最优化方法课程设计
- 格式:doc
- 大小:617.50 KB
- 文档页数:11
四川理工学院《最优化方法》课程论文题目:基于Matlab的单纯形法仿真实验姓名:刘宇泽专业:信息与计算科学班级:一班学号:12071030113完成日期:2015年6月27日四川理工学院理学院二O一五年六月摘要线性规划是运筹学中研究最早、发展最快、应用广泛、方法较成熟的一个重要分支,它是辅导人们进行科学管理的一种数学方法。
是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
为了得到线性目标函数的极值,我们有多重方法。
本文采用单纯形算法求解线性规划问题的最优解,并通过Matlab软件编写程序进行求解。
最终得到线性规划问题的最优解,进一步验证了求解问题的精度,较良好。
关键词:线性规划单纯性算法Matlab程序目录一、问题提出 (1)二、设计思路和步骤 (1)三、程序设计 (2)3.1问题分析 (2)3.2 算法设计 (2)3.3 程序编制 (3)3.4算法框图 (4)四、结果分析 (5)4.1设计结果 (5)4.2 进一步讨论和验证 (5)五、收获和总结 (5)六、结束语 (6)6.1设计的优缺点 (6)6.2设计工作展望 (6)6.3学习心得与体会 (6)一、 问题提出本文运用单纯形算法解下列问题:,0,0,0,43252-2.5.53.26.00.2)(min 43214321432143214321≥≥≥≥≤-++≥+++≤--+-+--=x x x x x x x x x x x x x x x x ts x x x x x f ,,二、设计思路和步骤2.1设计思路单纯形法的基本思路:根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n 的值称为一个解,满足所有的约束条件的解称为可行解。
使目标函数达到最大值(或最小值)的可行解称为最优解。
这样,一个或多个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。
求解线性规划问题的目的就是要找出最优解。
最优化算法课程设计系统一、教学目标本节课的最优化算法课程设计系统教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:学生需要掌握最优化算法的基本概念、原理和常用的算法。
通过学习,学生能够了解最优化问题的定义、特点和解决方法,理解最优化算法的原理和应用场景,掌握常用的最优化算法及其优缺点。
2.技能目标:学生能够运用所学的最优化算法解决实际问题,提高问题求解的能力。
通过实践,学生能够熟练使用最优化算法进行问题求解,提高解决问题的效率和准确性。
3.情感态度价值观目标:学生能够认识最优化算法在实际生活和工作中的重要性,培养对最优化算法的兴趣和好奇心,培养合作、创新和持续学习的意识。
二、教学内容本节课的教学内容主要包括最优化算法的基本概念、原理和常用的算法。
1.最优化问题的定义和特点:介绍最优化问题的定义、特点和解决方法,让学生了解最优化问题的背景和应用场景。
2.最优化算法的原理:讲解常用的最优化算法(如梯度下降法、牛顿法、共轭梯度法等)的原理和实现方法,分析各种算法的优缺点和适用条件。
3.最优化算法的应用:通过实例分析,让学生了解最优化算法在实际问题中的应用,培养学生的实际问题求解能力。
三、教学方法为了提高教学效果,本节课将采用多种教学方法相结合的方式进行教学。
1.讲授法:通过讲解最优化算法的基本概念、原理和常用的算法,让学生掌握最优化算法的基础知识。
2.案例分析法:通过分析实际问题,让学生了解最优化算法的应用场景,提高问题求解能力。
3.实验法:让学生动手实践,使用最优化算法解决实际问题,培养学生的实际问题求解能力。
四、教学资源为了支持本节课的教学,将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供最优化算法的基本概念、原理和常用的算法。
2.参考书:提供相关领域的参考书籍,为学生提供更多的学习资料。
3.多媒体资料:制作精美的PPT,直观地展示最优化算法的基本概念、原理和常用的算法。
最优化方法及其应用课程设计一、引言随着计算机技术的不断发展,最优化问题得到了越来越广泛的应用,包括机器学习、数字信号处理、图像处理、智能控制等领域。
本文将介绍最优化方法及其应用课程设计的背景、目的、内容和教学方法。
二、背景与目的最优化方法是一种数学方法,其在现代工程领域应用广泛,包括寻找最优化解、优化设计、参数优化等方面。
本课程设计旨在让学生掌握最优化方法的基本原理与实际应用,培养学生的数学建模能力、计算机编程能力以及跨学科解决问题的综合能力。
三、内容本课程设计分为两个部分:最优化方法理论的讲授和实践操作。
1. 最优化方法理论在最优化方法理论的部分,我们将首先介绍最优化方法的基本思想和方法,包括:•单目标优化和多目标优化•线性规划•非线性规划•约束优化•动态优化紧接着,我们将通过实际案例演示最优化方法在实际问题中的应用,包括:•图像处理中的最优化问题•机器学习中的最优化问题•网络优化问题2. 实践操作在实践操作的部分,我们将采用Python语言讲授最优化方法的实现与应用。
