纵联保护工作原理和故障处理
- 格式:ppt
- 大小:1.66 MB
- 文档页数:1
浅谈输电线路的纵联保护摘要:本文首先就输电线路纵联保护原理、概念、分类进行了介绍,而后进一步深入,对纵联差动保护应解决的主要问题及解决措施展开了剖析。
关键字:纵联保护;故障;光纤纵联差动保护一、纵联保护(一)基本原理纵联保护是将线路两侧测量信息进行判断实现全线速动保护,其基本原理有如下三种:(二)概念和分类将线路两侧测量信息传到对侧进行比较构成的全线速动保护,称作线路纵联保护。
线路纵联保护不需与其他保护配合,不受负荷电流的影响,不反应系统震荡,有良好的选择性。
通常用高频通道组成的纵联保护称高频保护,用光纤通道组成的纵联保护称光纤纵联差动保护。
二、纵联差动保护应解决的主要问题及措施(一)纵联差动保护应解决的主要问题1、输电线路电容电流的影响电容电流是从线路内部流出的电流,因此它构成动作电流。
由于负荷电流是穿越性的电流,它只产生制动电流。
所以在空载或轻载下电容电流最容易造成保护误动。
2、外部短路或外部短路切除时产生的不平衡电流外部短路或外部短路切除时,由于两端电流互感器的变比误差不一致、暂态过程中由于两端电流互感器的暂态特性不一致、二次回路的时间常数的不一致产生不平衡电流。
3、重负荷线路区内经高阻接地时灵敏度不足的问题4、正常运行时电流感器(TA)断线造成纵联电流差动保护误动作正常运行时当输电线路一端的TA断线时差动继电器的动作电流和制动电流都等于未断线一端的负荷电流。
由于差动继电器的制动系数小于1,起动电流值又较小,因此工作点将落在比率制动特性的动作区内造成差动继电器动作。
5、弱电端拒动的问题当线路有一端背后无电源或为小电源时该端称为弱电端。
6、输电线路两端保护采样时间不一致所产生的不平衡电流的问题引起两侧采样不同步的原因:(1)两侧装置上电时刻的不一致;(2)一侧数据传送到另一侧有通道时延和数据接收时延;(3)两侧装置晶振存在固有偏差;(二)解决措施1、防止电容电流造成保护误动的措施(1)提高差动继电器比率制动曲线中的起动电流Iqd的定值来躲电容电流的影响。
一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流为11TAIn-22TAIn=1I'-2I'≈0 ,故KD不会动作。
当在保护区内K2点故障时,I1与I2 同向流入,KD的电流为:11TAIn+22TAIn=1I'+2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I'-(3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2kTAIn≥I set,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。
通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达:.min.min.min()brk brkop ork brk opI II K I I I>≥≤+式中:Kst——同型系数,取0.5;Kunp——非周期性分量影响系数,取为1~1.5;fi ——TA的最大数值误差,取0.1。
为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max(Krel为可靠系数,取1.3)。
Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。
此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg短路时,保护不能动作。
对于大、中型发电机,即使轻微故障也会造成严重后果。
一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1 与 I2 反向流入,KD的电流为11TAIn- 22TAIn=1I' - 2I'≈0 ,故KD不会动作。
当在保护区内K2点故障时, I1与 I2 同向流入,KD的电流为:11TAIn+ 22TAIn=1I' +2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I' - (3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。
通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst ——同型系数,取;Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。
为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop=(Krel 为可靠系数,取)。
越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。
此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。
对于大、中型发电机,即使轻微故障也会造成严重后果。
为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。
纵联和横联差动保护的原理~!电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。
这就不能满足高压输电线路系统稳定的要求。
如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。
当在被保护范围内任一点发生故障时,它都能瞬时切除故障。
-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。
纵联差动保护原理接线如下图所示。
,即为电流互感器二次电流的差。
差回路:继电器回路。
正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。
实际上,差回路中还有一个不平衡电流Ibp。
