门综合性、实践性都很强的学科,其学习涉及的实验环节比较多,硬件设备投入比较大,对于大多数人而言很难投入大笔资金去购买实验器件。
而且要进行硬件电路测试和调试,必须在电路板制作完成、元器件焊接完毕之后进行,但这些工作费时费力。
因此引入EDA软件仿真系统建立虚拟实验平台,不仅可以大大提高单片机的学习效率,而且大大减少硬件设备的资金投入,同时降低对硬件设备的维护工作。
EDA设计思路是:从元器件的选取到连接、直至电路的调试、分析和软件的编译,都是在计算机中完成,所用的工作都是虚拟的。
虽然现在的电路设计软件已经很多,诸如PROTEL、ORCAD、EWB 、Multisim等,不过这些软件之间的差别都不大:都有原理图和PCB制作功能,都能进行诸如频率响应,噪音分析等电路分析,主要用于模拟电路、数字电路、模数混合电路的性能仿真与分析,但对于单片机设计及软件编程,最重要的是两者的联调,这些软件都无法实现,所以造成了单片机系统设计周期长、设计费用高等缺点[2]。
新款的EDA软件Proteus解决了上述软件的不足,成为目前最好的一款单片机学习仿真软件。
Proteus 软件是由英国Lab Center Electronics 公司开发的EDA 工具软件。
modbus rtu 程序设计及轮询编程Modbus是一种通用的通信协议,被广泛应用于工业自动化领域。
Modbus通信协议分为三种类型:Modbus ASCII、Modbus RTU和Modbus TCP/IP。
在这里,我们会重点探讨Modbus RTU的程序设计及轮询编程。
1. Modbus RTU协议简介Modbus RTU是一种串行通信协议,采用二进制编码,传输速率可达到115200bps,支持多主机(最多247个从站)同步通信。
Modbus RTU协议的数据格式通常由地址码、功能码、数据、CRC校验码组成。
2. Modbus RTU程序设计在Modbus RTU程序设计中,主机和从机之间进行数据通信。
主机是发起通信的一方,控制整个通信过程。
主机将命令发给从机,从机执行后返回响应消息。
在程序设计中,需要进行如下步骤:(1)初始化串口;(2)发送请求命令;(3)等待从机返回数据;(4)解析响应数据;(5)关闭串口。
3. Modbus RTU轮询编程轮询编程是指主机通过循环向所有从站进行查询,实现数据采集的过程。
轮询编程通常分为如下几个步骤:(1)设置从站地址码;(2)设置功能码;(3)设置数据区域;(4)发送命令并等待响应;(5)解析响应数据并存储;(6)重复执行以上步骤。
在轮询编程中,需要注意的是从站响应时间和主机查询时间应该保持一致,否则可能会导致数据出现丢失。
综上所述,Modbus RTU是一种常用的通信协议,在工业自动化领域有广泛的应用。
程序设计和轮询编程都是Modbus RTU通信的基础,操作正确才能保证通信的稳定和高效。
串口通讯设计之V e r i l o g实现FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚;FPGA选用Xilinx公司的SpartanII系列xc2s50;此部分为该设计的主体;如上所述,输入数据的传输速率为700k波特率;为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍;1 串口通信基本特点随着多微机系统的应用和微机网络的发展,通信功能越来越显得重要;串行通信是在一根传输线上一位一位地传送信息.这根线既作数据线又作联络线;串行通信作为一种主要的通信方式,由于所用的传输线少,并且可以借助现存的电话网进行信息传送,因此特别适合于远距离传送;在串行传输中,通信双方都按通信协议进行,所谓通信协议是指通信双方的一种约定;约定对数据格式、同步方式、传送速度、传送步骤、纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守;异步起止式的祯信息格式为:每祯信息由四部分组成:位起始位;~8位数据位;传送顺序是低位在前,高位在后.依次传送;c.一位校验位,也可以没有;d.最后是1位或是2位停止位;FPGAField Pmgrammable Gate Array现场可编程门阵列在数字电路的设计中已经被广泛使用;这种设计方式可以将以前需要多块集成芯片的电路设计到一块大模块可编程逻辑器件中,大大减少了电路板的尺寸,增强了系统的可靠性和设计的灵活性;本文详细介绍了已在实际项目中应用的基于FPGA的串口通讯设计;本设计分为硬件电路设计和软件设计两部分,最后用仿真验证了程序设计的正确性;2 系统的硬件设计本方案的异步串行通信的硬件接口电路图如图1所示,主要由四部分组成:RS-485数据发送模块、FPGA 