第三章单烯烃
- 格式:ppt
- 大小:1.79 MB
- 文档页数:74
第三章单烯烃烯烃——含 C=C 双键的烃类,C=C 是其官能团。
单烯烃——只含一个C=C 双键的烯烃,简称烯烃。
单烯烃的通式——C n H2n第一节烯烃的结构以烯烃同系列中的第一个成员乙烯为例说明之。
乙烯的分子式:C2H4构造式:CH2=CH2实验表明:①键能C=C≠ 2 C-C②分子中6个原子处于同一平面③C=C键长1.34 Å<C-C键长1.54 Å,=C-H键长1.079 Å也<烷烃C-H键长1.094 Å。
乙烯的形成:对于这些事实,杂化轨道理论认为,乙烯的每个C 原子成键时,以另一种杂化方式形成杂化轨道,由一个S 轨道与两个p 轨道杂化:这样就形成三个能量均等的SP2杂化轨道,留下一个P轨道,SP2杂化轨道与SP3杂化轨道极为相似:由于S成份较多,故SP2轨道显得比SP3轨道短。
三个SP2轨道的伸展方向:乙烯分子中σ键的形成:各个C的P轨道通过侧面重迭形成另一个共价键—π键:π键的特点:①不能单独存在②重迭程度小,不如σ键牢固③π电子云离核较远,受核束缚力小,流动性,大,易极化(即易变形)④没有对称轴,不能旋转C=C为什么较短?C=C 间电子云密度较大,使两个核更靠近,另一原因是SP2轨道没有SP3轨道那么伸展。
MO理论对烯烃π键的说明:第二节同分异构现象及命名一、同分异构由于烯烃含有C=C双键,它们的同分异构现象比烷烃复杂,因此同分异构体的数目比相应烷烃的多。
下面以丁烯为例说明了之。
丁烯有4个异构体(丁烷才有2个)。
互为顺反异构体的2个化合物,它们的物理性质必然不同,有时化学性质也有差异,一般来说是反式的较稳定,顺式的比反式的稳定的例子甚少。
二、烯烃的系统命名法1. 选主链选含C=C的最长C链作主链,称为“某烯”,超过10个C要称“××碳烯”。
2.给主链编号从最靠近C=C的一端开始。
3.标示双键的位置双键在链端也应标示。
在不至于引起误会的情况下,双键的位次可省略:烯基的系统命名:几个常见烯基的名称:顺、反异构体的命名:ⅰ.用“顺、反”标明构型顺——指相同或相似基团处于同侧反——指相同或相似基团处于反侧ⅱ.用“Z、E”标明构型Z——同侧之意,二个在次序规则中较前的基团处于同侧。
第三章 单烯烃 (P 79-81)1.写出戊烯的所有开链烯异构体的构造式,用系统命名法命名之,如有顺反异构体则写出构型式,并标以Z 、E 。
2-甲基-2-丁烯2-methylbut-2-ene2.命名下列化合物,如有顺反异构体则写出构型式,并标以Z 、E 。
(1) 2,4-二甲基-2-庚烯; (2) 5,5-二甲基-3-乙基-1-己烯; (3) 3-甲基-2-戊烯 (存在Z,E 两种构型); (4) 4-甲基-2-乙基-1-戊烯; (5) (Z)-3,4-二甲基-3-庚烯; (6) (E)-3,3,4,7-四甲基-4-辛烯. 3.写出下列化合物的构造式(键线式)。
(1) 2,3-dimethyl-1-pentene; (2) cis-3,5-dimethyl-2-heptene(3) (E)-4-ethyl-3-methyl-2-hexene (4) 3,3,4-trichloro-1-pentene4.写出下列化合物的构造式。
(1) (E)-3,4-二甲基-2-戊烯(2) 2,3-二甲基-1-己烯(3) 反-4,4-二甲基-2-戊烯(4) (Z)-3-甲基-4-异丙基-3-庚烯(5) 2,2,4,6-四甲基-5-乙基-3-庚烯5.对下列错误的命名给予更正:(1) 2-甲基-3-丁烯应改为:3-甲基-1-丁烯(2) 2,2-甲基-4-庚烯应改为:6,6-二甲基-3-庚烯(3) 1-溴-1-氯-2-甲基-1-丁烯应改为:2-甲基-1-氯-1-溴-1-丁烯(4) 3-乙烯基-戊烷应改为:3-乙基-1-戊烯6.完成下列反应式。
(1)(2)注意:[CH3-CH=CH-C.-(CH3)2 CH3-CH.-CH=C-(CH3)2]共振极限式关系,所以有两种产物。
(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)7.写出下列各烯烃的臭氧化还原水解产物。
