第四章-管式反应器.
- 格式:ppt
- 大小:1.91 MB
- 文档页数:70
第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。
并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。
习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。
再由求得水解速率。
习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。
注意题中所给比表面的单位应换算成。
利用下列各式即可求得反应速率常数值。
习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。
习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。
(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。
这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。
习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。
(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。
管式反应器除了上一章的两类理想反应器,管式反应器也是一类理想反应器模型(活塞流模型)。
与间歇釜式反应器不同,全混流和活塞流模型用于流动过程。
根据上一章所学的知识,物料在反应器中的停留时间是决定化学反应转化程度和产物分布的一个重要因素。
全混流和活塞流模型均是根据特定的停留时间分布规律建立起来的(这部分内容将在下一章中详细阐述),是两种极端的情况,是分析许多问题的出发点,也是各种实际反应器设计的理论基础。
本章将涉及到如下的具体内容:活塞流模型的基本假定等温管式反应器设计与分析管式反应器与釜式反应器的性能比较循环管式反应器的分析计算管式反应器的变温操作第一节活塞流假定流体流动是非常复杂的物理现象,影响到系统的反应速率和转化程度。
一、流动状况对反应过程的影响1. 流动情况影响例1. (1)空管中, 图4.1 (a)(b) 内部各部分流体的停留时间不同,因此反应时间也不一样,反应速率和最终转化率也不一样第二节等温管式反应器的设计一、单一反应在管式反应器中进行的单一反应,取如图4.2所示的微元体(高为dZ)图 4.2 管式反应器示意图在定态条件下,由此得到或∴(4-4)∴(4-5)假设 =常数(=X Af下的值),则--釜式反应器的设计方程式(4-5)可以进一步变成:(间歇釜式的设计的方程为)注意:二者尽管形式上相同,但一个是反应时间t,一个空时τ(与所选择的进口状态有关)。
另外,间歇釜式反应器总是恒容的。
如果管式反应器也在恒容下进行,则有τ=t;否则,τ≠t。
对于式(4-4),设反应器的截面积为A,则有dV r=Ad Z,那么对于恒容过程 C A=C AO(1-X A)则时间变量转化为位置变量。
例4.1 例4.2 例4.3例4.4例4.5第三节管式与釜式反应器反应体积的比较在处理量、组成、T、XAf相同的条件下进行对比。
对于二级可逆反应,使用不同形式的理想反应器时所需要的反应体积如表4-1所示,即有(本章前面和上一章的例题给出的结果)一般来说,比较按正常动力学和反常动力学两种情况讨论:图 4.3 连续反应器反应体积的比较对于复杂反应,要同时考虑反应体积V和产物分布,后者更为重要。