具体包括:•Python语言基础•数值计算•优化算法通过课堂教学和实践操作的综合实践,学生将会掌握Python编程语言的基础知识、最优化方法的基本思想和方法、最优化方法在实际问题中的应用、采用Python语言对最优化方法的实现与应用。
四、教学方法本课程设计采用理论授课和实践操作相结合的教学模式。
在教学过程中,我们将引导学生积极参与,通过自主学习、探究和发现问题的方法,提高学生综合分析和解决问题的能力,同时注重教学的实际应用性,鼓励学生灵活运用所学知识解决实际问题。
五、总结本课程设计旨在为计算机科学与技术专业学生提供一门实践性很强并且具有广泛应用价值的课程,帮助学生了解最优化方法的基本思想和方法,掌握最优化方法在实际问题中的应用,提高专业能力和实践能力。
最优化课程设计一、课程目标知识目标:1. 学生能理解并掌握本章节最优化问题的基本概念,包括线性规划、整数规划和非线性规划等;2. 学生能够运用数学模型解决实际问题,并进行合理优化;3. 学生掌握常用的最优化方法,如单纯形法、分支定界法和梯度下降法等。
技能目标:1. 学生能够运用数学软件(如MATLAB、Excel等)进行最优化问题的求解;2. 学生通过小组合作,提高团队协作能力和沟通表达能力;3. 学生具备分析实际问题时,能够运用所学知识进行问题抽象和建模的能力。
情感态度价值观目标:1. 学生培养对数学学科的热爱,增强对最优化问题的兴趣;2. 学生通过解决实际最优化问题,培养解决问题的信心和耐心;3. 学生认识到数学知识在实际生活中的广泛应用,提高学习的积极性和主动性。
课程性质:本课程为数学学科的一章,主要研究最优化问题的基本概念、方法及其应用。
学生特点:学生为高中年级,具备一定的数学基础,对数学问题有一定的分析和解决能力。
教学要求:教师需结合学生特点,注重启发式教学,引导学生主动探究,提高学生的实践操作能力。
在教学过程中,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。
二、教学内容本章节教学内容主要包括以下几部分:1. 最优化问题的基本概念:介绍最优化问题的定义、分类和数学描述,包括线性规划、整数规划和非线性规划等。
2. 最优化方法:详细讲解以下几种常用最优化方法:- 单纯形法:解决线性规划问题;- 分支定界法:解决整数规划问题;- 梯度下降法:解决非线性规划问题。
3. 数学软件应用:结合实际案例,教授学生如何使用MATLAB、Excel等软件进行最优化问题的求解。
4. 实际案例分析与建模:选取与学生生活密切相关的实际案例,引导学生进行问题分析、建模和求解。
教学大纲安排如下:第一课时:最优化问题的基本概念;第二课时:线性规划及单纯形法的应用;第三课时:整数规划及分支定界法的应用;第四课时:非线性规划及梯度下降法的应用;第五课时:数学软件在求解最优化问题中的应用;第六课时:实际案例分析、建模与求解。
最优化方法及应用教学设计最优化方法是一种应用数学的方法,用于找到函数的最佳解决方案。
它通常包括数学建模、问题分析、目标函数和约束条件的定义、算法的选择和实施等步骤。
最优化方法在实际问题的解决中具有广泛的应用,包括经济学、工程学、运筹学等领域。
在教学设计中,可以通过结合理论讲解和实际案例演示,帮助学生理解最优化方法的原理和应用。
以下是一个教学设计示例:1. 引入最优化方法概念(150字)首先引入最优化方法的概念和基本步骤,解释最优化问题的定义和解的概念。
通过举例说明最优化方法的重要性和应用领域。
2. 数学建模与问题分析(300字)介绍数学建模的基本思想和步骤,通过给定实际问题,引导学生提出数学建模的思路和方法。
然后,讲解问题分析的过程和方法,包括确定目标函数、约束条件、自变量和因变量等内容。
通过演示具体案例,让学生理解建模和问题分析的重要性。
3. 目标函数和约束条件的定义(300字)详细讲解目标函数和约束条件的定义,包括约束条件的等式和不等式形式。
通过实例展示目标函数和约束条件的具体定义过程,例如最小化成本、最大化利润等。
引导学生理解目标函数和约束条件在最优化问题中的作用。
4. 算法的选择和实施(400字)介绍最优化算法的选择和实施过程,包括线性规划、整数规划、非线性规划等常见的最优化算法。
通过给定实例,引导学生选择合适的算法,并讲解算法的实施步骤,如建立数学模型、求解最优解等。
通过实际操作,让学生熟悉算法的选择和实施过程。
5. 应用案例分析(300字)引导学生分析和解决实际应用问题,如生产优化、资源分配等。
通过给定的应用案例,让学生运用最优化方法进行问题求解,并提出优化建议。
通过实践操作,让学生掌握最优化方法在实际问题中的应用。
6. 总结和讨论(150字)总结教学内容,回顾最优化方法的基本概念和应用步骤。
展开讨论,让学生发表对最优化方法的理解和看法,并提出相关问题。
鼓励学生思考如何将最优化方法应用到其他领域中。
运筹学与最优化方法课程设计课程概述《运筹学与最优化方法》是一门涵盖运筹学、优化理论、数理统计学等多个领域的课程。
通过开展本课程的学习,主要目标在于帮助学生掌握基本的运筹学和最优化方法的基础知识和应用,了解运筹学及最优化方法在不同领域的应用,并能在实践中运用所学的理论知识解决实际问题。
课程设计目标通过本次课程设计,学生应该能够:•运用数学模型、线性规划和整数规划方法,规划、建模、分析和优化典型问题。
•熟悉和掌握优化问题的求解方法、策略、步骤和思考角度。