差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。
内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。
结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。
差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。
∙Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。
三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。
闭锁式纵联方向保护的原理摘要:通过对输电线路闭锁式纵联方向保护的原理的了解、保护动作过程、方向元件的要求、起动元件的要求及一些功能与问题的探讨,总结出了闭锁式纵联方向保护的本质。
关键词:闭锁式;纵联方向保护;启信;停信1、基本原理如果我们在输电线路的每一端都装设两个方向元件:一个是正方向元件F+,正方向故障时动作,反方向故障不动作;一个是反方向元件F-,正方向故障时不动作,反方向故障时动作(我们定义母线指向线路为正方向)。
那么在如图所示的线路上,NP线路发生短路,MN为非故障线路。
通过观察我们可以发现:对于故障线路NP,两端方向元件F+均动作,F-均不动作;对于非故障线路MN,1端F+动作,F-不动作,而2端F+不动作,F-动作。
这也就是故障线路和非故障线路的特征区别。
利用这种差别,我们可以判断区外还是区内故障,保护应该动作还是闭锁。
闭锁式纵联方向保护的做法是:在F+不动作,F- 动作的这一端持续发闭锁信号。
这样,在非故障线路上至少有一端(近故障点端)会一直发闭锁信号(发信),两端保护收到该闭锁信号将会闭锁保护;在故障线路上,两端都不符合这一条件,所以闭锁信号会消失(停信),保护动作后就可以出口跳闸。
这就是闭锁式纵联方向保护的基本原理。
2、方向元件的要求方向元件是用来判断区内/区外故障的,对于纵联方向保护至关重要,对于方向元件,需要满足以下几个要求:(1)有明确的方向性,就是说F+只能在正方向可靠动作,F-只能在反方向可靠动作;(2)F+元件可靠保护本线路全长;(3)F-元件比F+元件动作得更快、更加灵敏。
只要F-元件只要一动作,说明是反方向故障,立即持续发信闭锁保护。
这就是反方向元件闭锁保护优先原则;(4)F+ 动作则停止发信机发信;3、起动元件的要求(1)低定值起动元件动作,控制收发信机开始发信,在此之前,通道内没有闭锁信号;(2)高定值起动元件动作后,终止正常程序,正式进入故障计算程序,保护开放;(3)高低定值一般相差1.6~2倍。
纵联保护的工作原理纵联保护是一种电力系统故障保护方式,通过在电力系统的不同位置之间建立起纵向保护通路,可以实现对系统故障的快速检测和隔离,以保证电力系统的安全运行。
纵联保护的工作原理是基于电力系统的特性和信号传输原理。
当电力系统发生故障时,例如短路故障,故障点附近的电流和电压会发生异常变化。
纵联保护装置通过在电力系统中布置传感器和测量设备,可以实时监测电流和电压的变化情况。
在纵联保护装置中,通常会设置多个保护点,每个保护点都与电力系统的不同位置相连。
当故障发生时,保护装置会接收到与故障相关的信号,并进行处理。
首先,保护装置会对接收到的信号进行分析,以确定故障的位置和类型。
然后,保护装置会发送信号到相应的断路器或隔离开关,将故障隔离,以防止故障向其他部分传播,从而保护电力系统的安全运行。
纵联保护的工作原理可以通过以下步骤来描述:1. 信号采集:纵联保护装置通过传感器和测量设备采集电力系统中的电流和电压信号。
2. 信号处理:保护装置对采集到的信号进行处理和分析,以确定故障的位置和类型。
这一步通常涉及信号滤波、特征提取和故障定位等算法。
3. 故障判断:根据处理后的信号,保护装置判断是否发生了故障。
如果发现故障,保护装置会进一步确定故障的类型,例如短路故障、接地故障等。
4. 故障隔离:保护装置会发送信号到相应的断路器或隔离开关,将故障隔离,以防止故障向其他部分传播。
同时,保护装置会发送报警信号,通知运维人员进行故障处理。
纵联保护的工作原理有效地提高了电力系统的可靠性和安全性。
通过及时检测和隔离故障,纵联保护可以防止故障扩大,减少系统停电时间,保护电力设备免受损坏,从而提高电力系统的可用性和稳定性。
纵联保护是一种重要的电力系统保护方式,它通过建立纵向保护通路,实现对电力系统故障的快速检测和隔离。
纵联保护的工作原理是基于电力系统的特性和信号传输原理,通过信号采集、处理、故障判断和故障隔离等步骤,保护电力系统的安全运行。
一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为11TA In - 22TA I n =1I '- 2I '≈0 ,故KD 不会动作。
当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为:11TA I n + 22TA I n =1I '+ 2I '=2k TAI n当2k TAI n 大于KD 的整定值时,即 1I ' - (3)maxmax /unb st unp i k TA I K K f I n =≠0 ,KD 动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。
通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst ——同型系数,取;Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。
为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop=(Krel 为可靠系数,取)。
越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。
此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。