贴合原理及粘接技术
- 格式:ppt
- 大小:412.50 KB
- 文档页数:15
聚氨酯的粘接机理、粘接工艺及配方设计聚氨酯的粘接机理、粘接工艺及配方设计概述:A、金属、玻璃、陶瓷等的粘接金属、玻璃等物质表面张力很高,属于高能表面,在PU胶粘剂固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。
一般来说,胶粘剂中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。
含一NCO基团的胶粘剂对金属的粘接机理如下:金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),一NCO与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,一NCO 基团还能与金属水合物形成共价键等。
在无一NCO场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以TDI、MDI为基础的聚氨酯胶粘剂含苯环,具有冗电子体系,能与金属形成配价键。
金属表面成分较为复杂,与PU胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。
玻璃、石板、陶瓷等无机材料一般由Ah09、S02、CaO和Na20等成分构成,表面也含吸附水、羟基,粘接机理大致与金属相同oB、塑料、橡胶的粘接橡胶的粘接一般选用多异氰酸酯胶粘剂或橡胶类胶粘剂改性的多异氰酸酯胶粘剂,胶粘剂中所含的有机溶剂能使橡胶表面溶胀,多异氰酸酯胶粘剂分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢反应,形成共价键。
多异氰酸酯还会与潮气反应生成脲基或缩二脲,并且在加热固化时异氰酸酯会发生自聚,形成交联结构,与橡胶分子交联网络形成聚合物交联互穿网络(IPI),因而胶粘层具有良好的物理性能。
用普通的聚氨酯胶粘剂粘接橡胶时,由于各材料基团之间的化学及物理作用,也能产生良好的粘接。
PVC、PET、FRP等塑料表面的极性基团能与胶粘剂中的氨酯键、酯键、醚键等基团形成氢键,形成有一定粘接强度的接头。
有人认为玻纤增强塑料(FRP)中含一OH基团,其中表面的一OH与PU胶粘剂中的一NCO 反应形成化学粘接力。
零件加工中的粘接技术随着科技的不断发展,零件加工技术也在不断升级和改进。
其中,粘接技术作为一种常见的加工方式,已经在各行各业得到了广泛的应用。
粘接技术具有粘连接强度高、工艺简单、加工出的零件较为轻便等优势,因此在现代工业生产中越来越受到人们的青睐。
下面,本文将从薄膜粘接、液体粘接和固体粘接三个方面进行探讨,为大家介绍零件加工中的粘接技术。
一、薄膜粘接技术薄膜粘接技术是一种基于粘合剂涂覆在材料表面的一种粘接方法。
这种方法可以使得材料之间得到良好的连结,从而形成一个连续的整体。
在制造过程中,薄膜粘接技术可让生产过程更加简化,因为它弥补了其他几种加工方法无法实现的一些缺陷。
在使用薄膜粘接技术时,要注意以下几点:1. 薄膜粘接基础条件是清洁的表面。
因此,在进行薄膜粘接之前,需要预先对材料表面进行处理,以保证其表面光洁。
2. 使用适当的粘合剂加工。
在薄膜粘接过程中,粘合剂的选择是至关重要的。
理解清楚粘合剂的可塑性、粘度、固化时间和附着力等特性是必要的。
否则将会导致加工不良的后果。
3. 注意加工的环境气温。
适当的环境条件可以加快粘合剂的固化反应。
因此,最好在温暖的室内环境下进行薄膜粘接。
二、液体粘接技术液体粘接技术是用来连接两种不同材料的一个可靠方法。
在这个方法中,液体粘合剂使用一种化合物与材料表面进行反应,并渗透到合适的表面痕迹。
由于液体粘着的物质通常具有较高的触变性,它们能够适应最复杂的几何形状,同时为交接的端面提供优异的密封性,并且不会留下任何污染物痕迹。
在使用液体粘接技术时,要注意以下几点:1. 液体粘合剂的混合。
如果粘合剂混合不均匀,它们的质量和粘着效果将会受到影响。
因此,请按照制造商使用说明中的标准来混合液体粘合剂。
2. 液体粘着的环境条件。
液体粘接对气温、环境湿度和表面清洁度等都十分敏感。
因此,请确保在使用液体粘合剂时环境条件合适。
3. 注意粘合剂的选择。
不同的液体粘合剂对于不同的材料分离和绝缘材料的连接效果也不同。
粘接原理1、机械理论机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。
在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。
胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。
由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。
2、吸附理论吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。
