高中数学必背公式——立体几何与空间向量
- 格式:doc
- 大小:983.50 KB
- 文档页数:4
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
高中数学公式大全立体几何与空间向量高中数学公式大全:立体几何与空间向量一、立体几何立体几何是数学中研究三维空间中的几何图形及其性质的分支,对于高中生来说,常见的立体几何包括了体积、表面积等方面的内容。
下面是一些常用的立体几何公式:1. 立方体体积公式立方体是一种边长相等的六个正方形围成的立体。
其体积公式为:V = 边长³。
2. 正方体体积公式正方体是一种六个面都是正方形的立体。
其体积公式为:V = 底面积 ×高。
3. 长方体体积公式长方体是一种六个面都是矩形的立体。
其体积公式为:V = 长 ×宽×高。
4. 圆柱体积公式圆柱体是一种底面为圆形的立体。
其体积公式为:V = π × 半径² ×高。
5. 圆锥体积公式圆锥体是一种底面为圆形,顶点和底面中心连线垂直于底面的立体。
其体积公式为:V = 1/3 × π × 半径² ×高。
6. 球体积公式球体是一种所有点到球心的距离都相等的立体。
其体积公式为:V= 4/3 × π × 半径³。
7. 棱柱表面积公式棱柱是一种顶面和底面是平行的多边形,侧面是平行四边形的立体。
其表面积公式为:S = 底面积 + 侧面积。
8. 棱锥表面积公式棱锥是一种底面为多边形,侧面是由底面上的点和顶点连线形成的三角形的立体。
其表面积公式为:S = 底面积 + 侧面积。
二、空间向量空间向量是指具有大小和方向的箭头,可以表示空间中的位移、速度、加速度等物理量。
在高中数学中,空间向量常用于解决线性相关、平面垂直、平面平行等问题。
下面是一些常用的空间向量公式:1. 两点之间的距离公式设空间中的两点为A(x₁, y₁, z₁)和B(x₂, y₂, z₂),则两点之间的距离公式为:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。
2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。
3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。
(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。
(3)长方体外接球的直径是长方体的体对角线长222c b a ++。
1立体几何与空间向量求角:(1)异面直线所成的角:可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>r r=||||||a b a b ⋅=⋅r r r r (其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)。
(2)直线与平面所成的角:在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin ||||AB m AB m β⋅=(m为平面α的法向量).(3)二面角:方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. (m ,n为平面α,β 的法向量).求空间距离:(1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”;(2)两条异面直线的距离:||||AB n d n ⋅= (n同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: ||||AB n d n ⋅= (n为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。
△空间一点P 位于平面MAB 内的充要条件是存在有序实数对x.y,使 MP=xMA+yMB {MP MA MB 都表示向量} 或对空间任一定点O ,有OP=OM+xMA+yMB {OP,OM,MA,MB 表示向量}。
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a b a b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角但要注意两异面直线所成角与两向量的夹角在取值范围上的区别,再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 1线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.2线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥.3线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.4线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.5面面平行①证明两个平面的法向量平行即是共线向量; ②转化为线面平行、线线平行问题.6面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 