植物生理学:008-04 第二节 赤霉素类
- 格式:ppt
- 大小:1.83 MB
- 文档页数:22
高中生物赤霉素知识点总结一、赤霉素的发现与分类赤霉素(Gibberellins,GAs)是一类具有广泛生物活性的植物激素,最初由日本科学家在20世纪50年代发现。
它们是低分子量的有机酸,具有高度的生物活性,能够调节植物的生长和发育过程。
赤霉素的发现源于对水稻恶苗病的研究,这种病害是由于赤霉菌(Fusarium moniliforme)产生的赤霉素过量而导致的。
目前已知的赤霉素种类超过100种,根据结构和功能的不同,可以分为几大类:GA1、GA3、GA4、GA7等,其中GA1、GA3和GA4是最为常见的内源性赤霉素。
二、赤霉素的生物合成赤霉素的生物合成是一个复杂的生物化学过程,涉及多个酶的参与和多个步骤。
合成途径主要包括两个分支:一个是起始于贝壳杉烯(ent-kaurene),另一个是起始于贝壳杉醇(ent-kaurenoic acid)。
这两个途径最终都会合成到活性赤霉素GA1。
赤霉素的合成主要发生在植物的幼嫩组织中,如种子、幼苗、根尖和芽尖等。
三、赤霉素的生理作用1. 促进茎的伸长赤霉素最显著的生理作用是促进细胞的伸长,从而引起植物茎的增高。
它通过影响细胞壁的可塑性和细胞质的流动性,降低细胞壁的刚性,使细胞能够伸长。
2. 打破种子休眠赤霉素能够打破某些种子的休眠状态,促进种子的萌发。
它通过调节种子内赤霉素和脱落酸(ABA)的平衡,降低ABA的浓度,从而减轻其对种子萌发的抑制作用。
3. 促进果实发育在某些植物中,赤霉素还参与调节果实的发育过程。
它可以促进果实的膨大,改善果实的品质。
4. 参与光周期反应赤霉素还参与植物的光周期反应,影响植物的开花时间。
在短日照植物中,赤霉素的积累可以促进花芽的分化。
四、赤霉素的应用由于赤霉素具有显著的生理活性,它在农业生产中有着广泛的应用。
例如,通过外源施用赤霉素可以促进作物的生长,增加产量;在园艺上,赤霉素用于促进花卉的开花和果实的成熟;在种子处理上,赤霉素可以打破种子休眠,提高种子的发芽率。
赤霉素赤霉素是一种重要的植物激素,对植物的生长和发育起着关键的调控作用。
它最早是由荧光杆菌产生,在植物学上引起了广泛的研究兴趣。
赤霉素对植物的萌发、幼苗生长、开花、果实成熟和植物抗逆性等多个方面都具有重要的影响。
在本文中,将重点介绍赤霉素的生产、生理作用和应用。
一、赤霉素的生产赤霉素的生产主要通过两种途径,一种是通过化学合成,另一种是通过微生物发酵。
化学合成的方法具有成本较低和产量较高的优势,但是其生产过程中需要使用很多有毒物质,对环境污染较大。
而通过微生物发酵生产赤霉素,不仅能够降低生产成本,还可以减少对环境的污染。
目前,大多数赤霉素都是通过微生物发酵的方式进行生产。
二、赤霉素的生理作用赤霉素在植物体内具有多种生理作用,其中最为重要的作用是促进植物生长。
赤霉素能够促进萌发和幼苗生长,提高植物的生物量和产量。
此外,赤霉素还能够调节植物的开花和果实成熟过程,使植物能够更好地进行繁殖。
此外,赤霉素对植物的抗逆性也有一定的影响,可以提高植物对环境胁迫的适应能力。
三、赤霉素的应用1. 农业领域:赤霉素作为一种植物生长调节剂,被广泛应用于农业生产中。
它可以促进作物的生长和发育,提高产量和品质。
例如,在水稻种植中,适当使用赤霉素可以促进水稻的萌发和生长,提高单株产量。
2. 果树种植:赤霉素对果树的开花和结果具有调节作用,可以促进果树的开花过程,提高果实的产量和品质。
例如,在柑橘种植中,喷施赤霉素可以提高柑橘的结果率和产量。
3. 蔬菜种植:赤霉素对蔬菜的生长和发育也具有一定的促进作用。
适当应用赤霉素可以提前促使蔬菜的生长和丰产。
例如,在大棚蔬菜的种植中,喷施赤霉素可以加快蔬菜的生长速度,缩短生长周期。
4. 植物繁殖:赤霉素在植物繁殖中起到重要的作用。
它可以促进植物的生殖器官的发育,提高种子的质量和数量。
例如,在种子繁殖中,适当使用赤霉素可以提高种子的发芽率和存活率。
5. 植物保护:赤霉素还可以用作一种植物保护剂,提高植物的抗逆能力,增强植物对病虫害的抵抗力。
《植物生理学》课程教学大纲Plant Physiology一、课程基本信息(一)知识目标:向学生传授植物生理学基本知识,为后续课程学习打下基础。
