反比例综合教案设计
- 格式:doc
- 大小:627.51 KB
- 文档页数:18
《反比例》数学教案(经典15篇)《反比例》数学教案1教学内容:《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。
是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。
进一步培养学生观察、学析、综合和概括等能力。
初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。
下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:(出示:十二个小方块)师:同学们,这十二个小方块有几种排法?(生答后,老师板书下表的排列过程)每行个数行数师:请你观察上表中每行个数与行数成正比例关系吗?为什么?生:……师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)三、合作自学探知1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
反比例数学教案标题:反比例数学教案设计一、教学目标:1. 让学生理解并掌握反比例的概念,能通过实例进行判断。
2. 使学生能够应用反比例知识解决实际问题,提高其分析和解决问题的能力。
3. 培养学生的观察力、思考力和逻辑思维能力。
二、教学内容:1. 反比例的定义2. 反比例关系的表示方法3. 反比例在生活中的应用三、教学过程:(一) 导入新课教师可以以生活中的实例引入反比例的概念,如“你跑步的速度越快,完成一千米所需的时间就越短”,让学生初步感知反比例的关系。
(二) 新授课程1. 反比例的定义教师解释:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么我们就说这两种量成反比例关系。
例如:路程=速度×时间,当速度增大时,时间就会相应减少,反之亦然,但速度与时间的乘积(即路程)始终保持不变,因此,速度和时间成反比例关系。
2. 反比例关系的表示方法教师介绍:可以用y=k/x来表示反比例关系,其中k是常数,x和y分别是变量。
比如在上述例子中,我们可以设y为时间,x为速度,k为路程,那么就得到了y=k/x的表达式。
(三) 实践活动教师设计一些实践活动,让学生通过实践操作进一步理解和掌握反比例的概念。
例如,可以让学生分组做实验,测量不同高度的物体自由落体所需的时间,并记录数据,然后用图表的形式展示出来,最后引导学生发现,物体下落的高度和所需时间成反比例关系。
(四) 小结教师对本节课的主要内容进行总结,强调反比例的定义和表示方法,以及反比例在生活中的应用。
(五) 作业布置教师可以根据学生的学习情况,适当布置一些习题,以巩固和深化学生对反比例的理解和应用。
四、教学评价:通过对学生课堂表现和作业完成情况进行评价,了解学生对反比例的理解程度,及时调整教学策略。
五、教学反思:在教学过程中,教师要关注学生的学习状态,及时调整教学方法,确保每个学生都能理解和掌握反比例的概念。
数学《反比例》教学设计篇5一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题2.能综合利用几何、方程、反比例函数的知识解决一些实际问题二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1.积极参与交流,并积极发表意见2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点:掌握从实际问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)2.学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数y?kx是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
小学数学六年级下册反比例优秀教案一、教学目标1.知识与技能:理解反比例的概念,掌握反比例的判断方法,能够运用反比例解决实际问题。
2.过程与方法:通过观察、分析、归纳,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养合作、探究的精神。
二、教学重点与难点1.教学重点:理解反比例的概念,掌握反比例的判断方法。
2.教学难点:运用反比例解决实际问题。
三、教学过程1.导入新课(1)回顾正比例的概念,引导学生思考:什么是正比例?(2)出示实例,如:身高与体重、速度与时间等,让学生判断哪些是正比例关系。
(3)引导学生思考:除了正比例,还有没有其他比例关系呢?2.探究新知(1)出示教材中的例子:每千克苹果的价格与购买的总价。
(2)引导学生观察、分析例子,发现总价与每千克苹果的价格成反比例关系。
(4)出示判断反比例的方法:观察两种量的乘积是否为常数。
3.练习巩固(1)教材P页练习题1、2。
(2)出示练习题,让学生判断是否为反比例关系。
(3)学生独立完成练习题,教师巡回指导。
4.解决实际问题(1)出示实际问题:小华家的花园面积为40平方米,如果长是10米,求宽是多少米?(2)引导学生分析问题,发现长与宽成反比例关系。
(3)引导学生列出反比例方程,求解宽度。
(4)学生展示解题过程,教师点评、指导。
(2)引导学生思考:如何运用反比例解决实际问题?(3)学生分享自己的收获和感悟。
6.课后作业(1)教材P页练习题3、4。
(2)设计一道反比例实际问题,让学生运用所学知识解决。
四、教学反思本节课的教学效果较好,大部分学生能够理解反比例的概念,掌握判断方法,并能运用反比例解决实际问题。
但在教学过程中,仍有个别学生对于反比例的理解不够深入,需要在今后的教学中加以关注和指导。
重难点补充:一、教学重点与难点1.教学重点:理解反比例的概念,掌握反比例的判断方法。
2.教学难点:运用反比例解决实际问题。
本篇文章将介绍六年级数学反比例的详细教案,包括教学目标、教学重点、教学难点、教学方法、教学设计和教学评价等方面。
希望通过本篇文章的阐述,能够帮助广大教师更好地开展数学教学。