•对一些运筹学经典问题有深入理解与把握,如网络流、背包问题、旅行商问题等。
•学习和运用一些数值计算方法和算法,如最小二乘法、简单梯度法。
•应用所学知识解决实际问题,例如供应链管理和生产计划等。
课程设计内容1.题目设计每位学生选择一项实际问题,并进行分析。
学生需收集与自己选题相关的数据,并构建数学模型,并对模型进行求解和分析。
2.数据采集和分析2.1 数据获取从公开或私有数据来源收集数据2.2 数据清洗清洗数据,删除不需要的数据并进行缺失值处理。
2.3 数据分析数据探索,绘制可视化图形,可视化数据和进行描述性统计。
3.模型构建3.1 问题定义明确实际问题和所需求解的问题。
3.2 模型建立结合实际问题创造模型,包括收集相关数据、建模、进行模型优化等步骤。
4.模型求解4.1 线性规划模型求解使用MATLAB、R、Python或Excel等软件工具求解线性规划模型。
4.2 整数规划模型求解使用MATLAB、R、Python或Excel等软件工具求解线性规划模型。
4.3 数值计算方法和算法求解尝试使用最小二乘法、简单梯度法和其他较为高级的数值计算方法和算法进行求解。
5.结果分析和总结对求解结果进行分析和总结,得出有效的结论和解释方法。
成果要求1.课程设计报告每位学生提交设计报告,报告包含:•原题目和问题描述•数据采集和分析•模型构建•模型求解•结果分析和总结2.实现代码每位学生需提交所设计模型的求解代码,代码需符合以下要求:•使用Python语言,使用Matlab/R语言亦可;•代码结构清晰,注释齐全,代码中的变量和算式需有详细的注释;•尽量采用函数化设计;•代码可在多组测试数据中运行,并展示其正确性和有效性。
最优化原理与方法课程设计一、课程设计背景最优化原理与方法是现代数学和工程学的重要分支之一,它的应用广泛涉及到人工智能、金融、医学、生物、交通等众多领域中,因此它对于专业人士的培训显得非常必要。
本次课程设计将会着重介绍最优化原理与方法的相关知识,并给出实际应用的例子。
二、课程设计目的本次课程设计的目的在于:1.分析和研究加工工艺,提高生产效率和精度;2.通过分析与算法研究, 提高线路规划的效率;3.提高优化问题的设计和解决能力。
三、课程设计内容3.1 线性规划问题线性规划问题是最优化算法中经典的问题之一, 它是指对若干线性约束关系进行优化, 最终求解出使得某个标准函数最优的变量取值。
在线性规划问题中, 可以用的最常用的算法是单纯性法和内点算法。
3.2 非线性规划问题非线性规划问题是指在某些条件下, 优化目标函数不再是线性规划, 而会出现一些非线性的因素。
此时,硬件效能的速度就不能确保算法的正确性了, 需要使用一些新的逼近式算法。
目前比较常用的算法是线性规划的简单与复杂的变形方法。
3.3 数值优化方法数值优化方法是优化算法中的主要方法之一,主要是针对实数域上的优化问题,它可以使用各种不同的算法来解决特定的优化问题。
常见的数值优化算法包括牛顿法、拟牛顿法、共轭梯度法、漫步法等。
四、实验内容4.1 线性规划实验本实验主要用于理解和应用线性规划理论, 可以通过计算线性规划的算法, 解决相关的优化问题, 包括使某个标准函数最小或最大等方向的问题。
4.2 非线性规划实验本实验主要用于理解和应用非线性优化理论, 可以使用相关算法, 解决相关情况下出现的非线性问题。
通过这次实验,学生可以对非线性规划问题有一定的了解, 并能够对实际中常见的问题进行处理。
4.3 数值优化实验本实验主要用于理解和应用数值优化理论, 可以使用相关算法, 解决各种实数域上的优化问题, 例如求某函数的最小值,最大值等相关问题。
此外, 学生也可以通过本实验了解和掌握涉及到数字计算的优化问题,可以掌握相关算法和技术, 以在实际中的应用问题中起到实质性的帮助作用。
最优化方法修订版教学设计一、教学目的本课程旨在介绍最优化方法的理论和应用,帮助学生掌握最优化方法的基本思想和基本方法,理解最优化方法在工程、管理、经济、金融等领域中的应用,培养学生的数学建模能力和解决实际问题的能力。
二、教学内容2.1 最优化方法的基本概念和理论1.最大值和最小值2.极值和非极值3.函数的可行域和最优解4.梯度、海森矩阵和拉格朗日乘子等最优化方法中的重要概念5.一阶条件和二阶条件2.2 最优化方法的基本算法和解法1.无约束极值问题的最优化算法–黄金分割法–抛物线法–牛顿法–拟牛顿法2.有约束极值问题的最优化算法–等式约束问题的最优化算法–不等式约束问题的最优化算法3.全局最优化算法–遗传算法–粒子群算法–模拟退火算法2.3 最优化方法在应用中的案例分析1.最优化在工程领域中的应用–装备设计的优化–工艺优化–优化的控制策略2.最优化方法在经济、金融领域中的应用–投资决策–风险控制–资源配置2.4 数学建模和算法设计1.数学建模的流程和方法2.算法设计原则和方法3.结合实际案例进行综合运用三、教学方法本课程将采用理论讲解和实践演示相结合的教学方法,通过课堂讲解、案例分析、计算机仿真等多种教学手段,使学生全面了解最优化方法的理论和应用,具备最优化建模和算法设计能力。
四、教学要求1.学生应具备优秀的数学基础,熟悉微积分、线性代数等相关知识。
2.学生应掌握MATLAB等数学软件的使用方法。
3.学生应具备较好的英语读写能力,能够阅读英文文献和参加英文授课。
4.学生应注重实践学习,积极参与课程实验、案例分析等活动。
