北师大版数学八年级下册1.1 等腰三角形(三)
- 格式:doc
- 大小:44.00 KB
- 文档页数:5
八年级数学下册目录(北师大版)第一章三角形的证明
1. 等腰三角形
2. 直角三角形
3. 线段的垂直平分线
4. 角平分线
回顾与思考
复习题
第二章一元一次不等式与一元一次不等式组
1. 不等关系
2. 不等式的基本性质
3. 不等式的解集
4.一元一次不等式
5.一元一次不等式与一次函数
6.一元一次不等式组
回顾与思考
复习题
第三章图形的平移与旋转
1. 图形的平移
2. 图形的旋转
3. 中心对称
4. 简单的图案设计
回顾与思考
复习题
第四章因式分解
1. 因式分解
2. 提公因式法
3. 公式法
回顾与思考
复习题
第五章分式与分式方程
1. 认识分式
2. 分式的乘除法
3. 分式的加减法
4. 分式方程
回顾与思考
复习题
第六章平行四边形
1. 平行四边形的性质
2. 平行四边形的判定
3. 三角形的中位线
4. 多边形的内角和与外角和
回顾与思考
复习题。
北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题3(含答案)1.等腰△ABC中,它的底角∠B=70°,则顶角∠A的度数为()A.70°B.30°C.40°D.60°2.等腰三角形的一个内角是70°,则它顶角的度数是()A.70°B.70°或40°C.70°或50°D.40°3.如图所示,△ABC中,AB=AC,D是BC上一点,DE⊥AB于点E,若∠A=50°,则∠BDE的度数是()A.65°B.50°C.30°D.25°4.如图,△ABC中,DE垂直平分AB,垂足为D,交BC于E,若∠B=32°,AC=CE,则∠C的度数是()A.52°B.55°C.60°D.65°5.等腰三角形其中两条边的长度为5和11,则该等腰三角形的周长为()A.21B.27C.21或32D.21或276.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.107.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度为()A.10B.9C.D.第3题第4题第6题第7题8.如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°9.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD,若∠BAD=55°,∠B=50°,则∠DEC的度数为()A.125°B.120°C.115°D.110°10.如图,已知∠AOB=10°,且OC=CD=DE=EF=FG=GH,则∠BGH=()A.50°B.60°C.70°D.80°11.如图,在△ABC中,AB=AC,∠A=30°,直线m∥n,顶点C在直线n上,直线m 交AB于点D,交AC于点E,若∠1=150°,则∠2的度数是()A.45°B.40°C.35°D.30°12.如图所示,△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,连接BF,∠A=50°,AB+BC=16cm,则△BCF的周长和∠E分别等于()A.16cm,25°B.8cm,30°C.16cm,40°D.8cm,25°第9题第10题第11题第12题13.等腰三角形一腰上的高与另一腰的夹角是45°,则这个三角形的底角为()A.67°31′B.22°30′C.67°30′D.22°30′或67°30′14.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.15.如图,在等腰△ABC中,顶角∠A=44°,BD平分底角∠ABC交AC于点D,E是BC 延长线上一点,且CD=CE,则∠E的度数为()A.22°B.44°C.34°D.68°16.如图,在△ABC中,AB=AC,点D,E在边BC上,∠BAD=∠CAE,若BC=15,DE =6,则CE的长为()A.3.5B.4.5C.5D.5.5第14题第15题第16题17.如图,等腰△ABC中,点P是底边BC上的动点(不与点B,C重合),过点P分别作AB、AC的平行线PM、PN,交AC、AB于点M、N,则下列数量关系一定正确的是()A.PM+PN=AB B.PM+PN=BCC.PM+PN=2BC D.PM+PN=AB+BC18.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为()A.17cm B.5cm C.5cm或17cm D.无法确定19.如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC,则图中等腰三角形的个数是()A.1个B.2个C.3个D.4个20.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,那么图中的等腰三角形有()A.2个B.3个C.4个D.5个21.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,若C也是图中的格点,则使得△ABC是以AB为一腰的等腰三角形时,点C的个数是()A.8B.6C.4D.722.如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,AC所在直线为y 轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个23.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形24.等腰三角形的周长为16,且边长为正整数,则底边长为.25.如图,在△ABC中,AE=DE=BD,AD=EC,∠1=17°,则∠EBC的度数是.26.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.27.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)28.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.29.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.参考答案1.解:根据题意∠C=∠B=70°,∴∠A=180°﹣70°﹣70°=40°.故选:C.2.解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故选:B.3.解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,∵DE⊥AB,∴∠BED=90°,∴∠BDE=90°﹣∠B=25°.故选:D.4.解:连结AE,∵△ABC中,DE垂直平分AB,∠B=32°,∴∠BED=58°,∴∠AED=58°,∴∠AEC=64°,∴∠C=180°﹣64°×2=52°.故选:A.5.解:若5为腰长,则三边为5,5,11,∵5+5<11,∴5,5,11不能构成三角形,若11为腰长,则三边为5,11,11,∵5+11>11,∴等腰三角形的周长为5+11+11=27,故选:B.6.解:连接AO,如图,∵AB=AC=6,∴S△ABC=S△ABO+S△AOC=AB•OE+AC•OF=15,∵AB=AC,∴AB(OE+OF)=15,∴OE+OF=5.故选:A.7.