一、教学目标1.掌握什么是反比例关系以及由此可以得出的基本性质,理解这个概念的本质和意义。
2.学会运用反比例关系进行简单的数学运算,如求比例系数、两个数中的一个数知另一个数的值、在实际问题中求出未知量等。
3.能够应用反比例关系来解决实际问题,例如利用反比例关系求出车速、加工时间、电阻的关系等等。
二、教学重点1.概念的理解:什么是反比例关系,如何求比例系数。
2.运用反比例关系进行数学运算。
3.应用反比例关系解决实际问题。
三、教学难点1.如何理解反比例关系:学生需要在理解比例关系的基础上深入探究反比例关系的本质和特点。
2.如何应用反比例关系对实际问题进行求解。
四、教学方法1.归纳法:让学生通过分析反比例关系中的实例,总结出它的基本性质,并具体阐述它的本质和意义。
2.演绎法:通过选择一些简单的例题,引导学生运用反比例关系进行计算,从而掌握反比例关系的计算方法。
3.实例法:引导学生从实际生活中,搜集相关的实例,让学生运用反比例关系进行求解,从而加深学生对概念的理解。
五、教学设计1.引入:通过询问学生的车速、做作业的时间、游戏打败率等问题,引出反比例关系的存在并引发学生的兴趣。
2.讲解:通过实例讲解反比例关系的概念、性质和解题方法。
3.例题分析:设计一些常见的反比例关系例题,让学生逐步掌握反比例关系的计算方法。
4.综合应用:让学生通过实际问题,运用反比例关系进行求解,培养学生的实际运用能力。
六、教学评价1.基本概念掌握程度:考查学生是否理解了反比例关系的基本概念,是否能够准确地描述反比例关系的特点和本质。
2.基本运算掌握程度:考查学生能否熟练地运用反比例关系进行计算,能否根据已知变量求出未知变量。
3.应用能力考查:考查学生能否将反比例关系运用于实际问题的求解,能否解决实际场景中遇到的反比例关系问题。
人教版数学六年级下册反比例教案范文(精推3篇)〖人教版数学六年级下册反比例教案范文第【1】篇〗《反比例》教学设计教学内容:反比例教学目标:1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是反比例。
3.利用反比例解决一些简单的生活问题,体会变化的量的关系。
教学重点:认识反比例关系的意义。
教学难点:正确判断两种量是否成反比例。
教具准备:电脑课件教学过程:师:出示问题:解决问题:节日期间去公园游玩的人数和所付门票费如下表所示:人数/人 1 2 3 4 5 6 ……门票费/元 5 10 15 20 25 30 ……利用上图,说一说哪两个量是相关联的,哪个量是不变的,题目中的两个变量是什么关系?为什么?生(仔细读题后回答):人数和门票费是相关联的量,每人应付的门票费是不变的,人数和门票费成正比例,因为人数和门票费是相关联的,并且门票费与人数的比值不变。
师:谁能说一下什么是相关联的量?生:如果一个量变化时,另一个量也随着变化,我们就说这两个量是相关联的。
师:如何判断两个量是否成正比例?生:如果一个量变化时,另一个量也变化,并且它们的比值不变,我们就说这两个量成正比例。
师:通过这些问题,我们回顾了相关联的量和正比例,这节课,我们来学习两个量的另外一种关系:反比例。
(板书课题:反比例)请同学们看一下这节课的学习目标(出示)。
生:阅读目标:1、结合丰富的实例,认识反比例;2、能根据反比例的意义,判断两个相关联的量是不是成反比例。
⊙合作交流,探究新知1.探究长方形相邻两边边长的变化规律。
(1)课件出示教材46页表1和表2。
用x,y表示长方形相邻两边的边长,表1是面积为24cm2的长方形相邻两边边长的变化关系,表2是周长为24 cm的长方形相邻两边边长的变化关系。
请把表格填写完整,并说说你发现了什么。
(单位:cm)表 1 x 1 2 3 4 y 24 12 表2 x 1 2 3 4 y 11 10(2)生独立填表。
反比例数学教案反比例数学教案反比例数学教案1知识技能目标1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;2、利用反比例函数的图象解决有关问题。
过程性目标1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程一、创设情境上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。
那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用*滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用*滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。
这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x 的增加,函数y将怎样变化?有什么规律?反比例函数有下列性质:(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
人教版数学六年级下册反比例优秀教案(优选3篇)〖人教版数学六年级下册反比例优秀教案第【1】篇〗教学内容:教科书第58页的例2,“练一练”和练习十的第4、5题。
教学目标:1.能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2.使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3.使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:能认识正比例关系的图像。
教学难点:利用正比例关系的图像解决实际问题。
教学资源:课件、直尺、铅笔、橡皮教学过程:一、复习激趣1.判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价和一定,一个加数和另一个加数比值一定,比的前项和后项2.折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?今天我们就来探究这些问题。
二、互动新授1.认识正比例图像。
(1)出示教材第58页例2的方格图。