5.学生应具备较强的数学建模和算法设计能力,能够解决实际问题。
五、教学评价本课程将采用多种评价手段,包括作业评价、实验报告评价、期末考试等方式,综合考核学生对最优化方法的理论掌握和应用能力。
六、教材参考1.《最优化方法》,Stephen Boyd, Lieven Vandenberghe,高等教育出版社,2011年。
《最优化方法》课程设计题目:可行方向法分析与实现院系:数学与计算科学学院专业:统计学姓名学号:XXXX 12007XXXXX指导教师:李丰兵日期:2015 年01 月22日摘要在各种优化算法中,可行方向法是非常重要的一种。
可行方向法是通过直接处理约束问题,得到一个下降可行方向,从而产生一个收敛于线性约束优化问题的K-T点。
本文主要介绍的Zoutendiji可行方向法是求解约束优化问题的一种有代表性的直接解法.在本次实验中,本人对该门课程中的线性约束非线性最优化问题进行了一定程度地了解和研究,而处理线性约束非线性最优化问题的关键是在求解过程中,不仅要使目标函数值单调下降,而且还要保证迭代点的搜索方向为下降可行方向。
所以,本人使用利用线性规划方法来确定d的可行方向法k——Z outendijk可行方向法进行处理。
本人通过数学软件MATLAB探讨了优化设计的实现方法及实现验证的效果,更进一步地加深了对它的理解也提高了处理该问题的水平能力。
而且该方法初始参数输入简单,编程工作量小,具有明显的优越性.关键词:Zoutendiji可行方向法,约束优化问题,下降可行方向。
AbstractIn a variety of optimization algorithms, the feasible descent method is a very important one. The feasible direction method is by directly dealing with constraints, getting a feasible direction, to produce a convergence in the k-t point of the linear constrained optimization problems. Zoutendiji feasible direction method is mainly introduced in this paper to solve the constrained optimization problem of a kind of typical and direct solution.In this experiment, We have a certain degree of understanding and researching in this course of linear constrained nonlinear optimization problem。
最优化方法大作业---------用优化算法求解函数最值问题摘要最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。
最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。
最小化问题分为两类,即约束最小化和无约束最小化问题。
在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。
后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。
虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。
再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。
在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。
此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。
报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。
本报告中所用程序代码一律用MATLAB编写。
【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB一,问题描述1,分别用共轭梯度发法和牛顿法来求解一下优化问题()()()()()441432243221102510min x x x x x x x x x f -+-+-++=2, 分别用外点法和内点发求解一下优化问题⎩⎨⎧≥-++01.min 212231x x t s x x二、问题求解1.1 用牛顿法求解()()()()()441432243221102510min x x x x x x x x x f -+-+-++=1.1.1问题分析:取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[]()k k k k x f x f x x ∇∇-=-+121,直到终止条件成立时停止。
最优化方法实验指导书《最优化方法》课程设计指导书一、课程设计目的与要求1、提高分析问题、解决问题的能力,进一步巩固最优化方法的基本原理与方法。