(二)能力目标:改进传统教学模式和手段,提高学生自我学习和解决问题能力。
(三)素质目标:养成良好学习方式,培养自主学习,自主获得知识的素养,同时,能够利用所学知识自主创新,培养应用型人才。
三、基本要求— 1 —(一)了解:比较全面的、系统的了解植物生命活动的基本规律。
(二)理解:植物生理学的基础知识和基本原理。
(三)掌握:植物生理学的基本知识和原理,并未后续学科学习以及生产实践活动提供理论支持。
四、教学内容与学时分配绪论1学时第一节植物生理学的定义和研究内容知识点:定义,研究内容第二节植物生理学的产生和发展知识点:起源,诞生和发展第三节植物生理学面临的任务知识点:任务,学科交叉联合及生产实践应用本章小结:植物生命活动从生理学角度可将其分为生长发育与形态建成、物质与能量代谢、信息传递和信号转导。
是研究植物生命活动规律,揭示植物生命现象本质的一门科学。
研究植物在水分代谢,矿质营养,光合作用和呼吸作用,物质的运输与分配以及信息传递和信号转导等基本代谢基础上,所展示的种子萌发,生长,运动,开花,结实等生长发育过程等各个生理过程内在的奥秘及其与环境的相互关系,通过对这些功能和作用机制,机理的研究,阐明植物生命活动的规律和本质。
植物生理学发展:孕育--诞生与成长--发展阶段。
目前正处于一个向纵深发展和向生产应用阶段。
另一个领域是有关植物逆境生理学的研究。
植物生理学的主要任务是探索植物生命活动的基本规律。
指导农业生产,为作物栽培以及改良和培育作物新品种提供理论依据。
重点:植物生理学的内容及发展趋势,植物生理学和分子生物学的关系难点:学科交叉思考题:1. 植物生理学的定义和内容。
2. 植物生理学和分子生物学的关系。
教学方法:采用多媒体教学第一章植物的水分生理5学时— 2 —第一节水分与植物细胞1学时知识点:水势概念及含水体系的水势组分第二节植物细胞对水分的吸收1学时知识点:植物细胞水势构成及植物细胞间的水分移动第三节植物根系对水分的吸收1学时知识点:根系吸水部位、途径、机理及影响因素第四节植物的蒸腾作用1学时知识点:蒸腾作用方式、生理意义、指标,气孔蒸腾及气孔开闭机理第五节植物体内水分向地上部分的运输1学时知识点:质外体与共质体途径,蒸腾内聚力学说第六节合理灌溉的生理基础知识点:需水规律、形态和生理指标,灌溉方式本章小结:水在生命活动中起重要的作用;植物对水分的吸收、运输、利用和散失的过程。
第八章植物生长物质一、名词解释1. 植物生长物质:能够调节植物生长发育的微量化学物质,包括植物激素和植物生长调节剂。
2. 植物激素:在植物体内合成的、能从合成部位运往作用部位、对植物生长发育能产生显著调节作用的微量小分子物质。
目前国际上公认的植物激素有五大类,即:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯。
也有人建议将油菜素甾体类、茉莉酸类也列为植物激素。
3. 生长调节物质:一些具有类似于植物激素生理活性的人工合成的小分子化学物质,如2,4-D、NAA、乙烯利等。
4. 燕麦试法(avena test):亦称燕麦试验、生长素的燕麦胚芽鞘测定法。
是早期定量测定生长素含量的一种方法。
操作时,先将燕麦胚芽鞘尖端切下,置于琼脂上,经过一段时间后,在胚芽鞘中的生长素就会扩散到琼脂中。
然后将琼脂切成小块,放置于去掉尖端的胚芽鞘上,由于含有生长素的琼脂块具有促进生长的能力,因此参照琼脂块中生长素含量与燕麦胚芽鞘尖端弯曲这二者之间的定量关系,即可用于鉴定、评估生长素的活性与相对含量。
5. 燕麦单位(avena unit, AU):指用燕麦试法对生长素进行生物测定时,所设定的生长素的相对单位,以燕麦胚芽鞘的生长弯曲度来表示。
标准如下:在温度为25℃,相对湿度为90%,作用时间为90分钟的情况下,燕麦胚芽鞘每弯曲10°所需要的生长素的量,就称为一个燕麦单位。
6. 极性运输(polar transport):物质只能从形态学的一端向另一端运输而不能倒过来运输的现象,称为极性运输。
如胚芽鞘中的生长素只能从形态学上端(顶部)向下端(基部)进行运输。
