基于声发射及其定位技术的岩石破裂过程研究
- 格式:pdf
- 大小:1.62 MB
- 文档页数:6
岩石破坏过程中的声发射分布规律及其分形特征下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!岩石破坏过程中的声发射分布规律及其分形特征一直是岩石力学与岩土工程领域中备受关注的研究课题。
基于声波参数的岩体爆破损伤区检测方法岩石基础开挖是大型水电工程建设中的重要环节之一,钻孔爆破是目前岩石开挖的主要手段。
在利用炸药的能量对被开挖岩体进行破碎的同时,将对保留岩体产生不可避免的损伤。
工程实践中,开展爆破开挖损伤现场检测和并进行准确判定,是进行爆破损伤控制的前提,而基于声波测试的岩体开挖爆破损伤区检测,是国家标准和行业规范推荐的主要现场检测方法。
论文以白鹤滩水电站坝肩槽开挖爆破损伤现场检测为背景,结合理论分析和室内试验,分析了边坡岩体开挖爆破损伤机理,建立了岩体损伤的纵波上升时间变化率判据、提出了基于纵波上升时间的损伤区检测方法,研发了新型声波换能器,发展了基于声波参数的岩体爆破损伤区检测方法。
论文取得的主要研究成果如下:揭示了岩石开挖爆破损伤区微裂纹分区扩展机制。
研究微裂纹的激活、扩展机理,是理解岩体宏观损伤规律的必要基础。
爆炸荷载在岩石介质中激发的应力场,使得岩石中的应力状态会按照时间顺序,先后处于以下几个阶段:径向应力与环向应力均为压应力的压剪应力状态,径向应力为压应力、环向应力为拉应力的拉剪应力状态,径向应力与环向应力均为拉应力的拉剪应力状态。
当距离爆破孔较近时,压剪应力状态控制了岩石中微裂纹的扩展;随着距离的增大,微裂纹的扩展主要由拉剪应力状态控制。
提出了基于纵波上升时间变化率的岩体爆破损伤区检测方法。
理论分析和室内试验表明,测试孔孔壁与声波换能器之间的距离对测得的纵波速度结果影响较大,并足以影响纵波速度测试结果的准确性,而测得的纵波上升时间则基本不受该距离的影响。
相对纵波速度变化率而言,纵波上升时间变化率对所测岩体物理力学特性的变化更加敏感。
通过对比分析,建立了基于纵波上升时间变化率的爆破损伤判据,较为合理的变化率为≥10%。
而且,采用纵波上升时间变化率来判别爆破损伤区,较采用传统的纵波速度变化率而言,所测得数据的稳定性及可靠性更好。
研发了可以应用纵波振幅进行损伤区检测的声波换能器。
用岩石声发射与岩石损伤分析岩爆发生机制Ξ河北理工学院资源工程系 徐东强ΞΞ 单晓云 张艳博摘 要:文中介绍了利用统计规律和连续损伤力学理论建立了声发射与损伤变量之间线性关系式;用不同孔隙率的阜平大理岩进行了双轴压缩试验,模拟了双向受力状态下的岩爆,研究了其破坏过程中的声发射特征,并从岩石损伤的角度分析了岩爆的发生机制。
关键词:声发射 损伤力学 岩爆1 前言地壳中的岩体本身存在着一个极其复杂的自然应力场。
采掘活动会引起自然应力场的变化,使岩体中的应力重新分布。
在某些条件下,积聚在岩体中的弹性应变能一旦超过岩体的弹性临界状态就会引起岩石的非线性变形,剧烈时可产生岩爆。
岩体在变形破坏过程中会产生应力波和声波,我们称为声发射。
声发射的发生是由于错位的累计而形成的裂纹、晶格错动、或从原有的缺陷发生的脆性破裂及其向外扩张传播,以及由此而引起的内部结构上的变化所释放的能量等等。
研究岩石变形破坏过程中的声发射特性,对于探讨岩体突发失稳的机制及其防治、预报岩爆具有重要作用。
损伤是指在外载荷环境的作用下,由于细观结构的缺陷(如微裂纹、微孔洞等)引起的材料或结构的劣化过程。
损伤力学则是研究含损伤介质的材料性质以及在变形过程中损伤的演化发展直到破坏的力学过程的学科。
损伤力学是近20年来发展起来的一门新的学科,它是材料结构变形与破坏理论的重要组成部分。
损伤力学的研究不仅限于金属材料方面,而且逐渐被引进到岩石、混凝土类材料的强度及结构关系的研究。
几十年来,材料损伤性质的研究发展迅速,在微观、细观及宏观的基础上进行了大量的工作。
有关细观损伤的成核机理、演化规律、细观损伤对宏观力学性质的影响等是当前损伤研究的主要问题。
通过声发射的产生机理和损伤力学的研究内容,我们有理由认为声发射活动与岩石内部的损伤状态之间存在一定的关系,本文通过阜平大理岩双向加载声发射实验和双向受力岩石损伤分析,研究了岩爆的发生机制和岩爆的预报。
2 损伤变量与声发射关系在连续损伤力学中损伤变量D是这样定义的:材料损伤形成的微孔洞、微裂纹面积与材料损伤前总承载面积之比,其表达式为: D=S nS(1)式中,S—原始无损伤时材料面积;・82・ΞΞΞ徐东强 副教授 河北唐山 063009河北省自然科学基金资助项目S n—损伤面积。
真三轴卸载下深部岩体破裂特性及诱发型岩爆机理研究一、本文概述本文旨在深入研究真三轴卸载条件下深部岩体的破裂特性及其诱发的岩爆机理。
随着地下工程向深部发展,深部岩体的力学行为及其稳定性问题日益突出。
岩爆作为一种常见的深部岩体动力灾害,对地下工程的安全性和稳定性构成了严重威胁。
因此,揭示真三轴卸载条件下深部岩体的破裂特性和岩爆机理,对于预防和控制岩爆灾害具有重要的理论意义和实践价值。