2、熟悉应用MATLAB进行优化方法的设计。
二、课程设计要求1、要充分认识课程设计对培养自己的重要性,认真做好设计前的各项准备工作。
尤其是对编程软件的使用有基本的认识。
2、既要虚心接受老师的指导,又要充分发挥主观能动性。
结合课题,独立思考,努力钻研,勤于实践,勇于创新。
3、独立按时完成规定的工作任务,不得弄虚作假,不准抄袭他人内容,否则成绩以不及格计。
4、在设计过程中,要严格要求自己,树立严肃、严密、严谨的科学态度,必须按时、按质、按量完成课程设计。
三、内容及学时分配本设计包括四个小题目,全部设计时间一周,共16学时。
(一)单纯性算法的基本原理及思路(4学时)设计目的和要求:通过本次设计应使学生掌握如何使用MATLAB 软件进行单纯性算法求解线性规划,并学会对具体问题进行分析。
设计的内容:1、单纯性算法的基本思路2、算法流程图3、用matlab编写源程序4、单纯性算法应用举例教学建议:初次使用MATLAB进行优化问题的实验,本次设计在全面了解软件系统基础之上,要让学生学习和熟悉一些MATLAB的基础用途,重点掌握优化工具箱函数选用的内容。
重点和难点:优化工具箱函数选用。
(二)黄金分割法的MATLAB实现(4学时)设计目的和要求:通过本次设计应使学生掌握如何使用MATLAB 软件进行一维搜索,并学会对具体问题进行分析。
设计内容:1、0.618法的算法思路2、0.618法的MATLAB实现3、0.618法应用举例教学建议:本次实验是学生初次使用MATLAB进行优化问题的实验,本次实验就是要通过对一些具体问题的分析学会软件的操作并加深对理论知识的理解。
重点和难点:具体问题的步长因子的确定,理解、掌握精度与效率的关系。
(三)最速下降法的MATLAB实现(4学时)设计目的和要求:通过本次实验使学生进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。
最优化算法课程设计目的一、课程目标知识目标:1. 让学生掌握最优化算法的基本概念、原理和应用场景,理解其在工程、经济、管理等领域的重要意义。
2. 使学生了解几种典型的最优化算法,如线性规划、整数规划、非线性规划等,并掌握其数学模型和求解方法。
3. 帮助学生建立数学模型,运用最优化算法解决实际问题,提高数学应用能力。
技能目标:1. 培养学生运用数学软件(如MATLAB、Lingo等)进行最优化算法求解的能力。
2. 培养学生分析问题、建立模型、求解问题和总结反思的能力。
3. 提高学生的团队协作和沟通能力,学会在小组讨论中分享观点、倾听他人意见。
情感态度价值观目标:1. 培养学生对最优化算法的兴趣和热情,激发学生学习数学、研究问题的积极性。
2. 培养学生面对复杂问题时,具有勇于尝试、不断探索的精神。
3. 增强学生的创新意识,让学生认识到最优化算法在现实生活中的重要作用,提高社会责任感。
课程性质分析:本课程为选修课,旨在提高学生的数学素养和解决实际问题的能力。
课程内容具有一定的理论性和实践性,要求学生在理解基本概念和原理的基础上,学会运用最优化算法解决实际问题。
学生特点分析:学生为高中生,具有一定的数学基础和逻辑思维能力,但可能在面对实际问题时缺乏分析、求解的经验。
教学要求:结合课程性质、学生特点,将课程目标分解为具体的学习成果,注重理论与实践相结合,提高学生的数学建模和问题求解能力。
在教学过程中,关注学生的个体差异,提供针对性的指导,确保学生能够达到预期的学习效果。
二、教学内容1. 最优化算法概述- 定义、分类及应用场景- 最优化问题的数学模型2. 线性规划- 线性规划的基本概念与性质- 线性规划的数学模型- 简单线性规划的图解法- 单纯形法及求解过程3. 整数规划- 整数规划的基本概念与性质- 整数规划的数学模型- 分支定界法及求解过程- 割平面法及求解过程4. 非线性规划- 非线性规划的基本概念与性质- 非线性规划的数学模型- 拉格朗日乘数法及求解过程- 梯度投影法及求解过程5. 应用案例分析- 经济管理领域的最优化问题- 工程技术领域的最优化问题- 其他领域的最优化问题6. 数学软件应用- MATLAB、Lingo等软件的介绍与操作- 利用软件求解最优化问题教学内容安排与进度:第一周:最优化算法概述第二周:线性规划第三周:整数规划第四周:非线性规划第五周:应用案例分析第六周:数学软件应用教学内容与教材关联:本教学内容依据教材《数学建模与最优化方法》的相应章节进行组织,确保学生能够系统地学习和掌握最优化算法的相关知识。
最优化理论与方法课程设计一、课程设计背景在现代工业和科学领域,优化问题绝对是一个非常重要的问题。
例如,在制造业领域中,如何使生产过程更加高效以及如何实现最小成本生产,这都是必须深入研究的问题。
在科学领域中,优化问题也常常出现在研究过程中。
因此,通过学习最优化理论和方法,可以帮助我们更好地理解和解决这些优化问题。
二、课程设计目标本次课程设计的目的是帮助学生了解最优化理论和方法,并能够通过所学知识解决相关优化问题。
通过本次课程设计,学生将掌握以下能力:1.理解最优化的相关概念和理论2.掌握常用最优化方法和算法3.能够分析并解决实际问题中的优化问题三、课程设计内容和要求1. 课程设计内容本次课程设计共分为两个阶段,具体如下:阶段一在第一阶段中,学生需要熟悉最优化的相关概念和理论,并掌握常用最优化方法和算法。
