最新离散数学第十五章格与布尔代数简
- 格式:ppt
- 大小:874.00 KB
- 文档页数:7
离散数学是数学的一个重要分支,研究的是离散结构和离散对象的性质。
代数系统和布尔代数是离散数学中的两个重要概念。
代数系统是研究集合上的运算的一种数学结构。
它由集合和一组运算所组成,其中运算可以是两个对象相互运算得到一个新的对象,也可以是一个对象自身经过某种运算得到一个新的对象。
代数系统包括了很多种类,例如群、环、域等等。
其中,布尔代数是代数系统的一种重要类型。
布尔代数是一种二元代数系统,它研究的是关于真值和逻辑运算的代数。
在布尔代数中,我们考虑的对象是命题,而运算包括了与、或、非等等。
布尔代数主要用于逻辑运算和电路设计中。
布尔代数中的命题可以用真和假来表示,它们分别对应于数学中的1和0。
与、或、非等运算在布尔代数中也有对应的符号,分别是∧、∨、¬。
这些符号在逻辑运算中扮演重要角色。
布尔代数的运算有很多有趣的性质。
比如,与运算满足交换律、结合律、分配律等等;或运算满足交换律、结合律、分配律等等;非运算满足逆运算和恒等律。
这些性质使得布尔代数具有很强的推理和运算能力。
布尔代数在逻辑运算中有着广泛的应用。
在计算机科学中,布尔代数被用于电路设计和逻辑推理;在人工智能领域,布尔代数被用于知识表示和推理;在运筹学中,布尔代数被用于约束求解和优化问题。
布尔代数的应用广泛而深入,是离散数学中的重要工具之一。
总结起来,离散数学中的代数系统和布尔代数是两个重要的概念。
代数系统研究的是集合上的运算,而布尔代数研究的是关于真值和逻辑运算的代数。
布尔代数具有许多有趣的性质和广泛的应用,是离散数学中的一个重要工具。
《离散数学》课程教学大纲课程编号:06082002 适用专业:计算机科学与技术学时数:60学分数:4 开课学期:第 2 学期先修课程:线性代数、高级语言程序设计(C语言)执笔者:傅彦、顾小丰、刘启和、王庆先、王丽杰编写日期:2011.03 审核人(教学副院长):周世杰一、课程性质和目标(用小四号黑体字)授课对象:本科生课程类别:学科基础课教学目标(本课程对实现培养目标的作用;学生通过学习该课程后,在思想、知识、能力和素质等方面应达到的目标):离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。
它是计算机科学和其他应用科学的基础理论课。
在课堂教学中,不仅要求学生掌握离散数学具体内容,更重要的是强调离散数学课程的思想,特别是离散数学中逻辑的概念可以说是贯穿到整个教学中;通过课后实验,学生不仅能够加深对离散数学知识的进一步理解,而且还可以从实验中提高自己的实践动手能力和编程能力,最关键的是提高学生学习离散数学的兴趣和了解离散数学与其他课程之间的关系。
通过本课程学习,培养和训练学生的抽象思维能力和严格的逻辑推理的能力,使学生了解离散数学在计算机学科和日常生活中的作用,为学生今后处理离散信息以及用计算机处理大量的日常事物和科研项目,从事计算机科学和应用打下坚实基础,特别是对那些从事计算机科学与理论研究的高层次计算机人员来说,更是一门必不可少的基础理论工具。
二、课程内容安排和要求(用小四号黑体字)(一)教学内容、要求及教学方法(用五号宋体加粗)第1章集合论 2学时掌握:集合的基本概念(集合的概念及表示、集合与元素的关系、集合与集合的关系、几个特殊的集合)、集合的运算。
理解:集合的应用。
了解:粗糙集简介(粗糙集合研究现状、知识与知识库、粗糙集的基本概念、成员关系,粗相等和粗包含)(本部分自学)。
教学方法:问题+实例的讲授式教学方法第2章计数问题 2学时理解:基本原理(乘法原理、加法原理)、排列与组合(排列问题、组合问题)、容斥原理与鸽笼原理了解:递归关系、离散概率简介、计数问题的应用。
说明:定义:红色表示。
定理性质:橙色表示。
公式:蓝色表示。
算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(,,,,),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则,CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG),-规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补,对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包r(R),对称闭包s(R), 传递闭包t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。
3.群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元5.环与域:环,交换环,含幺环,整环,域6.格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理图论:1.图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、补图,握手定理,图的同构2.图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,二部图(二分图) 3. 图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵4. 欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5. 无向树与根树:无向树,生成树,最小生成树,Kruskal ,根树,m 叉树,最优二叉树,Huffman 算法6. 平面图:平面图,面,欧拉公式,Kuratoski 定理数理逻辑:命题:具有确定真值的陈述句。
离散数学布尔代数与逻辑离散数学是数学的一个分支,研究离散的、离散的结构和离散的现象。
而布尔代数是离散数学的重要组成部分,是代数学中关于二元关系的理论。
同时,与布尔代数密切相关的是逻辑学,研究命题的真值、论证的正确性以及推理的方法。
一、布尔代数基础布尔代数是一种逻辑代数,它使用逻辑运算符号和变量,描述和分析命题逻辑关系。
在布尔代数中,变量只有两个取值,即真(用1表示)和假(用0表示)。
布尔代数的基本运算包括逻辑与、逻辑或和逻辑非。
逻辑与表示当且仅当两个变量都为真时,结果为真;逻辑或表示当至少有一个变量为真时,结果为真;逻辑非表示当某个变量为真时,结果为假,反之亦然。
在布尔代数中,可以使用真值表来描述和分析布尔函数的取值情况。
布尔函数是指由布尔代数运算符组成的表达式,它接受一个或多个输入变量,并产生一个输出变量。
布尔函数在逻辑电路设计、计算机科学、编程等领域中有广泛的应用。
通过真值表分析布尔函数的取值规律,可以优化逻辑电路的设计和布尔函数的运算。
二、逻辑学与命题逻辑逻辑学是研究推理和论证的科学,其中命题逻辑是逻辑学的一个重要分支。
命题逻辑的基本概念是命题,它是陈述句,可以被判断为真或假。
命题逻辑使用逻辑连接词和命题变量来组成复合命题,并通过逻辑运算符来描述复合命题之间的关系。
逻辑连接词包括逻辑与、逻辑或、逻辑非、蕴涵和等价。
逻辑与表示两个命题同时为真时,复合命题为真;逻辑或表示两个命题至少有一个为真时,复合命题为真;逻辑非表示命题的否定,即真变为假,假变为真;蕴涵表示如果第一个命题为真,则第二个命题为真,否则为假;等价表示两个命题具有相同的真值。
逻辑学通过推理规则和推理方法来分析和判断复合命题的真假。
其中包括代入规则、假言推理、拒取否定、双重否定等推理规则。
通过应用这些推理规则,可以推导出逻辑上正确的结论,并解决实际问题中的逻辑推理和决策问题。
三、离散数学中的应用离散数学是计算机科学和信息技术的基础学科,广泛应用于计算机算法、数据结构、数据库、图论等领域。