eviews面板数据实例分析
- 格式:doc
- 大小:813.50 KB
- 文档页数:21
Eviews软件数据分析例文剖析Eviews是一款专业的计量经济学软件。
它主要用于统计分析、时间序列分析、质量控制和预测。
Eviews可以帮助用户在数据分析、建模和评估方面快速轻松地进行操作。
本文将通过一个Eviews软件数据分析例子来剖析其运用及分析过程,从中了解Eviews软件对数据的处理能力。
数据收集及预处理在进行数据收集过程中,一般需要查找数据来源,如数据文献、网站、政府公开数据等。
在分析过程中,需要对数据进行初步的处理和清理。
例如,排除数据中的错误或异常值、进行数据归一化处理等过程。
数据预处理可以通过查看数据摘要、图表及其他可视化方式来实现,如分布统计图、直方图、盒式图和散点图等。
这些过程有助于了解数据的基本情况和不同变量间的相互关系,为进一步的分析和建模做好准备。
数据分析过程在Eviews软件中,数据分析通常从对数据的概括性统计开始。
例如,可以对变量进行描述统计、相关性分析、因子分析、聚类分析和回归分析。
本例中,我们将通过描述统计和回归分析得出结论。
描述统计首先,我们需要将文本文件导入Eviews软件中。
我们需要对数据集进行初步的处理和清理,以确保数据集正确及完整。
接下来,我们可以用描述性统计方法来了解各个变量的基础情况和关系。
我们使用了常用的数据摘要技术,包括平均值、中位数、最大值/最小值、标准差和偏度/峰度等。
这些指标可以帮助我们了解数据的分布情况、集中趋势和散布程度等。
根据对文本数据集进行的描述统计分析,我们可以发现一些有趣的事实。
例如,一个变量的平均值超过了一年中的交易天数。
这可能反映了某种不寻常的分配模式。
通过这些发现,我们可以更好地将我们的分析重点放到市场交易策略中。
回归分析回归分析是Eviews软件中最常用的分析方法之一。
它可以帮助我们了解一个或多个自变量与一个因变量之间的关系。
通常,我们使用回归分析来进行预测和建模,预测未来的趋势和结果。
在本例中,我们使用了线性回归模型,以了解市场策略与现金市场利率之间的关系。
Eviews操作方法总结(一)——线性回归模型估计1.建立数据文件Eviews主菜单:File——New/Workfile弹出Workfile Range对话框,在Frequency选择区中选Undated or irregular(非时序数据),此时Range选择区中的Start date和End date自动变为Start observation和End observation,前者自动输入1,后者输入本次实验的样本个数。
点击OK,建立好一个工作文件:Workfile:UNTITLED.图1.1 工作文件窗口下一步是往这个工作文件中输入数据:Eviews主菜单:Quick——Empty Group打开一个空白表格数据窗口:Group:UNTITLED,窗口上部的Edit+/-是编辑开关键。
图1.2 数据窗口数据表的一行表示一个样本,一列代表一个变量,一般把被解释变量(如Y)放在第一列。
例子:图1.3 数据编辑状态2.画散点图Eviews主菜单:Quick——Graph/Scatter弹出Series List对话框,要求输入画图所用的变量名,对3.1以上版本,应先输入解释变量名,后输入被解释变量名,中间用空格隔开。
图1.4 作图变量输入窗口点OK,得散点图:图1.5 散点图3.OLS(普通最小二乘法)估计,以及线性回归模型的建立与检验Eviews主菜单:Quick——Estimate Equation弹出Equation Specification(方程设定)对话框,依次输入被解释变量Y,系数C(实际的方程中应该包括截距项和斜率项,而软件默认该变量的输出结果为截距项),解释变量X,中间用空格隔开。
在Estimation Setting(估计设定)选择框中,Method框选择LS-Least Squares(NLS and ARMA),Sample框默认为1 16(即样本个数)。
图1.6 方程设定窗口点OK,得方程的估计结果输出表:图1.7 估计结果输出表窗口对应的回归表达式:y i=−0.762928+0.40428x i(-0.624856)(12.11266)R2=0.91289, S.E.=2.036319 上式还可以从图1.7的V iew——Presentation得到:图1.8 回归方程窗口按Stats键可以还原回图1.7的估计结果输出表,按Estimate键可以随时改变估计模型的数学形式、样本范围和估计方法。
e v i e w s面板数据实例分析包会修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1.已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)和人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表9.1,9.2和9.3。