具体内容如下:1.最优化问题的定义和分类2.凸优化问题的概念和性质3.常用最优化方法和算法,如线性规划,非线性规划,整数规划等4.优化问题的求解工具和软件,如MATLAB、Python等阶段二在第二阶段中,学生需要分析并解决一个实际的优化问题。
具体内容如下:1.学生需要选择一个实际问题,并确定其优化目标2.学生需要从已学知识中选择一个或多个合适的算法进行求解3.学生需要编写求解程序,并通过算法求解该问题4.学生需要对算法的正确性和求解结果的合理性进行验证和分析2. 课程设计要求本次课程设计的要求如下:1.学生需要以Markdown文本格式进行输出,要求思路清晰,语言简洁明了2.学生需要在第二阶段中,对所选择的实际问题进行充分调研和了解,并对其优化目标进行明确3.学生需要对所编写的求解程序进行测试,并保证在合理时间内能够得到正确的求解结果4.学生需要对求解结果进行分析,并对所选算法的优缺点进行评价和总结四、总结通过本次课程设计,学生可以充分掌握最优化理论和方法,并能够通过所学知识解决实际的优化问题。
学生不仅可以提高自身的分析和解决问题的能力,还可以为未来从事相关领域的工作打下坚实的基础。
最优化课程设计一、课程目标知识目标:1. 学生能理解并掌握最优化问题的基础概念,如线性规划、非线性规划等。
2. 学生能运用数学模型解决实际问题,建立最优化问题的数学模型。
3. 学生能掌握并运用求解最优化问题的方法,如单纯形法、梯度下降法等。
技能目标:1. 学生具备分析实际问题时,能够将其转化为最优化问题的能力。
2. 学生能够运用数学软件或工具解决最优化问题,并能够解释结果。
3. 学生能够通过小组合作,共同探讨并解决复杂的最优化问题。
情感态度价值观目标:1. 学生能够认识到数学在解决实际问题中的广泛应用,增强数学学习的兴趣。
2. 学生通过解决最优化问题,培养严谨、细致的科学态度。
3. 学生能够从团队合作中学会相互尊重、沟通与协作,培养团队精神。
课程性质:本课程为数学学科的一节应用性课程,旨在让学生通过解决实际最优化问题,巩固数学知识,提高数学应用能力。
学生特点:学生处于高中年级,具有一定的数学基础和分析问题的能力,但对于最优化问题的理解尚浅。
教学要求:结合学生特点,课程要求注重理论与实践相结合,强调学生的动手操作能力和团队合作能力,培养解决实际问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际生活和工作中。
二、教学内容1. 最优化问题概念:介绍最优化问题的定义、分类(线性规划、非线性规划等)及其应用场景。
教材章节:第二章第二节《最优化问题的概念》2. 数学建模:通过实例讲解如何将实际问题抽象为数学模型,包括目标函数、约束条件等要素的确定。
教材章节:第二章第三节《数学建模》3. 求解方法:讲解线性规划问题的单纯形法、非线性规划问题的梯度下降法等求解方法。
教材章节:第二章第四节《最优化问题的求解方法》4. 数学软件应用:指导学生运用数学软件(如MATLAB、Lingo等)解决最优化问题。
教材章节:第二章第五节《数学软件在优化问题中的应用》5. 实践案例分析:分析实际案例,引导学生运用所学知识解决实际问题。
最优化方法修订版教学设计1. 课程介绍本门课程是一门关于最优化方法的高级研究课程。
在这门课程中,我们将介绍多种最优化方法,包括线性规划、非线性规划、整数规划以及动态规划等。
此外,我们还将介绍如何使用MATLAB等工具进行优化计算。
2. 课程目标学生将会学会如何:•定义并解决各种类型的最优化问题;•使用正交设计方法来优化实验设计;•研究求解算法的性质和收敛性,以及不同算法之间的比较和应用;•创新性地解决实际的最优化问题。
3. 课程大纲3.1 线性规划•基本概念和性质;•单纯形方法、对偶理论、内点法、网络流算法;•线性规划演示:生产计划、运输问题、资源分配。
3.2 非线性规划•基本概念和性质;•一阶和二阶优化方法:牛顿法、梯度下降法、共轭梯度法、拟牛顿法;•非线性规划演示:最小二乘法、函数逼近、信号滤波。
3.3 整数规划•基本概念和性质;•分支定界法、割平面法、分枝定界法;•整数规划演示:运输问题、费用流问题、生产调度。
3.4 动态规划•基本想法、最优子结构、重叠子问题;•递归法、记忆化搜索、状态转移法、动态规划矩阵;•动态规划演示:背包问题、图数据路径问题、股票交易问题。
4. 课程教学方法本门课程是一门研究生课程,采用课堂教学、互动讨论、自学实践和课程项目等教学方法。
在每堂课结束后,老师会布置相关练习和阅读材料,以帮助学生加深对于课堂内容的理解和掌握。
5. 课程评估方式•平时成绩(30%):包括课堂出席、课堂参与和作业完成情况。
•课程项目(40%):学生在课程项目中运用最优化方法解决实际问题。
•期末考试(30%):测试学生对于课堂内容的理解和运用能力。
6. 参考文献•朱学龙, 马玉林, 李轶等. 最优化方法[M]. 北京: 高等教育出版社, 2010.•王昌龙, 张礼钢. 最优化理论与算法[M]. 北京: 科学出版社, 2007.•Nocedal J, Wright S J. Numerical Optimization[M]. Springer, 2006.7. 意见和建议我们欢迎学生在语言、内容、教学方式以及评价方式等方面提出宝贵意见和建议。