粘接力的主要来源是分子间作用力包括氢键力和范德华力。
胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。
如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。
许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。
实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低,这就是环氧树脂胶粘剂对金属粘接极好的原因,而对于未经处理的聚合物,如聚乙烯、聚丙烯和氟塑料很难粘接。
通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。
在粘附力和内聚力中所包含的化学键有四种类型:1)离子键2)共价键3)金属键4)范德华力3、扩散理论扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。
当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。
热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。
4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。
当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。
5、弱边界层理论弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。
弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。
粘接原理1、机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。
在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。
胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。
由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。
2、吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。
粘接力的主要来源是分子间作用力包括氢键力和范德华力。
胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γSV=γSL+γLVcosθ。
γSV,γSL,γLV各代表了固气接触,固液接触和液气接触。
θ为0º表示完全浸润)。
如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。
许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。
实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γ氟塑料很难粘接。
通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。
在粘附力和内聚力中所包含的化学键有四种类型:1)离子键2)共价键3)金属键4)xx力3、扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。
当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。
热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。
4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。
当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。
5、弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。
弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。
胶粘技术的原理和应用视频一、胶粘技术的原理胶粘技术是一种通过粘合剂(胶水)将两个或多个材料粘合在一起的技术。
它在很多工业领域中都有广泛的应用,例如制造汽车、电子产品、纸制品等。
1. 胶粘剂的基本原理胶粘剂由聚合物、添加剂和溶剂组成。
其中,聚合物是胶粘剂的主要成分,通过与被粘合的材料表面相互作用,形成粘结力。
添加剂可调整胶粘剂的黏度、凝固时间等性能。
溶剂则起到调节胶粘剂流动性的作用。