1求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤ ⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.2求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.3求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.1点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.2点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a对应的有向线段的起点是A,终点是B,则向量a可以记为AB,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”. 4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关.6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +;3、空间平面的表达式空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y 使MP xMA yMB =+或对空间任一定点O,有或OP xOA yOB zOM =++其中1x y z ++=这几个式子是M,A,B,P 四点共面的充要条件.三、空间向量基本定理 1、定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组x 、y 、z,使p =xa yb +zc +2、注意以下问题1空间任意三个不共面的向量都可以作为空间向量的一个基底.2由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3一个基底是指一个向量组,一个基向量是指基底中的某一个向量,两者是相关联的不同概念.由空间向量的基本定理知,若三个向量a 、b 、c 不共面;那么所有空间向量所组成的集合就是{}|,,,p p xa yb zc x y z R =++∈,这个集合可看做是由向量a 、b 、c 生成的,所以我们把{},,a b c 称为空间的一个基底;a 、b 、c 叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底. 3、向量的坐标表示 1单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{},,i j k 表示.2空间直角坐标系在空间选定一点O 和一个单位正交基底{},,i j k 以点O 为原点,分别以i 、j 、k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.则建立了一个空间直角坐标系O -xyz,点O 叫原点,向量i 、j 、k 都叫坐标向量. 3空间向量的坐标给定一个空间直角坐标系和向量a ,且设i 、j 、k 为坐标向量,存在唯一有序数组x,y,z 使a xi y j zk =++,有序数组x,y,z 叫做a 在空间直角坐标系O -xyz 中的坐标,记为a =(),,x y z ;对坐标系中任一点A,对应一个向量OA ,则OA =a xi y j zk =++;在单位正交基底i 、j 、k 中与向量OA 对应的有序实数组x,y,z,叫做点A 在此空间直角坐标系中的坐标,记为Ax,y,z. 四、空间向量的运算 1、空间向量的加法三角形法则注意首尾相连、平行四边形法则, 加法的运算律:交换律 a b b a +=+ 结合律()()a b c a b c ++=++2、空间向量的减法及几何作法几何作法:在平面内任取一点O,作,OA a OB b ==,则BA a b =-,即从b 的终点指向a 的终点的向量,这就是向量减法的几何意义. 3、空间向量的数乘运算 1定义实数λ与a 的积是一个向量,记为a λ,它的模与方向规定如下: ①a aλλ=⋅② 当0λ>时,a λ与a 同向;当0λ<时,a λ与a 异向;当0λ=时.0a λ=注意:① 关于实数与空间向量的积a λ的理解:我们可以把a 的模扩大当λ>1时,也可以缩小λ< 1 时,同时,我们可以不改变向量a 的方向当0λ>时,也可以改变向量a 的方向当0λ<时; .② 注意实数与向量的积的特殊情况,当0λ=时,0a λ=;当0λ≠,若0a =时,有0a λ=;③ 注意实数与向量可以求积,但是不能进行加减运算.比如a λ+,a λ-无法运算; 2实数与空间向量的积满足的运算律 设λ、μ是实数,则有()()a aλμλμ= 结合律()a a a λμλμ+=+ 第一分配律()a b a bλλλ+=+ 第二分配律实数与向量的积也叫数乘向量.4、共线向量 1共线向量定义若表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量,也叫做平行向量;若a 与b 是共线向量,则记为a b a b b 0a b a b a =+OP OA ta a AB a=(),(1)OP OA t AB OP OA t OB OA t OA tOB=+∴=+-=-+12t =1122OP OA OB =+AB λ111OP OA OB λλλ=+++11112222(,,),(,,)P x y z P x y z 12PP =222z y x |OP |++=→→→→><b a b ,a 与为性质若→→b a 、是非零向量,→e 是与→b 方向相同的单位向量,θ是→→e a 与的夹角,则 1θcos |a |e a a e →→→→→=⋅=⋅ 20b a b a =⋅⇔⊥→→→→3若→→b a 与同向,则|b ||a |b a →→→→⋅=⋅; 若→→b a 与反向,则|b ||a |b a →→→→⋅-=⋅;特别地:→→→→→→⋅==⋅a a |a ||a |a a 2或4若θ为|b ||a |ba cosb a →→→→→→⋅⋅=θ的夹角,则、5|b ||a ||b a |→→→→≤⋅2. 