最优化方法与最优控制课程设计一、设计背景随着现代科技的迅猛发展和社会竞争的加剧,各领域都需要越来越高效、精确、优化的设计方法和控制策略。
其中,最优化方法和最优控制技术是目前工程和科学领域中广泛应用的重要工具。
为了培养具有创新、实际和实践能力的工科人才,本次课程设计旨在通过对最优化方法和最优控制的讲解和实践,让学生更好地掌握和应用相关知识和技能。
二、设计目标通过本次课程设计,学生将会达到以下目标:1.掌握最优化方法和最优控制技术的基本理论和基本方法。
2.学会使用常见的数学建模软件,如Matlab等进行系统建模和仿真分析。
3.能够独立和团队完成一个小型的最优化或最优控制项目,提高实践能力和工程实践能力。
三、设计内容本次课程设计包含以下主要内容:1. 最优化方法最优化问题是在已知约束和目标函数的情况下,寻找能够使目标函数达到最大值或最小值的决策变量。
本部分主要包括以下内容:1.1. 常见最优化方法:线性规划、非线性规划、整数规划等。
1.2. 最优化算法:梯度下降法、共轭梯度法、拟牛顿法、遗传算法等。
1.3. 最优化软件:Matlab、Gurobi、CPLEX等。
2. 最优控制方法最优控制是指将控制问题描述为寻求使性能指标最优的动态过程。
本部分主要包括以下内容:2.1. 常见最优控制方法:最优控制基本原理、极小值原理与动态规划、Pontryagin最小值原理、最优控制的数值方法等。
2.2. 最优控制软件:Matlab、Simulink、LabVIEW等。
3. 课程设计环节选做题目:利用所学知识设计一个最优化或最优控制的小型项目,完成以下步骤:3.1. 对所选项目进行问题陈述和问题定义,明确项目的目标和指标。
3.2. 采用合适的数学建模方法,将该项目建立为数学模型。
3.3. 选择相应的最优化或最优控制方法,探究寻找最优解的过程。
3.4. 采用合适的软件工具,在计算机上进行仿真分析和可视化呈现。
3.5. 编写实验报告,总结和分析实验结果,分享并展示项目成果。
湖南****大学
课程设计
资料袋
理学院学院(系、部)2013-2014 学年第一学期课程名称最优化方法指导教师黄力职称讲师
学生姓名**** 专业班级数学与应用数学101班学号**********
学生姓名**** 专业班级数学与应用数学101班学号*********
学生姓名**** 专业班级数学与应用数学101班学号*********
题目最优化方法
成绩起止日期2013 年12 月16 日~2013 年12 月23 日
目录清单
湖南******大学
课程设计任务书
2013—2014 学年第1学期
理学院学院(系、部)数学与应用数学专业101 班课程名称:最优化方法
设计题目:求解各类最优化问题
完成期限:自2013 年12 月16 日至2013 年12月23 日共 1 周
指导教师(签字):年月日系(教研室)主任(签字):年月日
设计说明书
最优化方法
求解各类最优化问题
起止日期:2013 年12 月16 日至2013 年12 月23 日学生姓名*********
学生姓名*********
学生姓名*********
班级数学与应用数学101班
学号*********
学号*********
学号*********
成绩
指导教师(签字)
理学院
2013 年12 月23 日
目录
第1章课程设计目的和要求 (3)
1.1设计目的 (3)
1.2设计要求 (4)
第2章具体问题及解析 (3)
2.1铁板问题 (3)
2.2配棉问题 (5)
2.3连续投资问题 (7)
2.4销售问题 (8)
2.5整数规划模型 (8)
第3章课程设计心得与体会 (9)
参考文献 (9)
第一章设计目的和要求
1.1设计目的:
1、理解线性规划原理并能解决实际问题;
2、学会针对实际问题建立数学模型;
3、掌握用Matlab实现线性规划问题;
4、发现学习Matlab中的不足之处,加以改进。
1.2设计要求:
1、编写针对实际具体的问题建立数学模型,并编写求解程序;
2、能够处理调试程序中出现的问题,并总结经验;
3、将实验过程中出现的问题加以分析讨论,找出解决办法;
4、该实验两人一组,通过共同讨论来一起学习。
第二章具体问题及解析
2.1铁板问题
某工厂有一张边长为5m的正方形的铁板,欲制成一个方形无盖水槽,问在该铁板的四个角处剪去多大的相等的正方形才能使水槽的容积最大?
2.1.1建立数学模型:
设剪去的正方形的边长为X,则水槽的的容积为f(x).则有:
f(x)=(5-2x)^2*2,0<x<2.5
2.1.2用Matlab软件编辑,代码如下:
编写M文件fun2.m如下:
function f=fun1(x)
f=-(5-2*x).^2*x
主程序为:
[x,fval]=fminbnd('fun1',0,2.5);
xmax=x
fmax=-fval
2.1.3运行结果如下:
xmax = 0.8333
fmax = 9.2593
2.1.4结果分析:
即当x=0.8333m时,水槽容积最大,为9.2593m3
2.2配棉问题
一年纺纱能力为15000锭的小厂在采用最优化方法配棉前,某一种产品32D纯棉纱的棉花配比、质量指标及单价如表:
有关部门对32D纯棉纱规定的质量指标为棉结不多于70粒,品质指标不小于2900.问应该如何选择棉花配比,才能使混棉单价最少?