表9.1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据199719981999200020012002人均消费1996CONSUMEAH3607.433693.553777.413901.814232.984517.654736.52 CONSUMEBJ5729.526531.816970.837498.488493.498922.7210284.6 CONSUMEFJ4248.474935.955181.455266.695638.746015.116631.68 CONSUMEHB3424.354003.713834.434026.34348.474479.755069.28 CONSUMEHLJ3110.923213.423303.153481.743824.444192.364462.08 CONSUMEJL3037.323408.033449.743661.684020.874337.224973.88CONSUMEJS4057.54533.574889.435010.915323.185532.746042.6 CONSUMEJX2942.113199.613266.813482.333623.563894.514549.32 CONSUMELN3493.023719.913890.743989.934356.064654.425342.64 CONSUMENMG2767.843032.33105.743468.993927.754195.624859.88 CONSUMESD3770.994040.634143.964515.0550225252.415596.32 CONSUMESH6763.126819.946866.418247.698868.199336.110464 CONSUMESX3035.593228.713267.73492.983941.874123.014710.96 CONSUMETJ4679.615204.155471.015851.536121.046987.227191.96 CONSUMEZJ5764.276170.146217.936521.547020.227952.398713.08表9.2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996199719981999200020012002INCOMEAH4512.774599.274770.475064.65293.555668.86032.4 INCOMEBJ7332.017813.168471.989182.7610349.6911577.7812463.92 INCOMEFJ5172.936143.646485.636859.817432.268313.089189.36 INCOMEHB4442.814958.675084.645365.035661.165984.826679.68 INCOMEHLJ3768.314090.724268.54595.144912.885425.876100.56 INCOMEJL3805.534190.584206.644480.0148105340.466260.16 INCOMEJS5185.795765.26017.856538.26800.237375.18177.64 INCOMEJX3780.24071.324251.424720.585103.585506.026335.64 INCOMELN4207.234518.14617.244898.615357.795797.016524.52 INCOMENMG3431.813944.674353.024770.535129.055535.896051 INCOMESD4890.285190.795380.085808.966489.977101.087614.36 INCOMESH8178.488438.898773.110931.6411718.0112883.4613249.8INCOMESX3702.693989.924098.734342.614724.115391.056234.36 INCOMETJ5967.716608.397110.547649.838140.58958.79337.56 INCOMEZJ6955.797358.727836.768427.959279.1610464.6711715.6表9.3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996199719981999200020012002PAH109.9101.310097.8100.7100.599PBJ111.6105.3102.4100.6103.5103.198.2PFJ105.9101.799.799.1102.198.799.5PHB107.1103.598.498.199.7100.599PHLJ107.1104.4100.496.898.3100.899.3PJL107.2103.799.29898.6101.399.5(1)建立面板数据工作文件首先建立工作文件。
eviews面板数据实例分析(包会)-Eviews是一种流行的面板数据分析软件,广泛用于经济学及财务学领域。
本文将以一个面板数据实例为例,介绍Eviews的一些基本功能及应用。
数据说明本数据集为横截面面板数据,共包含11个国家(美国、加拿大、英国、法国、德国、意大利、荷兰、比利时、奥地利、瑞典、日本)在1970年至1986年间的年度数据。
变量说明如下:- gdpercap:人均GDP- invest:投资/GDP比率- consump:消费/GDP比率- inflation:通货膨胀率- popgrowth:人口增长率- literacy:成年人识字率- female:女性劳动力占比数据导入及面板设置首先,在Eviews中新建一个工作文件,并将数据导入。
打开数据文件后,我们可以看到数据已经被正确读入。
然后,我们需要将数据设为面板数据。
在Eviews中,选择“View”菜单下的“Structure of Workfile”选项,可以进入工作文件结构设置。
在弹出的窗口中,选择“Panel Data”选项,并按照数据的属性设置面板变量。