运算律 1结合律)b a (b )a (→→→→⋅=⋅λλ 2交换律→→→→⋅=⋅a b b a3分配律→→→→→→→⋅+⋅=+⋅c a b a )c b (a不满足消去律和结合律即:典型例题例1. 已知P 是平面四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心;求证:E 、F 、G 、H 四点共面; 证明:分别延长PE 、PF 、PG 、PH 交对边于M 、N 、Q 、R ∵E 、F 、G 、H 分别是所在三角形的重心∴M 、N 、Q 、R 为所在边的中点,顺次连结MNQR 所得四边形为平行四边形,且有 ∵MNQR 为平行四边形,则∴由共面向量定理得E 、F 、G 、H 四点共面;例2. 如图所示,在平行六面体'D 'C 'B 'A ABCD -中,→=→a AB ,→=→b AD ,→=→c AA ,P 是CA'的中点,M 是CD'的中点,N 是C'D'的中点,点Q 是CA'上的点,且CQ :QA'=4:1,用基底}c b a {→→→,,表示以下向量: 1→AP ;2→AM ;3→AN ;4→AQ ;解:连结AC 、AD'1)c b a (21)'AA AD AB (21)'AA AC (21AP →+→+→=→+→+→=→+→=→;2→+→+→=→+→+→=→+→=→c21b a 21)'AA AD 2AB (21)AD AC (21AM ;3)'AD AC (21AN →+→=→4)AC 'AA (54AC CQ AC AQ →-→+→=→+→=→点评:本例是空间向量基本定理的推论的应用.此推论意在用分解定理确定点的位置,它对于以后用向量方法解几何问题很有用,选定空间不共面的三个向量作基向量.并用它们表示出指定的向量,是用向量解决几何问题的一项基本功.例3. 已知空间四边形OABC 中,∠AOB=∠BOC=∠AOC,且OA=OB=OC;M 、N 分别是OA 、BC 的中点,G 是MN 的中点;求证:OG ⊥BC;证明:连结ON,设∠AOB=∠BOC=∠AOC=θ又设→=→a OA ,→=→b OB ,→=→c OC ,则|c ||b ||a |→=→=→;又)ON OM (21OG →+→=→∴)b c ()c b a (41BC OG →-→⋅→+→+→=→⋅→∴OG ⊥BC例4. 已知空间三点A0,2,3,B -2,1,6,C1,-1,5; 1求以→→AC AB 和为邻边的平行四边形面积;2若3|a |=→,且→→→AC AB a 、分别与垂直,求向量→a 的坐标;解:1由题中条件可知∴23AC AB sin >=→→<, ∴以→→AC AB 、为邻边的平行四边形面积:2设),,(z y x a =→由题意得解得⎪⎩⎪⎨⎧-=-=-=⎪⎩⎪⎨⎧===1z 1y 1x 1z 1y 1x 或∴),,=()或,,(111a 111a ---→=→第二讲 直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用 1、直线的方向向量直线的方向向量就是指和这条直线所对应向量平行或共线的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用利用直线的方向向量,可以确定空间中的直线和平面.1若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P,一定存在实数t,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.2空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对x ,y ,使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的. 三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用 1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1⇔1u 2u ⇔1u 2u 1v 2v ⇔1v 2v ⇔1v 2v u v ⇔u v ⇔u v (,,)n x y z =111222(,,),(,,)a a b c b a b c ==00n a n b ⎧⋅=⎪⎨⋅=⎪⎩a b a b ()a kbk R =∈a αn //l α⊥a n 0⋅=a n2根据线面平行的判定定理:“如果直线平面外与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.3根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可. 3、面面平行1由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2若能求出平面α、β的法向量u 