2. 胶粘剂的黏附机理胶粘剂的黏附机理主要包括物理吸附和化学反应两种形式。
物理吸附是指粘接部位的分子之间的非共价键作用,例如范德华力和静电吸引力。
化学反应则是指粘接部位的分子之间发生化学键,形成化学结合力。
3. 胶粘剂的固化机制胶粘剂的固化机制是指胶粘剂在粘接过程中从流动到固体状态的过程。
胶粘剂的固化可以通过热固化、光固化、化学固化等方式实现。
热固化是指通过加热使胶粘剂发生化学反应,形成强度较高的粘结;光固化则是指通过紫外光、红外光等辐射源使胶粘剂固化。
二、胶粘技术的应用胶粘技术在许多行业中有广泛的应用。
以下是一些常见领域的胶粘技术应用:1.汽车制造:胶粘技术被广泛应用于汽车制造中。
例如,胶粘剂可以用于汽车车身的结构粘接,提高汽车的抗冲击能力和整体强度。
2.电子产品:胶粘技术在电子产品的制造过程中起到重要作用。
例如,在电路板的组装过程中,胶粘剂可用于固定电子元器件,并提供电气连接。
3.包装行业:胶粘技术在包装行业中起到粘接、密封的重要作用。
例如,在纸箱的制造过程中,胶粘剂可用于粘接纸板,提高包装的强度和稳定性。
4.建筑行业:胶粘技术在建筑行业中也有广泛的应用。
例如,在墙体装饰、地板安装等领域,胶粘剂可用于粘接瓷砖、石材等材料。
5.医疗行业:胶粘技术在医疗器械的制造和修复中起到重要作用。
例如,在手术中使用的绷带和敷料,胶粘剂可用于固定和密封伤口。
6.纺织行业:胶粘技术在纺织行业中有广泛的应用。
例如,在纺织品加工过程中,胶粘剂可用于纺织品的粘接、缝合等。
聚氨酯的粘接机理、粘接工艺及配方设计聚氨酯的粘接机理、粘接工艺及配方设计概述:A、金属、玻璃、陶瓷等的粘接金属、玻璃等物质表面张力很高,属于高能表面,在PU胶粘剂固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。
一般来说,胶粘剂中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。
含一NCO基团的胶粘剂对金属的粘接机理如下:金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),一NCO与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,一NCO 基团还能与金属水合物形成共价键等。
在无一NCO场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以TDI、MDI为基础的聚氨酯胶粘剂含苯环,具有冗电子体系,能与金属形成配价键。
金属表面成分较为复杂,与PU胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。
玻璃、石板、陶瓷等无机材料一般由Ah09、S02、CaO和Na20等成分构成,表面也含吸附水、羟基,粘接机理大致与金属相同oB、塑料、橡胶的粘接橡胶的粘接一般选用多异氰酸酯胶粘剂或橡胶类胶粘剂改性的多异氰酸酯胶粘剂,胶粘剂中所含的有机溶剂能使橡胶表面溶胀,多异氰酸酯胶粘剂分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢反应,形成共价键。
多异氰酸酯还会与潮气反应生成脲基或缩二脲,并且在加热固化时异氰酸酯会发生自聚,形成交联结构,与橡胶分子交联网络形成聚合物交联互穿网络(IPI),因而胶粘层具有良好的物理性能。
用普通的聚氨酯胶粘剂粘接橡胶时,由于各材料基团之间的化学及物理作用,也能产生良好的粘接。
PVC、PET、FRP等塑料表面的极性基团能与胶粘剂中的氨酯键、酯键、醚键等基团形成氢键,形成有一定粘接强度的接头。
有人认为玻纤增强塑料(FRP)中含一OH基团,其中表面的一OH与PU胶粘剂中的一NCO 反应形成化学粘接力。
粘接技术简介1、粘接机理用胶粘剂将物体连接起来的方法称为粘接。
显而易见,要达到良好的粘接,必须具备两个条件:胶粘剂要能很好地润湿被粘物表面;胶粘剂与被粘物之间要有较强的相互结合力,这种结合力的来源和本质就是粘接机理。
粘接的过程可分为两个阶段。
第一阶段,液态胶粘剂向被粘物表面扩散,逐渐润湿被粘物表面并渗入表面微孔中,取代并解吸被粘物表面吸附的气体,使被粘物表面间的点接触变为与胶粘剂之间的面接触。
施加压力和提高温度,有利于此过程的进行。
第二阶段,产生吸附作用形成次价键或主价键,胶粘剂本身经物理或化学的变化由液体变为固体,使粘接作用固定下来。
当然,这两个阶段是不能截然分开的。
至于胶粘剂与被粘物之间的结合力,大致有以下几种可能:(1)由于吸附以及相互扩散而形成的次价结合。
(2)由于化学吸附或表面化学反应而形成的化学键。
(3)配价键,例如金属原子与胶粘剂分子中的N、O等原子所生成的配价键。
(4)被粘物表面与胶粘剂由于带有异种电荷而产生的静电吸引力。
(5)由于胶粘剂分子渗进被粘物表面微孔中以及凸凹不平处而形成的机械啮合力。
不同情况下,这些力所占的相对比重不同,因而就产生了不同的粘接理论,如吸附理论、扩散理论、化学键理论及静电吸引理论等。