提问:表中的横轴表示什么?纵轴表示什么?每格表示多少千米?(2)出示例1的表格。
教师引导学生画图。
①指导学生描点。
让学生在图中找一找“1小时行80千米”的这个点,并请学生上黑板指一指。
引导:表示1小时的竖线与表示80千米的横线相交的点,就表示“1小时行80千米”。
让学生在方格纸中找一找代表其它几组数据的点,并指名板演。
②连线。
让学生连接图中各点,说说有什么发现。
根据学生的回答小结:我们发现图中所描的点都在同一条直线上。
这条直线就是正比例的图像。
从直线上的每个点中,我们既能知道汽车行驶的时间,又能知道行驶的路程。
这两个量紧密联系,对应的时间和路程用同一个点,点不同,时间和路程也都发生变化,但是它们的比值却是不变的,所以我们就说它是正比例图像。
2.正比例图像的应用。
问题一:根据图像判断,这辆汽车2.5小时行驶多少千米?小组讨论交流方法。
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
反比例教案一、教学目标:1. 知识与技能:了解反比例的概念,掌握反比例函数的基本性质和解题方法。
2. 过程与方法:培养学生的观察和归纳能力,培养学生的逻辑思维和分析问题的能力。
3. 情感态度与价值观:培养学生的主动学习、合作学习和创新意识。
二、教学重点与难点:1. 重点:了解反比例的概念,掌握反比例函数的基本性质和解题方法。
2. 难点:学会在实际问题中应用反比例的知识解决问题。
三、教学过程:1. 导入(10分钟)教师出示一对生活中常见的反比例关系,例如:A工人一天能挖20立方米土,B工人一天能挖30立方米土,问两个工人一起工作一天可以挖多少立方米土?引导学生思考两个工人一起工作与分开工作的情况有什么不同。
教师出示反比例的图像,引导学生观察图像的变化。
2. 探究(20分钟)教师引导学生通过观察和实验总结反比例的概念和特点,帮助学生理解反比例的性质。
学生根据实验结果,总结出反比例函数 y=k/x 的定义和性质,并解释为什么是反比例。
3. 讲解(20分钟)教师讲解反比例函数的基本形式 y=k/x,并引导学生掌握反比例函数的性质,例如:当x>0时,y>0;当x>0时,y递减;当x>0时,y趋于无穷大;当x>0时,y通式为y=k/x。
教师通过例题讲解反比例函数的解题方法,例如:给出一组x和y的值,求y与x的关系;给出y和k的值,求x与k的关系;给出x和k的值,求y和k的关系。
4. 拓展运用(20分钟)教师出示一些实际问题,引导学生运用反比例的知识解决问题。
例如:小明每小时能走5公里,他打算今天走50公里,需要走多少个小时?现在有一块土地,两个农民合作耕种可以耕种10天,其中一个农民独立耕种需要耕种25天,问另一个农民独立耕种需要耕种多少天?5. 总结归纳(10分钟)教师引导学生归纳总结反比例的概念和性质,培养学生的思维能力和归纳能力。
四、课堂作业:1. 完成课后习题集上的相关练习。
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。
掌握反比例函数的定义和性质。
1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。
反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。
引导学生通过观察实际例子,发现反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。
理解反比例函数图像的特点。
2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。
双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。
2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。
让学生通过分析反比例函数图像,理解反比例函数的性质。
第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。
能够应用反比例函数的性质解决实际问题。
3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
设计练习题,让学生应用反比例函数的性质解决实际问题。
第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。
能够运用反比例函数的知识进行综合分析。
4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。
4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。
设计练习题,让学生运用反比例函数的知识进行综合分析。
小学六年级数学《反比例》教案8篇小学六年级数学《反比例》教案1设计说明“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。
本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备教师准备 PPT课件学生准备玻璃杯直尺水实验记录单教学过程⊙复习引入1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?预设生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?预设生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。
(板书课题:反比例)设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
《反比例》教学设计2篇六年级《反比例》教学设计含教学反思【教材依据】义务教育教科书北师大版六年级下册第四单元第四节《反比例》。
【教学目标】1.通过感知生活中的事例,充分体会反比例关系中变量之间的变化关系,建立反比例关系的模型;2.培养学生的逻辑思维能力,学会对比相关知识进行学习,初步判断两种相关联的量是否成反比例;3.经历比较、分析、归纳等数学活动,提高分析、归纳概括能力,初步体会函数思想。