串口模块、MAX3223和DB9;各部分功能简述如下:RS-485数据发送模块是将前续电路的数据发送到FPGA,供本电路处理,亦即本电路的输入;RS485是符合RS-485和RS-4225串口标准的低功耗半双工收发器件,有和5V两种,在本设计中选用了的器件SP3485;在本设计中;485的7脚和8脚与前端信号相连接,用于接收输入的数据;数据格式是这样的:一帧数据有25位,报头是16个高电平和1个低电平,接下来是8位有效的数据;传输速率为700k波特率;2脚是使能端,与FPGA的I/O 口相连,由FPGA提供逻辑控制信号;1脚和4脚也与FPGA相连,由FPGA对输入数据进行处理;FPGA串口模块是将由RS-485发送过来的数据进行处理,提取出8位有效数据,并按异步串口通讯的格式要求输出到MAX3223的12脚;FPGA选用Xilinx公司的Spartan II系列xc2s50;此部分为该设计的主体;如上所述,输入数据的传输速率为700k波特率;为了使FPGA能够正确地对输入数据进行采样,提高分辨率能力和抗干扰能力,采样时钟必须选用比波特率更高的时钟,理论上至少是波特率时钟的2倍;在本设计中选用4倍于波特率的时钟,利用这种4倍于波特率的接收时钟对串行数据流进行检测和定位采样,接收器能在一个位周期内采样4次;如果没有这种倍频关系,定位采样频率和传送波特率相同,则在一个位周期中,只能采样一次,分辨率会差;比如,为了检测起始位下降沿的出现,在起始位的前夕采样一次之后,下次采样要到起始位结束前夕才进行;而假若在这个周期期间,因某种原因恰恰使接收时钟往后偏移了一点点,就会错过起始位;造成整个后面位的检测和识别错误;针对本设计,FPGA的软件共分了三个模块:1.时钟分频模块;模块的功能是用来产生所需要的数据采集时钟和数据传输时钟;系统主频是40M的;数据采集时钟是2.8M的,发送时钟是;2. 提取数据模块;由RS485发送过来的数据共有25位,其中只有8位是有效数据;为了发送这8位有效数据;必须先将其提取出来;提取的办法是这样的:通过连续检测到的16个高电平和一个低电平;判断8位有效数据的到来;然后按照串行数据传输的格式,在加上起始位和停止位后,将其存储于输出缓冲寄存器中;在这里,我们的串行数据输出格式是这样规定的,一位起始位,八位数据位,一位停止位,无校验位;3.串行数据输出模块;这一模块相对比较简单,波特率选为,模块的功能是在移位输出脉冲的作用下,将输出缓冲寄存器中的数据移位输出;MAX3223是实现电平转换的芯片;由于RS-232c是用正负电压来表示逻辑状态;与TTL以高低电平表示逻辑状态的规定不同;因此,为了能够同计算机接口或终端的TTL器件连接,必须在RS-232与TTL电路之间进行电平和逻辑关系的变换;实现这种变换的方法可用分立元件,也可用集成电路芯片; MAXIM公司的MAX3223是为满足RS-232c 的标准而设计的具有功耗低、波特率高、价格低等优点,外接电容仅为或1uF,为双组RS232收发器;由MAX3223的12脚输入的数据,经过电平转换后由8脚输出,再经过DB9的TxD端输出,由PC机接收并做后续处理;3 系统软件设计FPGA模块是本设计的主体,使用Verilog硬件描述语言进行编写,本段代码共有两个子模块,分别实现提取八位数据和串行数据发送的功能;下面是verilog源代码module SIMOdin,clk,rst,dout_ser;input din; 4倍于波特率的时钟reg txclk; //发送数据时钟;发数据取的波特率integer bitpos="7"; //当前位parameters0=0,s1=1,s2=2,s3=3;reg2:0state;reg4:0counter; //用来计算报头报尾中1的个数reg tag,tag1;reg2:0cnt3;reg txdone="1"''''b1;//一个字节数据传输完毕标志提取有效数据位并按串行通讯格式装载数据always posedge nclk or posedge rstbegin ifrst begin state<=0; counter<=0; tag1=0; tag="0"; indata_buf<=8''''bz; dout_buf<=10''''bz; bitpos ="7"; cnt3<=0; end else casestate s0:begin tag="0";//表示数据没有装好ifdinbegin counter<=counter+1; state<=s0; ifcounter==15//如果检测到16个1则转入s1状态检测接下来的是不是0begin state<=s1; counter<=0;end endelse begin counter<=0; state<=s0;end end s1:ifdin//如果是0的话,转入s2状态,提取八位有效数据state<=s2; else //否则转到s0状态重新检测state<=s0; s2:ifcnt3==3//是否采集四次数据begin cnt2<=0; indata_bufbitpos<=din; //先进来的是高位数据bitpos="bitpos-1"; ifbitpos==-1begin