本文首先回顾了国内外关于深部岩体破裂特性和岩爆机理的研究现状,指出了现有研究的不足和需要进一步深入探索的问题。
在此基础上,通过理论分析、实验室试验和数值模拟等多种方法,系统地研究了真三轴卸载条件下深部岩体的应力-应变关系、破裂模式、能量演化规律等关键科学问题。
本文的主要研究内容包括:1)建立真三轴卸载条件下深部岩体破裂特性的理论分析框架;2)开展真三轴卸载试验,揭示深部岩体在不同卸载路径下的破裂模式和能量演化规律;3)利用数值模拟方法,分析深部岩体在真三轴卸载过程中的应力分布、位移场和能量场的变化特征;4)结合理论分析和数值模拟结果,探讨真三轴卸载条件下诱发岩爆的机理和影响因素。
本文的研究成果不仅有助于深化对深部岩体破裂特性和岩爆机理的认识,也为地下工程的安全设计和灾害防控提供了重要的理论依据和技术支持。
二、真三轴卸载条件下深部岩体破裂特性研究在真三轴卸载条件下,深部岩体的破裂特性是一个复杂且关键的问题。
为了深入了解这一过程,本研究采用了一系列先进的实验方法和数值模拟技术,对岩体的应力-应变行为、破裂模式以及能量演化等方面进行了详细的分析。
通过真三轴实验设备对深部岩体进行卸载模拟。
实验过程中,我们精确控制了卸载速率和卸载路径,以模拟实际工程中的卸载过程。
同时,利用高分辨率的摄像头和位移传感器,实时记录了岩体表面的裂缝扩展和变形情况。
实验结果表明,在真三轴卸载条件下,深部岩体的破裂特性呈现出明显的非线性特征。
随着卸载的进行,岩体内的应力场和应变场发生重分布,导致岩体逐渐产生裂缝。
声发射与微震监测定位技术的研究进展声发射与微震监测定位技术是一种用于监测结构物或岩体中的裂纹、破坏和泄漏等问题的非破坏性测试方法。
声发射技术可以通过监听结构物中的超声波信号来监测可能出现的破坏现象,而微震监测定位技术则是通过检测地下微震信号来定位地下的异常活动。
这两种技术的研究进展如下。
声发射技术的研究进展:1.监测范围扩大:声发射技术最初主要应用于金属材料和混凝土等结构物的监测,但近年来已逐渐扩大到了岩石、岩层和土体等更广泛的领域。
2.信号处理优化:研究者们通过改进信号处理算法和技术,提高了对声发射信号的识别和分类能力,从而提高了监测的准确性和可靠性。
3.嵌入式监测:采用嵌入式技术,将声发射传感器安装在结构物的内部,实现对结构物长期在线的监测和预警。
这种技术能够提早发现潜在的潜在破坏问题,为维修和保养提供便利。
4.发展远程监测:通过无线传输技术和互联网的发展,研究者们已经开始利用远程监测平台对声发射信号进行实时观测和分析,实现了对分布广泛的结构物的长期监测。
微震监测定位技术的研究进展:1.定位精度提高:研究者们通过改进定位算法和传感器布置方式,提高了地下微震信号的定位精度。
现在的微震监测定位技术可以实现对地下微震事件的三维定位。
2.目标识别和分类:通过对地下微震信号的特征参数进行分析,研究者们已经实现了对不同类型的地下微震事件进行识别和分类,例如定位地震、洪水和岩体破裂等。
3.监测深度提高:通过改进传感器的灵敏度和信号放大技术,研究者们已经实现了对深层地下微震信号的监测。
现在的微震监测技术可以监测到几百米甚至上千米深度的地下微震事件。
4.同步监测网络:通过部署多个微震监测站点,并采用同步监测网络的方式,研究者们可以实现对区域内微震事件的协同监测和定位,提高监测的准确性和可靠性。
声发射与微震监测定位技术的研究进展主要包括监测范围的扩大、信号处理优化、嵌入式监测和远程监测,以及微震监测定位技术中定位精度的提高、目标识别和分类、监测深度提高和同步监测网络的发展。
岩石声发射的Kaiser效应及其应用摘要:岩石声发射技术在岩土工程应用中具有重要意义。
借助于岩石声发射技术,可以再时间、空间和强度上分析岩石破裂过程中的力学行为与岩石内部结构变化之间的关系,揭露岩石破坏过程中的基本规律;可以了解岩石内部介质缺陷的状态;还可以推断认识缺陷形成的历史和发展的趋势。
在岩石的声发射中,kaiser效应是岩石材料的一种“记忆”现象,对于研究岩石的声发射机理以及在岩土工程中的应用有着重要地位。
本文介绍了岩石声发射技术以及岩石声发射的kaiser效应,从其在岩土工程实际中的应用说明了其重要意义。
关键词:声发射;弹性波;kaiser效应;应用;大地应力Rock acoustic emission Kaiser effect and its applicationChen zhouAbstract:Rock acoustic emission technique in geotechnical engineering application has important significance. With the help of rock acoustic emission technology, can be time, space and intensity analysis in the process of rock fracture mechanics and rock internal relationship between structural