2、粘接工艺过程粘接工艺过程一般可分为初清洗、粘接接头机械加工、表面处理、上胶、固化及修整等步骤。
初清洗是将被粘物件表面的油污、锈迹、附着物等清洗掉,然后根据粘接接头的形式和形状对接头处进行机械加工,如表面机械处理,以形成适当的表面粗糙度等。
粘接的表面处理是粘接好坏的关键。
常用的表面处理方法有溶剂清洗、表面喷砂和打毛、化学处理等。
化学处理一般是用铬酸盐和硫酸溶液、碱溶液等,除去表面松疏的氧化物和其他污物,或使某些较活泼的金属“钝化”,以获得牢固的粘接层。
上胶厚度一般以0.05~0.15mm为宜。
固化时,应掌握适当的温度。
固化时施加压力,有利于粘接强度的提高。
3、粘接强度根据接头受力情况的不同(见下图),粘接强度可分为抗拉强度、抗剪强度、劈裂(扯裂)强度及剥离强度等。
oca光学胶贴合技术oca光学胶贴合技术是一种将光学材料和其他材料进行精确而稳定的粘合的方法。
在光学领域中,胶贴合技术被广泛应用于显示屏、摄像头、光学镜头等产品的制造中。
本文将从胶贴合技术的原理、应用领域以及优势等方面进行阐述。
oca光学胶贴合技术的原理是利用光学胶的特殊性质将两个或多个光学材料粘合在一起,形成一个整体结构。
光学胶具有高透明度、高粘接强度、低残留应力和优异的耐候性等特点,可以确保粘合后的材料在光学性能、机械性能和耐久性方面达到要求。
在应用领域方面,oca光学胶贴合技术广泛应用于显示屏制造中。
对于液晶显示屏,oca光学胶可以将液晶面板与触摸屏玻璃粘合在一起,实现触摸屏的高灵敏度和高透明度。
对于有机发光二极管(OLED)显示屏,oca光学胶可以将OLED面板与玻璃基板粘合在一起,提高显示效果和可靠性。
此外,oca光学胶贴合技术还广泛应用于摄像头模组、光学镜头等光学产品的制造中。
oca光学胶贴合技术相比传统的机械固定或其他胶粘合方法具有许多优势。
首先,光学胶具有良好的透明度,可以保证粘合区域的光学性能不受影响。
其次,oca光学胶具有高粘接强度,可以确保粘合后的材料在使用过程中不会出现脱胶或开裂等问题。
同时,oca 光学胶的低残留应力可以减少粘合区域的应力集中,提高粘合结构的稳定性和可靠性。
此外,oca光学胶还具有良好的耐候性,可以在不同环境条件下保持稳定的性能。
在实际应用中,oca光学胶贴合技术需要注意一些关键因素。
首先,选择合适的光学胶是保证贴合效果的关键。
不同的应用领域和需求可能需要不同类型的光学胶,如硅基光学胶、有机硅光学胶等。
其次,粘合的过程需要控制好温度、压力和时间等参数,以确保光学胶能够充分固化和粘合。
此外,需要注意材料的表面处理,以提高粘合区域的附着力和贴合质量。
oca光学胶贴合技术在光学领域中具有重要的应用价值。
通过精确而稳定的胶贴合过程,可以实现光学材料的粘合和集成,提高光学产品的性能和可靠性。
双面胶贴合方法-概述说明以及解释1.引言1.1 概述双面胶贴合方法是一种常见的粘接技术,它使用一种双面胶来将两个表面粘合在一起。
这种方法具有简单、方便、高效的特点,在许多领域都有广泛的应用。
无论是家庭DIY还是工业制造,双面胶贴合方法都可以提供有效的粘接解决方案。
在双面胶贴合方法中,关键的一步是选择合适的胶水。
不同的工作场景和物体材质需要选用不同类型的胶水,如有机溶剂型、水性型、热熔型、压敏型等。
选择一种适合的胶水可以提高粘接强度和持久性。
除了胶水选择外,表面处理也是确保双面胶贴合效果的重要环节。
在进行贴合之前,需要对待粘合的表面进行清洁和处理,以确保无尘、无油和干燥。
对于一些特殊材质或表面有破损的物体,需要进行特殊的处理,如研磨、去脏、去氧化等,以提高表面粘接性能。
双面胶贴合方法的应用前景非常广阔。
在家居装饰中,双面胶可以帮助固定墙壁装饰物、镜子、挂钩等,不仅美观整洁,而且不会破坏墙壁表面。
在汽车制造中,双面胶可以用于固定内饰件,如中控面板、仪表盘等。
在电子产品制造中,双面胶可以用于固定电路板、连接器等。
此外,双面胶还可以应用于玻璃、塑料、金属等各种材质的粘接,具有广泛的适用性。
综上所述,双面胶贴合方法通过选择合适的胶水和进行适当的表面处理,可以实现有效的粘接效果。
随着科技的不断进步,双面胶贴合方法在各行各业中的应用前景将更加广阔。
用户可以根据不同的需求选择不同类型的胶水和不同的贴合方法,以满足其粘接需求。
1.2 文章结构文章结构部分的内容应该包括以下几个方面:首先,介绍文章的整体结构安排,包括引言、正文和结论部分。
其次,说明引言部分的作用和意义,引言部分是文章的开篇之处,主要是为了引起读者的兴趣,鼓舞读者继续阅读下去。
同时,引言部分还要简要概述文章的主要内容,例如本文探讨的是双面胶的贴合方法。
接着,对正文部分进行说明,正文是文章的核心,包含了研究内容的详细介绍和论证。
正文可以根据具体内容划分为不同的小节,每个小节可以围绕不同的主题进行叙述。
聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。
粘接是不同材料界面间接触后相互作用的结果。