【教学重点】1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其特征【教学难点】能根据反比例的意义判断两个相关联的量是不是成反比例,并用自己的语言进行准确表达。
【教学准备】1、制作PPT课件2、准备学生每人一份导学单,提前打印教学过程:谈话导入(一)、今天我们要学习的内容是(反比例)这是小学阶段的最后一节新课,希望我们能够学习愉快,收获满满。
常言道“温故而知新”,那就让我们先复习一下正比例吧。
(二)复习正比例:【操作流程】课件出示问题----生回忆思考----个别分享,师板书正比例部分。
1、在正比例关系中,共有()个量,其中()个是变量()个是定值。
2、怎样判断两个量是否成正比例关系?3、正比例用关系式怎样表示?(一)操作流程:1、在导学单的引导下,生自主学习,解决三个情问题情境后的思考题2、分享汇报(二)导学单内容活动一:解决问题,体会变量之间的关系情境一:用x和y分别表示长方形相邻两边的长,若长方形的面积是24㎡,则相邻两边边长的变化情况如下表:请你完成表格的填写,并观察:在这个问题中,共有()个变量、()个定量。
其中,()随着()的变化而变化,且()一定。
情境二:王叔叔要从家出发去游长城,不同交通工具的速度和行驶所需时间如下。
仔细观察并思考,你有什么发现?()情景三:如下图,把相同体积的水倒入底面积不同的杯子中。
在这个问题中,()是定值,高和底面积的变化规律是(),并且()一定。
对比理解1、上述几个问题中,都有()个变量,()个定量。
教师姓名学生姓名填写时间2012.1.15学科数学年级九年级上课时间15:00-17:00课时计划2小时教学目标教学内容反比例、二次函数复习个性化学习问题解决注重二次函数的数形结合分析,培养分类讨论思想教学重点、难点1、反比例函数增减性的理解。
2、用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
3、正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。
教学过程第一章反比例函数复习〖教学目标〗1、理解反比例函数的概念,会根据问题中的条件确定反比例函数的解析式。
2、理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。
3、会用待定系数法求反比例函数的解析式。
一、基础知识回顾二、典型例题分析1.(2010四川凉山)已知函数25(1)my m x-=+是反比例函数,且图像在第二、四象限内,则m的值是12.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 3.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4DBAyxOC4.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④5.(2010江西)反例函数4y x=图象的对称轴的条数是( ) A .0 B .1 C .2 D .36(2010四川广安)如右图,若反比例函数8y x=-与一次函数2y mx =-的图象都经过点(,2)A a . (1) 求A 点的坐标及一次函数的解析式;(2) 设一次函数与反比例函数图象的另一交点为B ,求B 点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x 的取值范围.yy 1=xy 2=4xx 第4题图yOBCD 1M x24A acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121三、典型例题分析【例1】(2008年泰州市)二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位;B .先向左平移2个单位,再向下平移1个单位;C .先向右平移2个单位,再向上平移1个单位;D .先向右平移2个单位,再向下平移1个单位【例2】(2010年安徽省芜湖市)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .【例3】(2010年浙江省东阳县)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取734≈)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取562≈)课堂练习课堂练习1、(2010年日照市)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.2、(2010年湖北黄冈市)若函数22(2)2x xyx⎧+=⎨⎩ ≤ (x>2),则当函数值y=8时,自变量x的值是()A .±6B .4C .±6或4D .4或-63、(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点.⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式;*⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)课后作业课后作业一选择题1、 (2010年兰州市)二次函数2365y x x=--+的图像的顶点坐标是A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4)2、 (2010年兰州市)抛物线cbxxy++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=xxy,则b、c的值为A . b=2, c=2 B. b=2,c=0C . b= -2,c=-1 D. b= -3, c=23、(2010年北京崇文区) 函数y=x2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是()A.31≤≤-x B.31<<-xC.31>-<xx或 D.31≥-≤xx或21y x=-与4、(2010年山东省济南市)在平面直角坐标系中,抛物线x轴的交点的个数是()A.3 B.2 C.1 D.05、二次函数cbxxy++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是() A.x=4 B. x=3 C. x=-5 D. x=-1。