在本例中,我们选择“Country”作为单位维度,“Year”作为时间维度。
设置完成后,Eviews会自动进行面板数据检测。
检测结果显示,数据格式符合面板数据要求。
面板数据描述及汇总统计接下来,我们可以对数据进行初步的描述性统计和汇总统计。
选择“Quick”菜单下的“Descriptive Stats”选项,Eviews会自动生成数据的描述性统计报告,展示各变量在不同国家和不同年份的均值、标准差、最小值、最大值等基本信息。
我们也可以手动计算其他统计量。
例如,选择“Proc”菜单下的“Panel Data”选项,可以对选定的变量进行面板数据汇总统计。
下面是在Eviews中计算人均GDP和消费/GDP比率两个变量的面板均值统计结果:面板数据变量之间的相关性分析在分析面板数据时,我们通常需要考虑不同变量之间的相关性。
eviews案例分析作业Eviews案例分析作业。
本次作业将通过Eviews软件对某公司销售数据进行分析,以便更好地理解和运用Eviews软件进行实际数据分析。
首先,我们需要导入销售数据,并对数据进行初步的描述性统计分析。
在Eviews软件中,我们可以通过导入数据文件,选取所需变量,并进行描述性统计分析,包括均值、标准差、最大最小值等。
通过这些统计指标,我们可以对销售数据的整体情况有一个初步的了解。
接下来,我们可以利用Eviews软件进行时间序列分析。
通过Eviews的时间序列分析功能,我们可以对销售数据的趋势、季节性和周期性进行分析,从而更好地了解销售数据的变化规律。
同时,我们还可以利用Eviews软件进行相关性分析,找出销售数据与其他变量之间的相关关系,帮助我们更好地理解销售数据的影响因素。
除了时间序列分析,Eviews软件还可以进行回归分析。
通过回归分析,我们可以建立销售数据与其他变量之间的数学模型,从而预测销售数据的变化趋势。
在Eviews软件中,我们可以选择合适的回归模型,并进行参数估计和显著性检验,以确定最优的回归模型,从而更准确地预测销售数据的变化。
最后,我们可以利用Eviews软件进行模型诊断和检验。
在建立了销售数据的数学模型之后,我们需要对模型进行诊断和检验,以验证模型的有效性和稳定性。
通过Eviews软件的模型诊断功能,我们可以对模型的残差进行分析,检验模型的拟合优度,并对模型进行修正和改进,以提高模型的预测能力和解释能力。
通过以上对Eviews软件在销售数据分析中的应用,我们可以更好地理解和运用Eviews软件进行实际数据分析。
Eviews软件提供了丰富的数据分析功能,可以帮助我们更好地理解数据的规律和特点,从而更准确地预测和分析数据的变化。
希望本次作业对大家能够有所帮助,更好地掌握Eviews软件的数据分析技能。
eviews面板数据回归分析步骤2篇eviews 面板数据回归分析步骤eviews 是一款经济学数据分析软件,非常适合进行面板数据回归分析。
本文将介绍 eviews 的面板数据回归分析步骤,以及一些常见的面板数据回归模型。
步骤一:导入数据在 eviews 中导入数据非常简单。
首先,打开 eviews软件,然后单击菜单栏中的 File(文件)并选择 Open(打开)。
在弹出的对话框中选择要导入的数据文件,并选择“workfile”作为数据格式。
在下一步中,选择“Panel Data”选项并点击“Next”。
接下来,选择数据类型和变量。
最后,选择导入数据的时间和交叉板块。
单击“Finish”完成数据导入。
步骤二:定义面板数据对象在导入数据后,需要定义面板数据对象。
在 eviews 软件中,单击“Object”并选择“New Object”选项。
在下拉菜单中选择“Panel”并单击“OK”。
在弹出的对话框中,为面板数据对象取一个名称并单击“OK”。
步骤三:运行面板数据回归模型在 eviews 中运行面板数据回归模型非常简单。
首先,单击菜单栏中的“Quick”并单击“Estimate”选项。
在出现的对话框中,选择要运行的面板数据回归模型。
例如,选择Feasible GLS(可行广义最小二乘估计)或Fixed Effects(固定效应)模型。
在下一步中,选择要运行的变量并单击“OK”。
步骤四:绘制面板数据图形在运行面板数据回归模型后,可以绘制面板数据图形。
在 eviews 中,单击“View”并选择“Graphs”选项。
在下拉菜单中选择“Panel”并单击“OK”。
接下来,在出现的对话框中选择要绘制的图形类型,例如线性图或散点图。
单击“OK”完成绘图。
常见的面板数据回归模型1. 固定效应模型固定效应模型是一种常用的面板数据回归模型,用于捕捉不同个体之间固定效应的异质性。
该模型的最基本形式为:Y i,t = α i + βX i,t + ε i,t在该公式中,Y i,t 表示第 i 个个体在时间 t 的取值,α i 是第 i 个个体的固定效应,β 是回归系数,X i,t 是解释变量,ε i,t 是误差项。
Eviews6.0面板数据操作1.数据输入1.1创建工作文档如下图操作,在”work”文本框的“work type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止期间,”wf”输入工作文档的名称,点击”OK”即跳出新建的工作文档a界面。
1.2创建新对象操作如下图。
在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称。
创建成功后的界面如下面第3张图所示。
1.3输入数据双击”workfile”界面的,跳出”pool”界面,输入个体。
一般输入方式为如下:若上海输入_sh,北京输入_bj,…。
个体输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,注意变量后要加问号。