因此,界面层的作用是胶粘科学中研究的基本问题。
诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。
胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。
吸附理论人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。
理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。
胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。
胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。
第二阶段是吸附力的产生。
当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。
根据计算,由于范德华力的作用,当两个理想的平面相距为10Å时,它们之间的引力强度可达10-1000MPa;当距离为3-4Å时,可达100-1000MPa。
这个数值远远超过现代最好的结构胶黏剂所能达到的强度。
因此,有人认为只要当两个物体接触很好时,即胶黏剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。
可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。
计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。
胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。
铝箔贴合胶水的作用原理
铝箔贴合胶水是一种将铝箔与其他材料粘合在一起的粘接技术。
胶水在这个过程中起到了粘合材料的作用,使得铝箔与其他材料能够牢固地结合在一起。
作用原理如下:
1. 表面润湿:胶水的成分中包含有亲水性物质,可以使胶水在涂覆在铝箔表面时迅速展开并完全湿润铝箔表面的微小凸起部分,提高铝箔与胶水之间的接触面积。
2. 机械锚固:铝箔表面通常会经过特殊处理或者有微纳米级的凸起,胶水能够填充并牢固地固定在这些凸起上,形成锚固点。
这种机械锚固能够提供额外的粘结力和抗剪强度。
3. 化学粘合:胶水中的成分会与铝箔表面的一些化学物质相互作用,在表面形成化学键或吸附力,增加铝箔与胶水之间的粘结力。
常见的铝箔贴合胶水有对氯苯甲酸酯类、聚氨酯类等,它们可以与铝箔表面产生化学反应,加强粘合。
4. 柔韧性和粘合强度:胶水具有一定的柔韧性,可以在铝箔表面形成一层薄膜,使铝箔与其他材料之间形成均匀且持久的粘合结构。
总而言之,铝箔贴合胶水的作用原理是通过表面润湿、机械锚固、化学粘合和柔韧性等多种方式,使得铝箔与其他材料能够牢固地结合在一起。
这种技术在包装、建筑和电子等领域有广泛的应用。
粘接机理粘接⽅案粘接是⼀项⽐较复杂的技术,需要深⼊的学习。
⾸先对粘接的机理进⾏说明。
粘接就是指同质或异质物体表⾯⽤胶粘剂连接在⼀起的技术。
粘接⼒的产⽣包括胶粘剂与被粘物之间的物理作⽤、化学作⽤和机械作⽤。
物理作⽤指分⼦间⼒即范德华⼒、氢键⼒,它们⼴泛存在于粘接中。
化学作⽤指胶粘剂与被粘物之间的形成牢固的化学键结合,即离⼦键⼒、共价键⼒、⾦属键⼒、配位键⼒。
机械作⽤指由于被粘物表⾯存在⼤量细⼩的孔隙,胶粘剂分⼦由于扩散、渗透作⽤⽽进⼊被粘物内部,形成了机械的“钩键”、“锚键”,即所谓机械⼒。
粘合技术现在的理论主要有:机械理论、吸附理论、扩散理论、静电理论、弱边界理论、化学键理论等,每种理论都只能解释⼀部分,各个理论的定义为:1、机械理论:胶粘剂必须渗⼊被粘物表⾯的空隙内,并排除其界⾯上吸附的空⽓,才能产⽣粘接作⽤。
胶粘剂粘接表⾯打磨的⾻架效果要⽐表⾯光滑⾻架好,这是因为(1)机械镶嵌、(2)形成清洁表⾯、(3)⽣成反应性表⾯、(4)表⾯积增加。
常⽤的⾦属表⾯处理法有:物理机械法、化学处理法。
物理机械⽅法有①车削加⼯②喷砂③超声波处理④机械打磨;化学处理⽅法有①酸洗②碱洗③氧化还原④磷化处理。
2、吸附理论:粘接是由两材料间分⼦接触和界⾯⼒产⽣所引起的。
粘接⼒的主要来源是分⼦间作⽤⼒包括氢键⼒和范德华⼒。
胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表⾯,胶粘剂的表⾯张⼒应⼩于固体的临界表⾯张⼒,胶粘剂浸⼊固体表⾯的凹陷与空隙就形成良好润湿。
如果胶粘剂在表⾯的凹处被架空,便减少了胶粘剂与被粘物的实际接触⾯积,从⽽降低了接头的粘接强度。
通过润湿使胶粘剂与被粘物紧密接触,主要是靠分⼦间作⽤⼒产⽣永久的粘接。
在粘附⼒和内聚⼒中所包含的化学键有四种类型:离⼦键、共价键、⾦属键、范德华⼒。
3、扩散理论:粘接是通过胶粘剂与被粘物界⾯上分⼦扩散产⽣的。
当胶粘剂和被粘物都是具有能够运动的长链⼤分⼦聚合物时,扩散理论基本是适⽤的。