6、直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-2)C.(0,-1)D.(-2,1)7、已知二次函数bxay+-=2)1(有最小值–1,则a与b之间的大小关系是()A.a<b B.a=b C.a>b D.不能确定二填空1、抛物线y=(k+1)x2+k2-9开口向下,且经过原点,则k=2、 (2010年兰州市)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.3、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为___________________.4、已知二次函数y=ax2+bx+c,当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式5、(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是.xy O x =1 A B3、(2010年北京崇文区) 已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.4、(2011•湖州)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示);(2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2),当点P 从点O 向点C 运动时,点H 也随之运动.请直接写出点H 所经过的路径长.(不必写解答过程)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y . ⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN =43,于是以A 点为圆心,AB =43为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .课后作业答案1.A2.B3.D4.B5.D6.C7.C填空1.-3 2.1/2 3. 4.5 解答:解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx ﹣3,∵确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间,假如过(2,0),代入得:0=4+2b ﹣3,∴b=﹣.解答1.解:(1)322--=x x y =31122--+-x x =4)1(2--x∴ (1,-4);(2)由抛物线322--=x x y 和直线3y x =-+可求得:A (-1,0)、B (3,0)、C (0,-3)、D (0,3)∴OB=OC=OD=3∴∠OBD=∠OBC=450又∵∠OBD=∠AFE ,∠OBC=∠AEF∴∠AFE=∠AEF=450∴∠EAF=900,AE=AF∴△AEF 是等腰直角三角形2.【答案】⑴设抛物线的解析式为y =ax 2+bx +c ,则有:⎪⎪⎩⎪⎪⎨⎧=--==+-1230ab c c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a ,所以抛物线的解析式为y =x 2-2x -3. ⑵令x 2-2x -3=0,解得x 1=-1,x 2=3,所以B 点坐标为(3,0).设直线BC 的解析式为y =kx 2+b,则⎩⎨⎧-==+303b b k ,解得⎩⎨⎧-==31b k ,所以直线解析式是y =x -3. 当x =1时,y =-2.所以M 点的坐标为(1,-2).⑶方法一:要使∠PBC =90°,则直线PC 过点C ,且与BC 垂直,又直线BC 的解析式为y =x -3,所以直线PC 的解析式为y =-x -3,当x =1时,y =-4,所以P 点坐标为(1,-4).方法二:设P 点坐标为(1,y ),则PC 2=12+(-3-y )2,BC 2=32+32;PB 2=22+y 2由∠PBC =90°可知△PBC 是直角三角形,且PB 为斜边,则有PC 2+BC 2=PB 2.所以:[12+(-3-y )2]+[32+32]=22+y 2;解得y =-4,所以P 点坐标为(1,-4).3.【答案】解:(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.所以,抛物线对称轴3142b x -+=-=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2241x x ++=0.因为,24b ac =-=16-8=8>0.所以,方程有两个不同的实数根,分别是12122b x a -+==-+,22122b x a --==--. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可.由24b ac =-=168(1)k -+=88k -<0,得1k >又k 是正整数,所以k 得最小值为2.4.解答:解:(1)由题意得CM=BM ,∵∠PMC=∠DMB ,∴Rt △PMC ≌Rt △DMB ,(2分)∴DB=PC ,∴DB=2﹣m ,AD=4﹣m ,(1分)∴点D 的坐标为(2,4﹣m ).(1分)(2)分三种情况①若AP=AD ,则4+m 2=(4﹣m )2,解得(2分)②若PD=PA过P作PF⊥AB于点F(如图),则AF=FD=AD=(4﹣m)又OP=AF,∴(2分)③若PD=DA,∵△PMC≌△DMB,∴PM=PD=AD=(4﹣m),∵PC2+CM2=PM2,∴,解得(舍去).(2分)综上所述,当△APD是等腰三角形时,m的值为或或(3)点H所经过的路径长为(2分)点评:本题是二次函数的综合题型,其中涉及的到大知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.。