changes, exposing the rock failure process of basic law; can understand the rock medium defect state; can also be inferred knowledge defect formation in the history and development trends. In the rock acoustic emission of rock material, the Kaiser effect is a phenomenon of " memory ", for the study of rock acoustic emission mechanism and application in geotechnical engineering is very important. This paper introduces the rock acoustic emission technology and Kaiser effect of acoustic emission in the rock and soil engineering, from the actual application shows its significance.Key words:Acoustic emission; elastic wave; Kaiser effect; application; ground stress.1 岩石声发射基础固体物质在外界条件(机械载荷、温度变化等)作用下,其内部将产生局部应力集中现象,而应力集中区的高能状态是不稳定的,必将向稳定的低能状态过度,在这一过程中,应变能将以弹性波的形式释放,即声发射现象【1】。
第30卷第8期岩石力学与工程学报V ol.30 No.8 2011年8月Chinese Journal of Rock Mechanics and Engineering Aug.,2011煤岩体破裂过程中声发射行为及时空演化机制左建平1,2,裴建良3,刘建锋3,彭瑞东1,李岳春2(1. 中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083;2. 中国矿业大学力学与建筑工程学院岩石力学与分形研究所,北京 100083;3. 四川大学水利水电学院,四川成都 610065)摘要:利用MTS 815试验机和声发射监测系统对单体岩石、单体煤和煤岩组合体进行单轴试验下的声发射测试,找出三者之间破坏机制的差异,从而为现场微震监测提供指导。
试验结果表明,随着荷载的增加,单体岩石、单体煤及煤岩组合体的累积声发射数都增加,并且煤及煤岩组合体单位体积的声发射数要比岩石的声发射数高1个数量级,这主要是煤的强度较低且内部结构松软破碎所致。
通过区分不同时段的声发射特征,得出三者破坏存在本质差异:随着荷载的增加,岩石的时段声发射数逐渐增多,煤的时段声发射数逐渐减少,而煤岩组合体的时段声发射先逐渐增加后逐渐减少。
岩石的抗拉强度最高,煤的最低,而煤岩组合体的位于单体岩石和煤之间。
对于煤岩组合体,岩石内部的声发射数约占声发射总数的10%~30%,煤体占70%~90%;并且声发射的空间分布主要受煤体结构及原生裂隙的影响。
关键词:岩石力学;煤岩组合体;声发射;破坏机制;三维空间定位中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2011)08–1564–07INVESTIGATION ON ACOUSTIC EMISSION BEHA VIOR AND ITSTIME-SPACE EVOLUTION MECHANISM IN FAILURE PROCESS OFCOAL-ROCK COMBINED BODYZUO Jianping1,2,PEI Jianliang3,LIU Jianfeng3,PENG Ruidong1,LI Yuechun2(1. State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing 100083,China;2. Institute of Rock Mechanics and Fractals,School of Mechanics and Civil Engineering,China University of Mining andTechnology,Beijing100083,China;3. College of Water Resources and Hydropower,Sichuan University,Chengdu,Sichuan610065,China)Abstract:Both of MTS 815 testing system and acoustic emission (AE) monitoring system are used to measure the AE activities of single