、v ,则要证明αu v a b a b 0a b ⋅=a u a u ////,//a a b b /a /b02πθ<≤a b ϕcos |cos |a b a bθϕ⋅==⋅02πθ≤≤a u a u ϕsin |cos |cos sin a u a uθϕθϕ⋅===⋅或[0,]πl αβ--AB CD 1n 2n l αβ--1n 2n BO BA =cos cos BA BO ABOABO BO⋅⋅∠∠=nAB n BO n⋅=n n n=0d AB n =⋅nCD n d AB n⋅==设→→b a 、分别是直线l 1、l 2的方向向量,根据下列条件判断l 1与l 2的位置关系; 1→a =2,3,-1,→b =-6,-9,3; 2→a =5,0,2,→b =0,4,0;3→a =-2,1,4,→b =6,3,3解:1∵),,(132a -=→,→b =-6,-9,3∴→→-=b31a ,∴→→b //a ,∴l 1→a →b 0b a =⋅→→→→⊥b a =→a →b →→b a 与设→→v u 、分别是平面α、β的法向量,根据下列条件判断α、β的位置关系:1→u =1,-1,2,→v =3,2,21-;2→u =0,3,0,→v =0,-5,0;3→u =2,-3,4,→v =4,-2,1;解:1∵→u =1,-1,2,→v =3,2,21-∴0v u =⋅→→ →→⊥∴v u∴α⊥β2∵→u =0,3,0,→v =0,-5,0∴βα//v//u v53u ∴∴-=→→→→3∵→u =2,-3,4,→v =4,-2,1∴→→v u 与既不共线、也不垂直,∴α与β相交点评:应熟练掌握利用向量共线、垂直的条件;例3. 已知点A3,0,0,B0,4,0,C0,0,5,求平面ABC 的一个单位法向量; 解:由于A3,0,0,B0,4,0,C0,0,5,∴→AB =-3,4,0,→AC =-3,0,5设平面ABC 的法向量为→n x,y,z则有0AC n 0AB n =→⋅→=→⋅→且即⎩⎨⎧=+-=+-0z 5x 30y 4x 3 取z=1,得35x =,45y =于是→n =14535,,,又12769|n |=→∴平面α的单位法向量是)769127691576920(n ,,=→例4. 若直线l 的方向向量是→a =1,2,2,平面α的法向量是→n =-1,3,0,试求直线l 与平面α所成角的余弦值;分析:如图所示,直线l 与平面α所成的角就是直线l 与它在平面内的射影所成的角,即∠ABO,而在Rt △ABO 中,∠ABO=-2π∠BAO,又∠BAO 可以看作是直线l 与平面α的垂线所成的锐角,这样∠BAO 就与直线l 的方向向量a 与平面α的法向量n 的夹角建立了联系,故可借助向量的运算求出∠BAO,从而求出∠ABO,得到直线与平面所成的角; 解:∵→a =1,2,2,,→n =-1,3,0∴3|a |=→,10|n |=→,5n a =⋅→→∴610|n ||a |na n ,a cos =⋅⋅>=<→→→→→→若设直线l 与平面α所成的角是θ则有><=→→n ,a sin cos θ∵610n ,a cos >=<→→ ∴626n ,a sin >=<→→因此626cos =θ,即直线l 与平面α所成角的余弦值等于626;例5. 如图a 所示,在正方体1111D C B A ABCD -中,M 、N 分别是C C 1、11C B 的中点;求证:1MN BD A 1C D B //BD A 111平面1DD 21211A →MN 2121BD A 1→n 0DB n 0DA n 1=⋅=⋅→→→→且⎩⎨⎧=+=+0y x 0z x 1y -=1z -=→∴n →→⋅n MN 2121→⊥→n MN BDA 1→=→-→=→-→=→-→=→111111111DA 21)D D A D (21C C 21B C 21M C N C MN →→1DA //MN BD A //MN 1平面→-→=→M C N C MN 11→-→=D D 21A D 21111→→→DB DA MN 1与可用→→→DB DA MN 1、与→MN BD A 1→n →m→→n //m 如图,在正方体1111D C B A ABCD -中,O 为AC 与BD 的交点,G 为CC 1的中点;求证:A 1O ⊥平面GBD;证明:设→=→→=→→=→c A A b D A a B A 11111,,,则 而)b a (21c )AD AB (21A A AO A A O A 111→+→+→=→+→+→=→+→=→∴)a b ()b 21a 21c (BD O A 1→-→⋅→+→+→=→⋅→同理0OG O A 1=→⋅→∴BD O A 1⊥,OG O A 1⊥又O OG BD = ,∴⊥O A 1面GBD; 例7. 