7. 三重反应(triple response):乙烯对黄化豌豆幼苗的生长具有抑制茎的伸长生长、促进茎或根的增粗生长和使茎横向生长(即使茎失去负向重力性生长)的三个方面的效应,是乙烯导致的典型的生物效应。
8. 偏上性生长(epinasty growth):指植物器官上、下两部分的生长速度不一致,上部组织的生长速度快于下部组织的现象。
高中生物赤霉素工作原理
赤霉素(gibberellin,GA)是一种植物激素,广泛存在于植物中,并在植物生长和发育过程中发挥重要作用。
赤霉素的工作原理主要包括以下几个方面:
1. 促进细胞伸长:赤霉素可以促进细胞的伸长,通过调节细胞壁的松弛和伸长,使植物组织可以快速生长。
赤霉素结合细胞膜上的赤霉素受体,进一步激活特定转录因子,促进细胞壁松弛酶(expansin)和细胞壁松弛相关蛋白(xyloglucan endotransglucosylase/hydrolase)的表达,从而促进细胞壁的松
弛和伸长。
2. 调控花芽分化:赤霉素可以在植物生长发育过程中调控花芽的形成。
它通过调控转录因子的表达,参与花素基因(LFY)的激活,从而促进花素的形成和花芽分化。
3. 干预种子萌发:赤霉素在种子萌发过程中起到重要作用。
它促进水分吸收和转运酶的合成,从而加快种子吸水和发芽速度。
此外,赤霉素还能够调控种子休眠状态和抑制物质的分解,使种子能够在适宜条件下迅速萌发。
4. 促进侧芽生长:赤霉素也可以促进侧芽的生长和分化。
它通过调节转录因子的表达,参与侧芽原位的激活,从而促进侧芽的发育和伸长。
总的来说,赤霉素通过与受体结合,激活特定转录因子的表达,
进而调控细胞伸长、花芽分化、种子萌发和侧芽生长等植物生长发育过程。
赤霉素赤霉素,广泛存在的植物激素。
化学结构属于二萜类酸,由四环骨架衍生而得。
赤霉素种类至少38种,应用于农业生产,可刺激叶和芽的生长,提高产量。
历史1926年日本黑泽英一发现,当水稻感染了赤霉菌后,会出现植株疯长的现象,病株往往比正常植株高50%以上,而且结实率大大降低,因而称之为“恶苗病”。
科学家将赤霉菌培养基的滤液喷施到健康水稻幼苗上,发现这些幼苗虽然没有感染赤霉菌,却出现了与"恶苗病"同样的症状。
1938年日本薮田贞治郎和住木谕介从赤霉菌培养基的滤液中分离出这种活性物质,并鉴定了它的化学结构。
命名为赤霉酸。
1956年.韦斯特和.菲尼分别证明在高等植物中普遍存在着一些类似赤霉酸的物质。
到1983年已分离和鉴定出60多种。
一般分为自由态及结合态两类,统称赤霉素,分别被命名为GA1,GA2等。
[1]结构赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。
在高等植物中赤霉素的前体一般认为是贝壳杉烯。
赤霉素的基本结构是赤霉素烷,有4个环。
在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素[2] 。
自由态赤霉素是具19C或20C的一、二或三羧酸。
结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。
分布广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。
含量:1~100Ong·g-1鲜重,果实和种子(尤其是未成熟种子)的赤霉素含量比营养器官的多两个数量级。
每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态(自由态或结合态)都因植物发育时期而异。
GA与生长素不同,其运输不表现极性,(根尖合成---沿导管向上运输,嫩叶产生---沿筛管向下运输)。
不同植物间的运输速度差别很大。
提取赤霉素可以用甲醇提取。
不同的赤霉素可以用各种色谱分析技术分开。
提纯的赤霉素经稀释后处理矮生植物,如矮生玉米,观察其促进高生长的效应,可鉴定其生物活性。
生物植物激素知识点植物激素是植物体内合成的微量有机物,它们在植物的生长发育和对环境的适应过程中起着重要的调节作用。
植物激素通过植物体内的输导系统(如维管束)从一个部位运输到另一个部位,影响植物的生长和发育。
以下是关于植物激素的一些核心知识点。
