信息论基础 第三章 数据压缩与信源编码I-精选文档
- 格式:ppt
- 大小:1.56 MB
- 文档页数:33
信息论与编码技术实验教案第一章:信息论基础1.1 信息的概念与度量介绍信息的基本概念,信息源的随机性,信息的不确定性。
讲解信息的度量方法,如香农熵、相对熵等。
1.2 信道模型与容量介绍信道的概念,信道的传输特性,信道的噪声模型。
讲解信道的容量及其计算方法,如单符号信道、多符号信道等。
第二章:信源编码与压缩2.1 信源编码的基本概念介绍信源编码的定义、目的和方法。
讲解信源编码的基本原理,如冗余度、平均冗余度等。
2.2 压缩算法与性能评价介绍无损压缩算法,如霍夫曼编码、算术编码等。
讲解有损压缩算法,如JPEG、MP3等。
分析各种压缩算法的性能评价指标,如压缩比、重建误差等。
第三章:信道编码与错误控制3.1 信道编码的基本概念介绍信道编码的定义、目的和方法。
讲解信道编码的基本原理,如纠错码、检错码等。
3.2 常见信道编码技术介绍常用的信道编码技术,如卷积码、汉明码、奇偶校验等。
分析各种信道编码技术的性能,如误码率、编码效率等。
第四章:数字基带传输4.1 数字基带信号与基带传输介绍数字基带信号的概念,数字基带信号的传输特性。
讲解数字基带信号的传输方法,如无编码调制、编码调制等。
4.2 基带传输系统的性能分析分析基带传输系统的性能指标,如误码率、传输速率等。
讲解基带传输系统的优化方法,如滤波器设计、信号调制等。
第五章:信号检测与接收5.1 信号检测的基本概念介绍信号检测的定义、目的和方法。
讲解信号检测的基本原理,如最大后验概率准则、贝叶斯准则等。
5.2 信号接收与性能分析分析信号接收的方法,如同步接收、异步接收等。
讲解信号接收性能的评价指标,如信噪比、误码率等。
第六章:卷积编码与Viterbi算法6.1 卷积编码的基本原理介绍卷积编码的定义、结构及其多项式。
讲解卷积编码的编码过程,包括初始状态、状态转移和输出计算。
6.2 Viterbi算法及其应用介绍Viterbi算法的原理,算法的基本步骤和性能。
讲解Viterbi算法在卷积编码解码中的应用,包括路径度量和状态估计。
信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。
狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。
实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。
广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。
第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。
创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。
1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。
1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。
1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。
1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。
3-1 设有一离散无记忆信源,其概率空间为12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,信源发出符号通过一干扰信道,接收符号为12{,}Y y y =,信道传递矩阵为51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求: (1) 信源X 中事件1x 和2x 分别含有的自信息量;(2) 收到消息j y (j =1,2)后,获得的关于i x (i =1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度(/)H X Y 和噪声熵(/)H Y X ; (5) 接收到消息Y 后获得的平均互信息量(;)I X Y 。
解:(1)12()0.737,() 1.322I x bit I x bit ==(2)11(;)0.474I x y bit =,12(;) 1.263I x y bit =-,21(;) 1.263I x y bit =-,22(;)0.907I x y bit =(3)()(0.6,0.4)0.971/H X H bit symbol ==()(0.6,0.4)0.971/H Y H bit symbol ==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol ==(/) 1.6850.9710.714/H X Y bit symbol =-= (/)0.714/H Y X bit symbol =(5)(;)0.9710.7140.257/I X Y bit symbol =-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。
该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。
验证在该信道上每个字母传输的平均信息量为0.21比特。
证明:信道传输矩阵为:11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,信源信宿概率分布为:1111()(){,,,}4444P X P Y ==, H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源X 包含两种消息:12,x x ,且12()() 1/2P x P x ==,信道是有扰的,信宿收到的消息集合Y 包含12,y y 。
信息论中的压缩算法与信源编码技术信息论是计算机科学中一门非常重要的学科,它是研究信息的量度、传输和处理等方面的学问。
与之相关的压缩算法和信源编码技术,在提高信息传输效率和数据存储能力方面都起到了重要的作用。
本文将从基本概念出发,逐步介绍信息论中的压缩算法与信源编码技术。
一、信息论基本概念信息论中的信息量是用“比特”来衡量的。
比特是计算机基础中非常常见的术语,它来自于二进制系统的数字“0”和“1”。
在计算机的存储器、通信网络、显示器等方面,都可以看到比特的身影。
一个比特可以表示两个不同的状态,如开关状态的“开/关”或者逻辑电平的“高/低”。
这两种状态可以分别用数字“0”和“1”来表示。
在信息论中,信息量是用比特数(bit)来衡量的。
一个比特可以表示两种选项中的一种,所以一个比特只能表示“是”或“否”、“真”或“假”这样的两种情况。
但是,当一个系统有多于两个状态时,用比特来衡量信息量就不太方便了。
例如,要描述两个人之间的关系,两个状态已经无法表示,我们需要多个比特来表示信息量。
当我们想知道一个字母的出现概率时,比特显然也是不够的。
在这种情况下,我们需要使用“信息熵”来描述。
信息熵通常用H来表示,它是指在一个信息源中可能出现的各种符号的概率的负对数的加权平均值。
具体地说,信息熵的公式为:H(S) = -Σp(x)×log p(x)其中,S表示一个符号集, x表示S中的每个符号,p(x)表示符号x在各次独立的实验中出现的概率。
信息熵的单位是比特(bit)。
越低的信息熵意味着信息源中包含的信息越少,信息的压缩率也就越高。
二、压缩算法压缩算法主要用于数据的压缩和解压缩。
其中,压缩是指减少数据文件的大小,解压缩则是指将压缩后的数据文件还原为原始数据文件。
数据压缩算法大致可分为两类:无损压缩和有损压缩。
无损压缩算法是指在压缩过程中保持数据的完整性,原始数据经过压缩后可以完全还原。
而有损压缩算法则是为了得到更高的压缩率,而在压缩过程中舍弃一些数据,所以解压后的数据不是完全一样的。