2004年天津如图a 所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD,PD=DC,E 是PC 的中点;1证明:PA 2a 2a 2a 2a →PA →EG 2a 2a -→=→EG 2PA ⊂⊄2a →FE 2a →FB 2a →DC 0FB FE =→⋅→0DC FE =→⋅→55a 252a |FB ||FE |==→→=55正方体1111D C B A ABCD -中,E 、F 分别是11D A 、11C A 的中点,求:1异面直线AE 与CF 所成角的余弦值;2二面角C —AE —F 的余弦值的大小; 解:不妨设正方体棱长为2,分别取DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A2,0,0,C0,2,0,E1,0,2,F1,1,21由→AE =-1,0,2,→CF =1,-1,2,得5|AE |=→,6|CF |=→∴→⋅→CF AE =-1+0+4=3 又>→→<>=→→<⋅→⋅→=→⋅→CF ,AE cos 30CF ,AE cos |CF ||AE |CF AE∴1030CF ,AE cos >=→→<,∴所求值为10302∵→EF =0,1,0 ∴→⋅→EF AE =-1,0,2·0,1,0=0∴AE ⊥EF,过C 作CM ⊥AE 于M则二面角C —AE —F 的大小等于>→→<MC ,EF∵M 在AE 上,∴→=→AE m AM 设则→AM =-m,0,2m,→-→=→AM AC MC =-2,2,0--m,0,2m=m -2,2,-2m∵MC ⊥AE ∴→⋅→AE MC =m -2,2,-2m ·-1,0,2=0∴52m =,∴)54,2,58(MC --=→,556|MC |=→ ∴→⋅→MC EF =0,1,0·58-,2,54-=0+2+0=2又>→→<>=→→<⋅→⋅→=→⋅→MC ,EF cos 556MC ,EF cos |MC ||EF |MC EF∴35MC ,EF cos >=→→< ∴二面角C —AE —F 的余弦值的大小为35例9. 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,H 是EF 与AC 的交点,CG ⊥面ABCD,且CG=2;求BD 到面EFG 的距离;分析:因BD//平面EFG,故O 到面EFG 与BD 到面EFG 距离相等,证明OM 垂直于面EFG 即可;解:如图所示,分别以CD 、CB 、CG 所在直线为x 、y 、z 轴建立空间直角坐标系; 易证BD//面EFG,设BD AC =O,EF ⊥面CGH,O 到面EFG 的距离等于BD 到面EFG 的距离,过O 作OM ⊥HG 于M,易证OM ⊥面EFG,可知OM 为所求距离;另易知H3,3,0,G0,0,2,O2,2,0;设→=→GH GM λ,→GH =3,3,-2则)22,23,23()2,2,2()2,3,3(GO GM OM +---=---=→-→=→λλλλ 又0GH OM =→⋅→,∴0)22(2)23(3)23(3=---+-λλλ∴118=λ,∴)116,112,112(OM =→ ∴11112)116()112(2|OM |22=+⨯=→即BD 到平面EFG 的距离等于11112励志故事习惯父子俩住山上,每天都要赶牛车下山卖柴;老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦”有一次父亲因病没有下山,儿子一人驾车;到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动;到底是怎么回事 儿子百思不得其解;最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦”牛应声而动;牛用条件反射的方式活着,而人则以习惯生活;一个成功的人晓得如何培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生;。
高中数学必背公式——立体几何与空间向量
知识点复习:
1.空间几何体的三视图“长对正、高平齐、宽相等”的规律。
2.在计算空间几何体体积时注意割补法的应用。
3.空间平行与垂直关系的关系的证明要注意转化: 线线平行
线面平行
面面平行,线线垂直
线面垂直
面面垂直。
4.求角:(1)异面直线所成的角:
可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>=
1212122
222
2
2
1
1
1
222
||||||
a b a b x y z x y z ⋅=
⋅++⋅++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。
(2)直线与平面所成的角:
在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin ||||
AB m AB m β⋅=
(m 为平面α的法向量). (3)二面角:
方法一:常见的方法有三垂线定理法和垂面法;
方法二:向量法:二面角l αβ--的平面角cos ||||
m n arc m n θ⋅=或cos ||||m n
arc m n π⋅-
(m ,n 为平面α,β 的法向量). 5. 求空间距离:
(1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:||
||
AB n d n ⋅=
(n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: ||
||
AB n d n ⋅=
(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。
题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,
其三视图如右,若图中圆的半径为1,等腰三角形的腰 长为5,则该几何体的体积是( ) A.