解:连接AO,OB,OC,∵O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,∴O在∠BAC的角平分线上,∵AB=AC,∴AO过D,且AD⊥BC,∵BC=12,∴BD=CD=6,在Rt△ADC中,由勾股定理得:AD===8,即BD=8,设OD=x,则OE=OF=4x,∵S△ABC+S△OBC=S△ABO+S△ACO,AB=AC=10,BC=12,AD=8,∴=+,∴=,解得:x=,即OD=,∴AO=AD+OD=8+=,故选:D.8.解:设∠C=x,根据等腰三角形的性质得∠EBC=x,则∠DBE=130°﹣x,根据等腰三角形的性质得∠EDB=25°+x,根据三角形外角的性质和等腰三角形的性质得∠A=12.5°+x,依题意有12.5°+x+x+130°=180°,解得x=30°.故选:D.9.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.故选:C.10.解:∵OC=CD,∴∠CDO=∠O=10°∴∠DCE=∠O+∠CDO=20°,∵CD=DE,∴∠DCE=∠CED=20°,∴∠EDF=∠O+∠CED=30°,∵DE=EF,∴∠EDF=∠EFD=30°,同理∠GEF=∠EGF=40°,∠GFH=∠GHF=50°,∠BGH=60°,故选:B.11.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=150°,∴∠AED=150°﹣30°=120°,∵m∥n,∴∠AED=∠2+∠ACB,∴∠2=120°﹣75°=45°,故选:A.12.解:∵在△ABC中,AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,∵DE是AB的垂直平分线,∴AF=BF,∠BDE=90°,∴∠E=90°﹣∠ABC=25°,∵AB+BC=16cm,∴△BCF的周长为:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=16cm.故选:A.13.解:有两种情况;(1)如图,当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°;(2)如图,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G=×(180°﹣135°)=22.5°,故选:D.14.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)]=360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.15.解:∵△ABC是等腰三角形,∴AB=AC,∴∠ABC=∠ACB,∵∠A=44°,∴∠ABC=∠ACB==68°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB=68°,∴∠E=34°,故选:C.16.解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∵BC=15,DE=6,∴BD+CE=9,∴CE=4.5,故选:B.17.解:∵AB=AC,∴∠B=∠C,∵PN∥AC,∴∠BPN=∠C=∠B,∴PN=BN,∵PM∥AB,PN∥AC,∴四边形AMPN是平行四边形,∴PM=AN,∴PM+PN=AN+BN=AB,故选:A.18.解:设等腰三角形的腰长是xcm,底边是ycm.根据题意,得:或,解得或.再根据三角形的三边关系知:8,8,17不能组成三角形,应舍去.所以它的底边长是5cm.故选:B.19.解:∵AC=BC,∠C=36°,∴△ABC是等腰三角形,∠BAC=∠ABC=72°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠C=36°∴△CAD为等腰三角形,∵∠BDA=∠C+∠CAD=72°=∠B,∴△BAD为等腰三角形,∴则图中等腰三角形的个数是3个.故选:C.20.解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:D.21.解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.22.解:如图,①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;∴符合条件的点有8个.故选:C.23.解:由图可得,AC=BC=,AD=BD=5,∴△ABC、△ABD都是等腰三角形,故选:A.24.解:由题意得:2x+y=16,∵三角形的两边之和大于第三边,∴符合条件的三角形有:腰长为5,底边为6;腰长为6,底边为4;腰长为7,底边为2;∴底边长为2,4,6,故答案为:2或4或6.25.解:∵BD=DE,∴∠DEB=∠1=17°,∴∠ADE=∠1+∠DEB=34°,∵AE=DE,∴∠A=∠ADE=34°,∵BD=AE,AD=CE,∴AD+BD=CE+AE,即AB=AC,∴∠ABC=∠C=73°,∴∠CBE=∠ABC﹣∠1=56°,故答案为:56°.26.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.27.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.28.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.29.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.。
第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。
课时课题:第一章第一节等腰三角形第3课时教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:反证法的含义,利用反证法证明简单的命题.教法与学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.课前准备:多媒体课件教学过程:第一环节回顾旧知复习导入师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。
生1:等腰三角形两底角相等,就是“等边对等角”。
生2:“三线合一”。
生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。
师:非常好!同学们概括的很全面。
那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。
结论:两底角相等。
师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。
设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。
学生独立思考是对上节课内容有效地检测手段。
第二环节 合作探究 展示交流师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。
请同学们画出图形,写出已知、求证。
第一章三角形的证明
1. 等腰三角形(三)
一、学生知识状况分析
本节课是等腰三角形的第三课时,通过前面两课时的学习,学生已经掌握了等腰三角形的相关性质,并知道了用综合法证明命题的基本要求和步骤。
为学习等腰三角形的判定定理奠定了知识和方法的基础。
二、教学任务分析
本节课的主要任务是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明。
这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一。
因此,本节课的教学目标定为:
1.探索等腰三角形判定定理.