bitpos=7;state<=s3;endend elsecnt3<=cnt3+1; s3:begin tag1=tag; tag=1''''b1; //标志输入寄存器满;表明已把有用数据装入寄存器iftag&&~tag1&&txdone //检测到tag的上升沿以及txdone为高才把输入缓冲数据放到输出缓冲去dout_buf<={1''''b1,indata_buf7:0,1''''b0};//停止位,高位,低位,起始位state<=s0; end endcaseend//发送数据模块reg3:0 state_tx=0;txclk or posedge rstbegin ifrst begindout_ser<=1''''bz;state_tx<=0;txdone=1; end elsecasestate_tx0:begin dout_ser<=dout_buf0;state_tx<=state_tx+1;txdone=1''''b0;end 1:begin dout_ser<=dout_buf1;s tate_tx<=state_tx+1;end 2:begin dout_ser<=dout_buf2;state_tx<=state_tx+1;end 3:begin dout_ser<=dout_buf 3;state_tx<=state_tx+1;end 4:begin dout_ser<=dout_buf4;state_tx<=state_tx+1;end 5:begin dout_ser<=dout_ buf5;state_tx<=state_tx+1;end 6:begin dout_ser<=dout_buf6;state_tx<=state_tx+1;end 7:begin dout_ser<=do ut_buf7;state_tx<=state_tx+1;end 8:begin dout_ser<=dout_buf8;state_tx<=state_tx+1;end 9:begin dout_ser< =dout_buf9;state_tx<=state_tx+1;end endcase endendmodule注:两个频率信号nclk、txclk由相应的分频程序产生;由于篇幅所限未在文中列出;FPGA模块接收从RS-485发送过来的串行数据;25位为一个字符;数据的传输速率是700kbps,用四倍于波特率的速率进行采样,这样可以大大降低系统的噪声;数据的串行输出波特率选为11200bps;由输入输出波形图可以看出:本段程序实现了对输入数据的有效数据位的提取,并按照一定的波特率进行串行输出;程序中,波特率可以根据需要通过分频程序进行改动;硬件电路搭建简单,程序代码书写容易;数据传输稳定可靠,可以满足串口通信的要求;。
串口基本信息用一台电脑实验串口自发自收,实验前要将串口(以9针为例)的发送引脚(2脚)和接受引脚(3脚)短接。
三线连接:适用于计算机之间尤其是PC机和单片机之间的数据通信。
其连接信号对为(TxD,RxD)、(RxD,TxD)、(SG,SG)。
即发送数据TxD端和接受数据RxD端交叉连接,信号地SG对应连接。
七线交叉连接:适用于同型号的计算机之间的连接,如PC机间的数据通信。
其连接信号对为:(TxD,RxD)、(RxD,TxD)、(SG,SG)、(RTS,CTS)、(CTS,RTS)、(DSR.DTR)、(DTR,DSR)。
其中,TxD、RxD、SG与前面信号的含义相同,RTS为请求发送,CTS为准许发送,DSR为数据装置准备好,DTR为数据终端准备好。
在本地连接的微机系统中,RTS、CTS、DTR、DSR用作硬件联络控制信号。
目前使用的串口连接线有DB9和DB25两种连接器,用户可以国家使用的具体机器选择相应的连接器。
一个串口通讯类在/network/serialport.shtml。
PC机的RS-232接口的电平标准是-12V标示“1”,和+12V表示“0”,有些单片机的信号电平时TTL 型,即大于2.4v表示“1”,小于0.5v表示“0”,因此采用RS-232总线进行异步通信是,发送端和接受端要有一个电平转换接口。
串口通讯方法的三种实现串口是计算机上一种非常通用的设备通信协议。
大多数计算机包含两个基于RS232的串口。
串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS一232口。
同时,串口通信协议也可以用于获取远程采集设备的数据。
串口通信(Serial Communication),是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。
串口通信方便易行,应用广泛。
在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。