2020年全国硕士研究生招生考试农学门类联考数学历年真题与模拟试题详解
- 格式:pdf
- 大小:8.48 MB
- 文档页数:134
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
农学联考《数学》考研真题及解析考研农学门类联考《数学》真题及详解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数,则()。
A.x=-1为可去间断点,x=1为无穷间断点B.x=-1为无穷间断点,x=1为可去间断点C.x=-1和x=1均为可去间断点D.x=-1和x=1均为无穷间断点【答案】B查看答案【解析】函数在点x=±1没有定义,而所以x=-1为无穷间断点;所以x=1为可去间断点。
2设函数可微,则的微分=()。
A.B.C.D.【答案】D查看答案【解析】。
3设函数连续,,则=()。
A.B.C.D.【答案】C查看答案【解析】由于,则4设函数连续,交换二次积分次序得=()。
A.B.C.D.【答案】A查看答案【解析】积分区域D如下图所示。
由于所以5设为3维列向量,矩阵若行列式|A|=3,则行列式|B|=()。
A.6B.3C.-3D.-6【答案】D查看答案【解析】根据行列式的性质有6已知向量组线性无关,则下列向量组中线性无关的是()。
A.B.C.D.【答案】C查看答案【解析】ABD三项,由于根据线性相关的定义可知,这三项是线性相关的。
C项,可以根据定义证明它是线性无关的。
设整理得由于向量组线性无关,所以此线性方程组的系数矩阵由于所以方程组只有零解,即由线性无关的定义可知,向量组线性无关。
7设为3个随机事件,下列结论中正确的是()。
A.若相互独立,则两两独立B.若两两独立,则相互独立C.若,则相互独立D.若与独立,与独立,则与独立【答案】A查看答案【解析】若相互独立,由相互独立的性质可知由此可得两两独立。
8设随机变量X服从参数为n,p的二项分布,则()。
A.B.C.D.【答案】D查看答案【解析】X服从参数为n,p的二项分布,因此由期望和方差的性质可得二、填空题(9~14小题,每小题4分,共24分。
)9函数的极小值为______。
【答案】-2查看答案【解析】令可得x=1,,根据极值的第二充分条件可得x=1为函数的极小值点,极小值为。
2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。
4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。
4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。
2020年全国硕士研究生招生考试 数学(二)试题参考答案及解析一、选择题1-8题,每小题4分,共32分。
下列每题给出的4个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. 当0x +®时,下列无穷小量中最高阶的是 ( ). (A )2(1)-⎰xt e dt (B)0ln(1+⎰x dt (C )sin 20sin ⎰xt dt (D)1cos 0-⎰【答案】(D )【解析】22320(e 1)11lim lim ,33++→→--==⎰xt x x x dte x x可知2301(e 1),0;3+-→⎰:x t dt x x5022ln(12limlim ,52++→→==⎰xx x dtxx可知5202ln(1,0;5+→⎰:xdt x xsin 22032000sin sin(sin x)cosx cos 1limlim lim ,333+++→→→⋅===⎰xx x x t dtx x x可知sin 2301sin ,0;3x t dt x x +→⎰:1cos 0500limlim lim x x x x +++-→→→===⎰可知1cos 50,0,-+→⎰:xx x对比可知1cos 0-⎰的阶数最高,故选(D ).2....第二类间断点的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】()f x 可能的间断点有1,0,1,2x x x x =-===,由于1lim ln |1|x x ?+=-?,111lim0(1)(2)x x x ee x -?¹--,可知-1lim ()x f x ®=?,则1x =-为()f x 的第二类(无穷)间断点;111lim ()lim(2)2x x x e x f x x x e-==--,又由于()f x 在0x =处无定义,可知0x =为()f x 的第一类(可去)间断点;1111ln(1)lim ,lim 0(1)(2)x x x x x e e x ++-+=+ス--,则1lim ()x f x +®=?,则1x =为()f x 的第二类(无穷)间断点;11221ln(1)lim,lim021x x xx e x x e -+=ス--,则2lim ()x f x ®=?,则2x =为()f x 的第二类(无穷)间断点.综上所述,()f x 的第二类间断点有3个,故选(C ).3.1=ò( ).(A )24p (B )28p (C )4p (D )8p【答案】(A )【解析】11002=2112002(arcsin (arcsin 4p ===ò,故选(A ).4.设2()()ln(1),...,(0)n f x x x f =-=( ).(A )!2n n --(B )!2n n -(C )(2)!n n --(D )(2)!n n -【答案】(A ).【解析】由ln(1)x -的麦克劳林公式可知242232()()()22n n n n x x x x f x x x o x x o x n n ++骣骣鼢珑鼢=----+=-++++珑鼢鼢珑桫桫L Ln x 的系数为12n --,则()!(0)2n n f n =--,故选(A ).5.关于函数...给出以下结论①(0,0)1fx ¶=¶①2(0,0)1f x y ¶=抖①(,)(0,0)lim (,)0x y f x y ®=①00limlim (,)0y x f x y =正确的个数是( )(A )4 (B )3 (C )2 (D )1 【答案】(B )【解析】(,0)f x x =可知(0,0)1fx ¶=¶,故①正确.不论0,0xy x?还是0y =时,都有(,)(0,0)lim (,)0x y f x y ®=,故①正确.lim (,)0x f x y ®=,进而00limlim (,)0yxf x y =,可知①正确,当0y =时,00(,0)(,0)(,0)lim lim 1x x x f x x f x x x xf x x x D 瓺?+D -+D -¢===D D当0,0y x 构时,00(,)(,)()(,)lim lim x x x f x x y f x y x x y xyf x y yx x D 瓺?+D -+D -¢===D D当0,0y x?时,00(,)(0,)(0,)lim limx x x f x y f y x y yf y x x D 瓺?D -D ?¢==D D 不存在,则(0,)(0,0)(0,0)limx x xy y f y f f y®ⅱ-ⅱ=不存在,故①错误,故正确的有3个,选(B )6.设函数()f x 在区间[2,2]-上可导,。