2.2.1建立数学模型:
设在新的最优化配比方案中,国棉131、国棉229、国棉327各自所占的配比为X1、X2、X3.则有
Min=8400X1+7500X2+6700X3
s.t
60x1+65x2+80x3≤70,
3800x1+3500x2+2500x3≥2900,x1+x2+x3=1.
2.2.2用Matlab软件编辑,代码如下:
f=[8400 7500 6700]';
A=[60 65 80;-3800 -3500 -2500];
b=[70 -2900]';
Aeq=[1 1 1];
beq=[1];
lb=[0 0 0]';
[x,fval]=linprog(f,A,b,Aeq,beq,lb,[])
2.2.
3.运行结果如下:
Optimization terminated. x = 0.0000 0.6667 0.3333 F val = 7.2333e+003 2.2.4.结果分析:
由上述结果可看出,即为国棉131、国棉229、国棉327各自所占的配比为0;0.6667;0.3333,混棉价:7233.3
2.3连续投资问题
部门在今后五年内考虑下列项目投资,已知:
1、项目A ,从第一年到第四年每年年初需要投资,并于次年末收回本利115%;
2、项目B ,第三年初需要投资,到第五年末能回收本利125%,但规定最大的投资额不超过4万元;
3、项目C ,第二年初需要投资,到第五年末能回收本利140%,但规定最大的投资额不能超过3万元;
4、项目D,五年内每年初可购买公债,于当年末还,并加利息6%。
该部门现有资金10万元,问应该如何确定这些项目的投资额,才能使得到第五年末拥有的资金本利总额最大?
2.3.1建立数学模型:
这是一个连续投资问题,与时间有关.但这里设法用线性规划方法,静态地处理.
设以xiA,xiB,xiC,xiD(i=1,2,…,5)分别表示第i 年年初给项目A ,B ,C ,D 的投资额,它们都是待定的未知变量.则可建立模型如下:
⎪⎪
⎪⎪⎪⎪⎪⎨
⎧≤=--=--+=--++=-++=++++=40000006.115.1006.115.1006.115.1006.110000006.14.125.115.1max 4353244213331222115224
x x x x x x x x x x x x x x x x x x x x x x x z D A D D A D A
D A D B
A D D C A
D A
D
C B A
2.3.2用lingo软件编辑,代码如下:
max =1.15*x4A+1.40*x2C+1.25*x3B+1.06*x5D;
x1A+x1D=100000;
x2A+x2C+x2D-1.06*x1D =0;
x3A+x3B+x3D-1.15*x1A-1.06*x2D =0;
x4A+x4D-1.15*x2A-1.06*x3D =0;
x5D-1.15*x3A-1.06*x4D=0;
x3B<= 40000;
x2C<= 30000;
2.3.3运行结果如下:
2.3.4 结果分析:
第一年:x1A=71698.11元,x1D=28301.89元;
第二年:x2A=0元,x2C=30000元,x2D=0元;
第三年:x3A=0元,x3B=40000元,x3D=42452.83元;
第四年:x4A=45000元,x4D=0元;
第五年: x5D=0元.
到第五年末该部门拥有资金总额为143,750元,即盈利43.75%.
2.4销售问题
某公司经营两种设备,第一种设备每件售价30元,第二种设备每件售价450元,根据统计,售出一件第一种设备所需的营业时间平均为0.5h,第二种设备是
2(20.25)
x h,其中
2
x 是第二种设备的销售数量,已知
该公司在这段时间内的总营业时间为800h,试确定使营业额最大的营业计划。
2.4.1 建立数学模型:
设第一种设备的销售数量为X1,第二种设备的销售数量X2,最大营业额为f(x).则有 Max f(x)=30X1+450X2 s.t
0.5X1+2X2+0.25X2^2<=800,
X1>=0, X2>=0.
2.4.2 用lingo 软件编辑,代码如下:
max=30*X1+450*X2;
0.5*X1+2*X2+0.25*X2^2<=800; X1>=0; X2>=0;
2.4.3 运行结果如下:
2.4.4 结果分析:
由上述运行结果可看出,当第一种设备的销售数量X1为1495,第二种设备的销售数量X2为11时,公司的最大营业额为49815元。
2.5整数规划模型
求解下面的线性整数规划模型的最优解
12
12
12
12
min4 ..28
26
,0,
z x x
s t x x
x x
x x
=+
+≤
+≥
≥且为整数
2.5.1 用lingo软件编辑,代码如下:
min=X1+4*X2;
2*X1+X2<=8;
X1+2*X2>=6;
X1>=0;
X2>=0;
2.5.2运行结果如下:
2.5.3 结果分析:由上述运行结果可看出,当X1为
3.333,X2为1.333时,可得到最优解8.666.
8。