(1)(2)(3)8.裂化汽油中含有少量烯烃,用什么方法能除去烯烃?答:裂化汽油的主要成份是分子量不一的饱和烷烃,除去少量烯烃的方法有:a.用催化加氢方法;b.用KMnO4洗涤的办法;c.用浓H2SO4洗涤。
第三章单烯烃一、 基本内容1.单烯烃的定义和结构单烯烃指分子中含有一个碳碳双键的不饱和烃,碳碳双键是烯烃的官能团,称为烯键。
烯键是由一个碳碳σ单键和一个碳碳π键组成,具有刚性,不能绕碳碳双键自由旋转。
2.烯烃的同分异构现象烯烃的异构现象包括碳干异构;双键位置不同引起的官能团位置异构;由于双键两侧的基团在空间位置不同引起的顺反异构。
所以相同碳数的烯烃的异构体数目比相应的烷烃较多。
3.烯烃的化学性质碳碳双键是反映烯烃化学性质的官能团。
烯烃的化学性质比烷烃活泼,可以与许多试剂反应。
主要的反应有:亲电加成,催化氢化,氧化反应和聚合反应。
亲电加成包括与酸、卤素和硼烷等的加成;氧化反应包括用KMnO 4或OsO 4等作氧化剂的氧化,臭氧化反应;聚合反应主要是发生加聚反应,生成高分子化合物;催化氢化系烯烃在催化剂存在下,与H 2加成,生成烷烃的反应。
4.烯烃的制备可通过卤代烃脱HX 和醇脱H 2O 等方法制得;也可通过炔烃还原制得。
5.烯烃中氢的分类:可分为烯丙氢和烯氢。
其中,烯丙氢指在C=C 双键邻位碳原子上的氢,也叫α-H ;烯氢指与C=C 双键直接相连的氢原子,它们在发生自由基取代时的活性顺序为: 烯丙氢> 烯氢6.烯烃亲电加成历程和马氏规则。
烯烃亲电加成反应一般分两步进行:第一步,烯烃接受亲电试剂的进攻生成正离子中间体;第二步,正离子与亲核物种结合。
有的反应在第一步生成的正离子为结构特殊的三元环状正离子(鎓离子),如Br 2与烯烃加成生成溴鎓正离子;第二步,Br -从背后进攻,生成反式加成产物。
卤化氢等极性试剂与不对称烯的离子型加成反应,氢原子加在含氢较多的双键碳原子上,卤素、其它亲核性原子或基团加在含氢较少的双键碳原子上。
这种取向称为马尔科夫尼科夫规则,简称马氏规则。
马氏规则是一种经验规则,应在具体的反应中作具体分析。
C C ()二、难点与重点评述本章重点是烯烃的结构,π键的特征,烯烃的化学性质及应用,亲电加成反应的历程,马式规则的应用。
第三章 单 烯 烃学习要求:1.掌握sp 2杂化的特点,形成π键的条件以及π键的特性。
2.握烯烃的命名方法,了解次序规则的要点及Z / E 命名法。
3.掌握烯烃的重要反应(加成反应、氧化反应、α-H 的反应)。
4.掌握烯烃的亲电加成反应历程,马氏规则和过氧化物效应。
分子内含有碳碳双键(C=C )的烃,称为烯烃(有单烯烃,二烯烃,多烯烃),本章讨论单烯烃,通式为 C n H 2n 。
§ 3—1 烯烃的结构最简单的烯烃是乙烯,我们以乙烯为例来讨论烯烃双键的结构。
一、 双键的结构键能 610KJ / molC —C 346KJ / mol由键能看出碳碳双键的键能不是碳碳单键的两倍,说明碳碳双键不是由两个碳碳单键构成的。
事实说明碳碳双键是由一个键和一个键构成的。
双键( C=C) = σ键 + π键现代物理方法证明:乙烯分之的所有原子在同一平面上,其结构如下:二、 sp 2杂化为什么双键碳相连的原子都在同一平面双键又是怎样形成的呢杂化轨道理论认为,碳原子在形成双键时是以另外一种轨道杂化方式进行的,这种杂化称为sp 2杂化。
0.108nm0.133nm117°121.7°sp 2sp sp 2p2s2p杂化2杂化态激发态三、 乙烯分子的形成未杂化的 P 轨道垂直于杂化的轨道,从侧面交盖称为 П 键,轨道上的电子称为π电子,其交盖较 σ — 键小。
所以键能小。
其它烯烃的双键,也都是由一个σ键和一个π键组成的。
π键键能 = 双键键能 — 碳碳单键键能 = 610KJ / mol – 346 = / molπ键的特点:① 不如σ键牢固(因p 轨道是侧面重叠的)。
② 不能自由旋转(π键没有轨道轴的重叠)。
键的旋转会破坏键。
③ 电子云沿键轴上下分布,不集中,易极化,发生反应。
④ 不能独立存在。