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2020考研数学一真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.x 0 时,下列无穷小阶数最高的是A. 0xe t 21d tB. 0xln 1+t 3d t C.sin 20sin d xt tD.1cos 30sin d x t t1.答案:D解析:A.232001~3xx t x e dt t dtB.35322002ln 1~5x x t dt t dt x C.sin 223001sin ~3xxt dt t dt x D.2311cos 3220sin ~xx tdt t dt25122025x t 5252152x2.设函数()f x 在区间(-1,1)内有定义,且0lim ()0,x f x 则()A.当0()lim 0,()0||x f x f x x x在处可导.B.当2()lim0,()0x f x f x x x在处可导.C.当()()0lim0.||x f x f x x x 在处可导时,D.当2()()0lim 0.x f x f x x x在处可导时,2.答案:B解析:0200()()()()lim 0lim 0lim 0,lim 0||x x x x f x f x f x f x x x x x00()lim 0,lim ()0x x f x f x x00()(0)()lim lim 0(0)0x x f x f f x f x x()f x 在0x 处可导 选B3.设函数(,)f x y 在点(0,0)处可微,(0,0)(0,0)0,,,1f ff x yn 且非零向量d 与n 垂直,则()A.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在n B.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在n C.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x y存在d D.22(,)(0,0)|(,,(,))|lim 0x y x y f x y x yd 3.答案:A 解析:(,)(0,0)f x y 在处可微.(0,0)0f =22(,)(0,0)(0,0)(0,0)lim 0x y x y f x y f f x f yx y即2200(,)(0,0)(0,0)lim 0x yx y f x y f x f y x y,,(,)(0,0)(0,0)(,)x y n x y f x y f x f y f x y22(,)(0,0),,(,)lim 0x y n x y f x y x y存在选A.4.设R 为幂级数1nn n a r的收敛半径,r 是实数,则()A.1nn n a r发散时,||r R B.1nnn a r发散时,||r RC.||r R 时,1n nn a r发散D.||r R 时,1nnn a r发散4.答案:A 解析:∵R 为幂级数1nn n a x的收敛半径.∴1n nn a x在(,)R R 内必收敛.∴1nnn a r发散时,||r R .∴选A.5.若矩阵A 经初等列变换化成B ,则()A.存在矩阵P ,使得PA =BB.存在矩阵P ,使得BP =AC.存在矩阵P ,使得PB =AD.方程组Ax =0与Bx =0同解5.答案:B 解析:A 经初等列变换化成B.存在可逆矩阵1P使得1AP B 1111A BP P P 令..A BPB 选6.已知直线22211112:x a y b c L a b c 与直线33322222:x a y b c L a b c相交于一点,相交于一点,法法向量,1,2,3.i i i i a a b i c则A.1a 可由23,a a 线性表示B.2a 可由13,a a 线性表示C.3a 可由12,a a 线性表示D.123,,a a a 线性无关6.答案:C 解析:令1L的方程222111=x a y b z c t a b c即有21212121=a a x y b t b t z c c由2L 的方程得32323223=a a x yb t b t zc c由直线1L 与2L 相交得存在t 使2132t t 即312(1)t t ,3 可由12, 线性表示,故应选C.7.设A,B,C 为三个随机事件,且1()()(),()04P A P B P C P AB 1()()12P AC P BC,则A,B,C 中恰有一个事件发生的概率为A.34B.23C.12D.5127.答案:D解析:()()()[()]P ABC P ABUC P A P A BUC ()()()()()()111004126P A P AB AC P A P AB P AC P ABC ()()()[()]()()()()111004126P BAC P B AUC P B P B AUC P B P BA P BC P ABC ()()()[()]()()()()111104121212P CBA P CBUA P C P CU BUA P C P CB P CA P ABC()()()()1115661212P ABC ABC ABC P ABC P ABC P ABC选择D8.设12,,,nX X X…为来自总体X 的简单随机样本,其中1(0)(1),()2P X P X x 表示标准正态分布函数,则利用中心极限定理可得100155i i P X的近似值为A.1(1) B.(1) C.1(2) D.(2)8.答案:B解析:由题意11,24EX DX1001001110050.10025i i i i E X X EX D X DX由中心极限定理1001~(50,25)i i X N∴1001001155555055(1)55i i i i X P X P故选择B二、填空题:9—14小题,每小题2分,共24分。