rock,single coal and coal-rock combined body under uniaxial compression test. We focus on finding the discrepancies of failure mechanisms of the three;and then it can provide guidance for microseismic monitoring in the field. The experimental results indicate that with the increase of load,the cumulative AE numbers of single rock,single coal and coal-rock combined bodies are increasing. In addition,the AE numbers of unit volume of single coal or coal-rock combined body is about 1 order of magnitude more than those of single rock. It can be attributed to the low coal strength and its internal fractured structure. Through comparison of the AE numbers of different periods,we find the essential characteristics among the three kinds of samples. With the increase of load,the AE number in a time interval gradually increases in rock,decreases in coal,and increases initially and then decreases in coal-rock combined body. In the three kinds of samples,single rock and coal have the maximum and the minimum failure strength,respectively. However,the failure strength of coal-rock combined收稿日期:2011–02–14;修回日期:2011–03–31基金项目:高等学校全国优秀博士学位论文作者专项资金(201030);国家重点基础研究发展计划(973)项目(2010CB732002);教育部新世纪优秀人才支持计划(NCET–09–0726)作者简介:左建平(1978–),男,博士,1999年毕业于中南大学机电工程学院机辆工程专业,现任副教授,主要从事岩石力学、损伤、断裂及数值计算等方面的教学与研究工作。
·68·第8期张慧敏,等.大连自贸区岩质边坡稳定性评价在滑动面上边坡安全系数要根据极限平衡条件求得。
这时,安全系数等于总抗滑力比总滑动力如式(1)。
Fs=(CL+γV cosαtanφ)/γV sinα(1)式中:C代表岩土体的黏聚力,kPa;L表示滑动面的长度,m;γ表示边坡土体的容重,kn/m3;V代表岩体的体积,m3;α代表结构面的倾角,(°);φ表示内摩擦角,(°)[7]。
计算结果见表2,由表2可知,平面滑动法所得到的边坡安全系数与上述赤平投影法所得到的边坡稳定状态相符合,三段边坡均处于稳定状态。
需要注意的是,通过平面滑动法得到的BC段边坡安全系数结果接近规范规定结果,理论上边坡仍处于稳定状态,但在实际工程应用中,这种类型边坡需要做支护处理,下文中有提及支护建议。
5边坡防护建议现场调查发现,该段边坡长时间暴露在外,在风化作用以及雨水的冲刷作用下,仍然存在坍塌滑落的风险。
而大连地处季风气候区,夏季多突发性暴雨。
据统计,大连日最大降水量为247.2mm,在这种条件下非常容易引发滑坡、崩塌、泥石流等突发性地质灾害[5-6]。
研究区域内岩体破碎,发育有大量节理、裂隙,遇降雨后易形成坡面径流,雨水沿着岩石上部裂隙不断渗入,在此条件下岩体会发生软化导致岩体抗剪强度降低,为滑塌创造条件。
观察该段边坡岩土体的情况可以发现,这段边坡坡度较大且遭受风化剥蚀严重,决定采取喷锚支护作为边坡的防护手段。
5.1支护技术参数设置全场黏结锚杆,锚杆长度6m,间距3×3m,梅花型布置。
AB段边坡支护如图5所示。
表面喷C20混凝土,混凝土厚度10cm。
坡面设置泄水孔,间距3×3m。
施工时坡面表面将松动和凸出的岩体凿除。
坡顶和坡底各设置一道截水沟,截水沟截面面积500×500mm2。
5.2支护施工工序支护施工工序如下:首先,清理坡面上的孤石、危岩及破碎岩体,并清除坡面植被;其次,分层清理坡面,清理一层完毕后立即进行坡面钻孔,设置锚杆;最后,喷射混凝土,挂设钢筋网,张拉锚索,设置坡面泄水孔。