格式如下:y?x?。
点击”OK”后,跳出数据输入界面,如下面第4张图所示。
在这个界面上点击键,即可以输入或者从EXCEL处复制数据。
在输入数据后,记得保存数据。
保存操作如下:在跳出的“work”文本框选择“ok”即可,则自动保存到我的文档。
然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1。
若要保存到自己选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择自己要保存的路径以及命名文件名称。
1.4单位根检验一般回归前要检验面板数据是否存在单位根,以检验数据的平稳性,避免伪回归,或虚假回归,确保估计的有效性。
单位根检验时要分变量检验。
(补充:网上对面板数据的单位根检验和协整检验存在不同意见,一般认为时间区间较小的面板数据无需进行这两个检验。
)1.4.1生成数据组如下图操作。
点击”make group”后在跳出的”series list”里输入要单位根检验的变量,完成后就会跳出如下图3所示的组数据。
1、已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)与人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume)与人均收入(income)数据以及消费者价格指数(p)分别见表9、1,9、2与9、3。
表9、1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002CONSUMEAH 3607、43 3693、55 3777、41 3901、81 4232、98 4517、65 4736、52 CONSUMEBJ 5729、52 6531、81 6970、83 7498、48 8493、49 8922、72 10284、6 CONSUMEFJ 4248、47 4935、95 5181、45 5266、69 5638、74 6015、11 6631、68 CONSUMEHB 3424、35 4003、71 3834、43 4026、3 4348、47 4479、75 5069、28 CONSUMEHLJ 3110、92 3213、42 3303、15 3481、74 3824、44 4192、36 4462、08 CONSUMEJL 3037、32 3408、03 3449、74 3661、68 4020、87 4337、22 4973、88 CONSUMEJS 4057、5 4533、57 4889、43 5010、91 5323、18 5532、74 6042、6 CONSUMEJX 2942、11 3199、61 3266、81 3482、33 3623、56 3894、51 4549、32 CONSUMELN 3493、02 3719、91 3890、74 3989、93 4356、06 4654、42 5342、64 CONSUMENMG 2767、84 3032、3 3105、74 3468、99 3927、75 4195、62 4859、88 CONSUMESD 3770、99 4040、63 4143、96 4515、05 5022 5252、41 5596、32 CONSUMESH 6763、12 6819、94 6866、41 8247、69 8868、19 9336、1 10464 CONSUMESX 3035、59 3228、71 3267、7 3492、98 3941、87 4123、01 4710、96 CONSUMETJ 4679、61 5204、15 5471、01 5851、53 6121、04 6987、22 7191、96 CONSUMEZJ 5764、27 6170、14 6217、93 6521、54 7020、22 7952、39 8713、08 表9、2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002INCOMEAH 4512、77 4599、27 4770、47 5064、6 5293、55 5668、8 6032、4 INCOMEBJ 7332、01 7813、16 8471、98 9182、76 10349、69 11577、78 12463、92 INCOMEFJ 5172、93 6143、64 6485、63 6859、81 7432、26 8313、08 9189、36 INCOMEHB 4442、81 4958、67 5084、64 5365、03 5661、16 5984、82 6679、68 INCOMEHLJ 3768、31 4090、72 4268、5 4595、14 4912、88 5425、87 6100、56 INCOMEJL 3805、53 4190、58 4206、64 4480、01 4810 5340、46 6260、16 INCOMEJS 5185、79 5765、2 6017、85 6538、2 6800、23 7375、1 8177、64 INCOMEJX 3780、2 4071、32 4251、42 4720、58 5103、58 5506、02 6335、64 INCOMELN 4207、23 4518、1 4617、24 4898、61 5357、79 5797、01 6524、52 INCOMENMG 3431、81 3944、67 4353、02 4770、53 5129、05 5535、89 6051INCOMESD 4890、28 5190、79 