四、 其他分子的形成:(丙烯)一个sp2三个 的关系sp 2轨道与轨道的关系p sp2π电子云形状π键的形成乙烯中的 σ键§ 3—2 烯烃的异构和命名一、 烯烃的同分异构现象烯烃的同分异构现象比烷烃的要复杂,除碳干异构外,还有由于双键的位置不同引起的位置异构和双键两侧的基团在空间的位置不同引起的顺反异构(几何异构)。
第三章单烯烃第三章单烯烃●教学基本要求1、掌握烯烃的分⼦结构、п键;2、理解烯烃的结构与性质的关系;3、掌握烯烃的命名法、性质及其制法;4、初步掌握烯烃的亲电加成反应历程。
●教学重点烯烃的分⼦结构、п键;烯烃的结构与性质的关系;烯烃的命名法、性质及其制法;烯烃的亲电加成反应历程。
●教学难点烯烃的亲电加成反应历程。
●教学时数:●教学⽅法与⼿段1、讲授与练习相结合;2、讲授与教学模型相结合;3、传统教学⽅法与与现代教学⼿段相结合;4、启发式教学。
●教学内容第⼀节烯烃的结构分⼦中仅含有⼀个碳碳双键C=C的烃称为单烯烃,简称烯烃,通式为C n H2n。
C=C是烯烃的官能团。
1.1⼄烯的结构⼄烯是最简单的烯烃,分⼦式为C2H4,构造式为H2C=CH2。
现代物理⽅法证明,⼄烯分⼦中的所有原⼦都在同⼀平⾯上,每个碳原⼦只和三个原⼦相连。
碳碳双键的键能为610 kJ/mol,键长为0.134nm,价键之间的夹⾓彼此成1200⾓。
根据杂化轨道理论,⼄烯分⼦中的碳原⼦以sp2杂化⽅式成键,两个碳原⼦各以⼀个sp2轨道重叠形成⼀个C─Cσ键,⼜各以两个sp2轨道和四个氢原⼦的1s轨道重叠,形成四个C─Hσ键,五个σ键都在同⼀平⾯上。
每个碳原⼦剩下的⼀个2p y轨道,它的对称轴垂直于sp2轨道所在的平⾯。
它们平⾏地侧⾯重叠,便组成π键。
π键的直剖⾯垂直于σ键所在的平⾯。
推论:C=C是由⼀个σ键和⼀个π键构成。
1、π键的特点⑴π键不如σ键稳定,⽐较容易破裂。
因为π键重叠程度⽐σ键⼩,π键的键能等于264.4kJ/mol [即610(C=C 键能)-345.6(C ─C 键能)],⼩于C ─C 单键的键能为345.6kJ/mol 。
⑵π键具有较⼤的流动性,容易受外界电场的影响,电⼦云⽐较容易极化,容易给出电⼦,发⽣反应。
由于π键的电⼦云不象σ键电⼦云那样集中在两原⼦核连线上,⽽是分散成上下两⽅,故原⼦核对π电⼦的束缚⼒就较⼩。
第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。
炔烃是含有(triple bond) 的不饱和开链烃。
炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。
一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。
(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。
现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。
乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。
每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。
其它烯烃的双键也都是由一个σ键和一个π键组成的。
双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。
π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。
(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。
两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。
在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。
此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。