2.理解等腰三角形的判定定理,并会运用其进行简单的证明.
3.了解反证法的基本证明思路,并能简单应用。
4.培养学生的逆向思维能力。
三、教学过程分析
本节课的教学过程设计了以下六个环节:复习引入--逆向思考,定理证明---巩固练习----适时提问导出反证法---拓展延伸----课堂小结。
第一环节:复习引入
活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?
问题2.我们是如何证明上述定理的?
问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?
活动意图:设计是问题串是为引出等腰三角形的判定定理埋下伏笔。
学生独立思考是对上节课内容有效地检测手段。
第二环节:逆向思考,定理证明
活动过程与效果:
教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?
[生]如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个
全等的三角形,使AB与AC成为对应边就可以了.
[师]你是如何想到的?
[生]由前面定理的证明获得启发,比如作BC的中线,或作A的平分
线,或作BC上的高,都可以把△ABC分成两个全等的三角形.[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论.
[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的.后两种方法C
B
A
是可行的.
[师]那么就请同学们任选一种方法按要求将推理证明过程书写出来.(教师可让两个同学在黑板上演示,并对推理证明过程讲评)
(证明略)
[师]我们用“反过来”思考问题,获得并证明了一个非常重要的定理——等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.这一定理可以简单叙述为:等角对等边.我们不仅发现了几何图形的对称美,也发现了数学语言的对称美.
第三环节:巩固练习
活动过程与效果:将书中的随堂练习提前到此,是为了及时巩固判定定理。
引导学生进行分析。
已知:如图,∠CAE 是△ABC 的外角,AD∥BC 且∠1=∠2.
求证:AB=AC .
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,∴∠B=∠C.
∴AB=AC(等角对等边). 第四环节:适时提问 导出反证法
活动过程与效果: 我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:
C
21B
A D
小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不
相等.你认为这个结论成立吗?如果成立,你能证明它吗?
有学生提出:“我认为这个结论是成立的.因为我画了几个三角形,观察并
测量发现,如果两个角不相等,它们所对的边也不相等.但要像证明“等角对等
边”那样却很难证明,因为它的条件和结论都是否定的.”的确如
和方法呢?
我们来看一位同学的想法:
如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.
假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是
∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC
你能理解他的推理过程吗?
再例如,我们要证明△AB C中不可能有两个直角,也可以采用这位同学的
证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,
但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”
相矛盾,因此△ABC中不可能有两个直角.
引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。
都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过
的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我
们把它叫做反证法.
接着用“反过来”思考问题的方法获得并证明了等腰三角形的判定定理
“等角对等边”,最后结合实例了解了反证法的含义.
第五环节:拓展延伸
活动过程与效果:在一节课结束之际,为培养学生思维的综合性、灵活性特安排了2个练习。
一个是通过平行线、角平分线判定三角形的形状,再通过线段的转换求图形的周长。
另一个是一个开放性的问题,考察学生多角度多维度思考问题的能力。
学生在独立思考的基础上再小组交流。
1.如图,BD 平分∠CBA ,CD 平分∠ACB ,且MN ∥BC ,设AB=12,AC=18,求△AMN 的周长. .
2.现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?
第六环节:课堂小结
(1)本节课学习了哪些内容?
(2)等腰三角形的判定方法有哪几种?
(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.
(4)举例谈谈用反证法说理的基本思路
N M C
B A
D。