43π B.2π C.83
π D.103π
例2:某几何体的三视图如右图所示,则该几何体的表面积
为()
A.180
B.200
C.220
D.240
例3:右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )
A .10π
B .11π
C .12π
D .π13 题型二:空间点、线、面位置关系的判断
例4:已知m 、n 是不重合的直线,α和β是不重合的平面,有下列命题:
(1)若α⊂m ,n ∥α,则m ∥n ;(2)若m ∥α,m ∥β,则α∥β; (3)若n =⋂βα,m ∥n ,则m ∥α且m ∥β; (4)若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是( ) A .0 B .1C .2 D .3 例5:给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行; ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行; ④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直; 其中真命题的个数是().
A .4
B .3
C .2
D .1 例6:给出下列命题
①过平面外一点有且仅有一个平面与已知平面垂直;②过直线外一点有且仅有一个平面与已知直线平行;③过直线外一点有且仅有一条直线与已知直线垂直;④过平面外一点有且仅有一条直线与已知平面垂直; 其中正确命题的个数为( ).
俯视图
正(主)视图 侧(左)视图
2 3
2 2
A .0个
B .1个
C .2个
D .3个 ☆题型三:空间线面位置关系的证明和角的计算
例7:空间四边形ABCD 中,CD AB =且成0
60的角,点M 、N 分别为BC 、AD 的中点,求异面直线AB 和MN 成的角.
例8:已知三棱锥ABC P -中,⊥PA 平面ABC ,AC AB ⊥,AB AC PA 2
1
=
=, N 为AB 上一点,AN AB 4=,M ,S 分别为PB ,BC 的中点.
(1)证明:SN CM ⊥;(2)求SN 与平面CMN 所成角的大小. 例9:如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD . 底面ABCD 为梯形,//AB DC ,AB BC ⊥.PA AB BC ==, 点E 在棱PB 上,且2PE EB =. (1)求证:平面PAB ⊥平面PCB ; (2)求证:PD ∥平面EAC ;
(3)求平面AEC 和平面PBC 所成锐二面角的余弦值.
例10:已知四棱锥ABCD P -的底面为直角梯形,DC AB //,⊥=∠PA DAB ,90
底面ABCD , 且12
1
==
==AB DC AD PA ,M 是PB 的中点。
(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角余弦值;
(3)求面AMC 与面BMC 所成二面角的余弦值。
题型四:空间距离的计算
例11:点M 是线段AB 的中点,若A 、B 到平面α的距离分别为cm 4和cm 6,则点M 到平面α的距离为.
例12:如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离;
例13:如图,在长方体1111D C B A ABCD -中,5=AB ,2=BC ,
221=AA ,E 在AD 上,且1=AE ,F 在AB 上,且3=AF ,
(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。
例14:如图,正方形ABCD 与ABEF 成︒60的二面角,且正方形的边长为a ,M 、N 分别为BD ,EF 的中点,求异面直线BD 与EF 的距离。
例15:如图,四棱锥P-ABCD 的底面是正方形,,PA ABCD ⊥底面
33PA AB a ==,求异面直线AB 与PC 的距离。
例16:已知1111D C B A ABCD -是底面边长为1的正四棱柱,1O 为11C A 与11D B 的交点.
(1)设1AB 与底面1111D C B A 所成角的大小为α,二面角
111A D B A --的大小为β.
求证:αβtan 2tan =
;
(2)若点C 到平面11D AB 的距离为
3
4
,求正四棱柱1111D C B A ABCD -的高.。