1.生长素(Auxins):生长素是一类主要在植物顶端分生组织产生的激素,它们促进细胞的伸长和分裂。
生长素在植物体内的运输是向下的,即从顶端向基部运输。
生长素在植物的生长、果实发育和叶片衰老中起着关键作用。
2.赤霉素(Gibberellins):赤霉素是一类在植物体内广泛存在的激素,它们促进植物的细胞伸长和分裂,对植物的生长和发育有广泛的调节作用。
赤霉素在种子萌发、茎的伸长和花的开放等过程中起着重要作用。
3.细胞分裂素(Cytokinins):细胞分裂素是一类主要在植物根部产生的激素,它们促进细胞的分裂和伸长。
细胞分裂素在根的生长、叶片的衰老和植物的抗逆性中起着重要作用。
4.脱落酸(Abscisic Acid,ABA):脱落酸是一种在植物体内广泛存在的激素,它在植物对逆境的响应中起着重要作用。
脱落酸通过调节气孔的开闭来影响植物的水分平衡,还参与调节植物的休眠和萌发。
5.乙烯(Ethylene):乙烯是一种简单的气体激素,它在植物体内通过细胞间隙扩散。
乙烯在植物的果实成熟、叶片衰老和花朵开放等过程中起着重要作用。
6.植物激素的合成和分解:植物激素的合成通常受到遗传控制,并受到环境因素(如光照、温度和水分)的影响。
植物激素的活性可以通过代谢途径中的酶来调节,包括合成酶和分解酶。
7.植物激素的信号转导:植物激素通过与细胞膜上的受体结合,触发一系列的信号转导过程,包括第二信使的生成和基因表达的调控,从而影响植物的生长和发育。
8.植物激素的相互作用:不同类型的植物激素之间存在相互作用,它们可以相互增强或抑制对方的效应,从而在植物体内形成一个复杂的调节网络。
植物激素的研究对于理解植物的生长发育机制、提高农业生产效率和开发新的植物生长调节剂具有重要意义。
《植物生理学》课程教学大纲一、课程基本信息课程编号:课程类别:必修课适应专业:园艺专业总学时:48学时总学分:2.5学分课程简介:植物生理学(Plant Physiology)是研究植物生命活动规律及其与外界环境相互关系的一门科学。
该课程既是一门基础理论学科,也是一门实践性很强的学科,它的诞生和发展都与农业生产有着极为密切的关系,是植物类各专业的重要专业基础课。
植物生理学以高等绿色植物为主要研究对象,以揭示自养生物的生命现象本质及其与外界条件相互关系为主要任务。
学习植物生理学不仅是为认识和了解植物在各种环境条件下,进行生命活动的规律和机理,而且要将掌握的理论知识应用于科学实验和生产实践,为农业的可持续发展,实现农业现代化服务。
授课教材:潘瑞炽编著,植物生理学(第7版)/普通高等教育“十一五”国家级规划教材,高等教育出版社,2012参考书目:1.王宝山主编,《植物生理学》,科学出版社,20032.王忠主编,《植物生理学》,中国农业出版社,20003.《植物生理学通讯》(历年期刊)4.《植物生理与分子生物学报》(历年期刊)二、课程教育目标通过本课程的教学,使学生对植物生命活动基本规律有比较全面、系统的认识,牢固掌握植物生理学的基本概念、知识和原理;使学生能初步运用所学的基本理论、知识和技能,分析和解决生产实践中有关植物生理学的一般问题。
三、教学内容与要求绪论教学重点与难点:植物生理学与农业生产的关系。
教学时数:2学时教学内容:一、植物生理学的定义和研究内容二、植物生理学的产生与发展三、植物生理学的展望教学要求:了解植物生理学的定义和任务、发展简史及其与农业生产的关系。
教学方式:多媒体教学与讨论第一章植物的水分生理教学重点:根系对水分的吸收及植物的蒸腾作用。
教学难点:难点是水势的概念及气孔开闭机理。
教学时数:4学时教学内容:第一节植物对水分的需要一、植物的含水量二、植物体内水分存在的状态三、水分在植物生命活动中的作用第二节植物细胞对水分的吸收一、水分跨膜运输的途径二、水分跨膜运输的原理三、细胞间的水分移动第三节根系吸水和水分向上运输一、土壤中的水分二、根系吸水三、水分向上运输第四节蒸腾作用一、蒸腾作用的生理意义、部位和指标二、气孔蒸腾三、影响蒸腾作用的因素第五节合理灌溉的生理基础一、作物的需水规律二、合理灌溉的指标三、节水灌溉的方法教学要求:深入了解植物水分代谢,掌握水分的生理作用,细胞的水势,根系吸水的部位、途径、机理、影响因素,植物的蒸腾作用,水分运输的途径、机理、合理灌溉的生理基础。