5380、08 5808、96 6489、97 7101、08 7614、36 INCOMESH 8178、48 8438、89 8773、1 10931、64 11718、01 12883、46 13249、8 INCOMESX 3702、69 3989、92 4098、73 4342、61 4724、11 5391、05 6234、36 INCOMETJ 5967、71 6608、39 7110、54 7649、83 8140、5 8958、7 9337、56 INCOMEZJ 6955、79 7358、72 7836、76 8427、95 9279、16 10464、67 11715、6 表9、3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002PAH 109、9 101、3 100 97、8 100、7 100、5 99(1)建立面板数据工作文件 首先建立工作文件。
打开工作文件后,过程如下:建立面板数据库。
在窗口中输入15个不同省级地区的标识。
PBJ 111、6 105、3 102、4 100、6 103、5 103、1 98、2 PFJ 105、9 101、7 99、7 99、1 102、1 98、7 99、5 PHB 107、1 103、5 98、4 98、1 99、7 100、599PHLJ 107、1 104、4 100、4 96、8 98、3 100、8 99、3 PJL 107、2 103、7 99、2 9898、6 101、3 99、5PJS 109、3 101、7 99、4 98、7 100、1 100、8 99、2 PJX 108、410210198、6 100、3 99、5 100、1 PLN 107、9 103、1 99、3 98、699、910098、9PNMG 107、6 104、5 99、3 99、8 101、3 100、6 100、2 PSD 109、6 102、8 99、4 99、3 100、2 101、8 99、3 PSH 109、2 102、8 100101、5 102、5 100100、5 PSX 107、9 103、1 98、699、6 103、9 99、898、4 PTJ 109103、1 99、598、9 99、6 101、2 99、6PZJ107、9 102、8 99、798、810199、899、1(2)定义序列名并输入数据产生3*15个尚未输入数据的变量名。
这样可以通过键盘输入或黏贴的方法数据数据。
(3)估计、选择面板模型打开一个pool窗口,先输入变量后缀(所要使用的变量)。
点击Estimate,打开估计窗口。
A、混合模型的估计方法左边的Common表示相同系数,即表示不同个体有相同的斜率。
得到如下输出结果:相应的表达式就是:ˆ129.630.76it itCP IP =+ (2、0)(79、7)20.98,4824588r R SSE ==上式表示15个省级地区的城镇人均指出平均占收入的76%。
B 、个体固定效应回归模型的估计方法 将截距项选择区选Fixed effects(固定效应)得到如下输出结果:相应的表达式为:1215ˆ515.60.7036.3537.6...198.6it it CP IP D D D =+-+++ (6、3) (55) 20.99,2270386r R SSE ==其中虚拟变量1215,,...,D D D 的定义就是:1,1,2,...,150,i i i D =⎧=⎨⎩如果属于第个个体,其他15个省级地区的城镇人均指出平均占收入70%。
从上面的结果可以瞧出北京市居民的自发性消费明显高于其她地区。
接下来用F 统计量检验就是应该建立混合回归模型,还就是个体固定效应回归模型。
0H :i αα=。
模型中不同个体的截距相同(真实模型为混合回归模型)。
1H :模型中不同个体的截距项i α不同(真实模型为个体固定效应回归模型)。
F 统计量定义为:()/[(1)()]()/(1)/()/()r u r u u u SSE SSE NT k NT N k SSE SSE N F SSE NT N k SSE NT N k --------==----其中r SSE 表示约束模型,即混合估计模型的残差平方与,u SSE 表示非约束模型,即个体固定效应回归模型的残差平方与。
非约束模型比约束模型多了1N -个被估参数。
所以本例中:0.05(4824588227386)/(151)8.1(14,89) 1.82270386/(105151)F F --===--f所以推翻原假设,建立个体固定效应回归模型更合理。
C 、时点固定效应回归模型的估计方法 将时间选择为固定效应。
得到如下输出结果:相应的表达式为:127ˆ 2.60.78105.9134.1...93.9it it CP IP D D D =++++- (76、6) 20.987,4028843R SSE ==其中虚拟变量127,,...,D D D 的定义就是:1,0,t D ⎧=⎨⎩如果属于第t 个截面,t=1996,...,2002其他D 、个体随机效应回归模型估计截距项选择Random effects(个体随机效应)得到如下部分输出结果:相应的表达式就是:1215ˆ345.20.72 2.6367.0...106.1it it CP IP D D D =+-+++ (68、5) 20.98,2979246R SSE ==其中虚拟变量1215,,...,D D D 的定义就是:1,0,i D ⎧=⎨⎩如果属于第i 个个体,i=1,2,...,15其他 接下来利用Hausman 统计量检验应该建立个体随机效应回归模型还就是个体固定效应回归模型。