《点群和空间群》PPT课件
- 格式:ppt
- 大小:18.33 MB
- 文档页数:4
国际符号international symbol 采用国际符号,不仅可以表示出各种晶类中有那些对称元素,而且还能表示出这些对称元素在空间的方向。
国际符号根据各种晶类的对称性可以是三项、或二项、或一项符号组成,它分别表示晶体某三个、或二个、或一个方向上的对称元素。
如果在某一个方向上,同时具有对称轴和垂直于此轴的对称面,则写成分数形式。
熊夫利斯(Sch öenfles )符号C n :字母表示旋转的意思,组标n 表示旋转的次数,n=1、2、3、4、6。
例如C 2代表二次旋转轴。
C nh :表示除了n 次旋转轴外,还包括一个与此轴垂直的对称面。
C nv :表示除了n 次旋转轴外,还包括一个与此轴重合(即平行)的对称面。
C ni :表示除了n 次旋转轴外,还包括一个对称中心。
C i:表示有一个对称中心。
S4:表示有一个四次旋转倒反轴。
D n:表示除了n次主旋转轴外,还包括n 个与之轴垂直的二次旋转轴。
D nh:表示除了D n的对称性外,还包括一个与主旋转轴垂直的对称面,和n个与二次旋转轴重合(即平行)的对称面。
D nd:表示除了D n的对称性外,还包括n个T:除了四个三次旋转轴外,还包括三个正交的二次旋转轴。
T h:除了T的对称性外,还包括与二次旋转轴垂直的三个对称面。
T d:除了T的对称性外,还包括六个平分两个二次旋转轴夹角的对称面。
O:包括三个互相垂直的四次旋转轴,六个二次旋转轴,和四个三次旋转轴。
O h:除了O的对称性外,还包括T d与T h的对国际符号与熊氏符号对比国际符号熊氏符号1C 12C 23C 34C 46C 6m C sC i ,S 2S 14其它注意事项由于分子没有无限周期性的限制,所以分子点群的数目要多于晶体中的点群数目32个; 自然界对称性很多,例如:五度对称性,足球,富勒烯C 60,buckministerfullerence ,碳管小结summary密勒指数(Miller indices)对称元素和对称操作晶体的三十二个点群对称性和点群对于压电铁电体非常重要! 只有晶体才会有压电铁电性,不存在非晶压电铁电体。
点群空间群和晶体结构
一、点群
点群是模拟物体在实际应用中的一种常用方法,它可以使用离散的点
来模拟物体的形状,形成空间网格。
它比传统三维建模技术更易于实现,
更少的信息就可以获得一个物体的完整几何描述。
点群可以被用来快速创建几何模型,而且可以利用点的位置和位置关
系来描述一个物体的形状特征,例如法向量和曲率,这对于计算机视觉、
求解机器人运动规划任务等都是非常有用的信息。
点群技术也被用来提取
复杂物体的特征,比如可以通过计算点群中局部点的法向量和曲率等特征
来识别物体的形状。
点群技术的另一个重要应用是三维重构,也就是把两个点群之间的关
系映射为3D模型,这样可以根据点群之间的变换关系或者任意点群之间
的距离来精确恢复模型的几何形状和位置变换。
点群技术的另一个作用就是可以将点群视为物体制作模型的基础构件,如通过点群文件可以构建3D打印、CAD和CAM模型。
二、空间群
空间群是由含有三维空间元素的群体组成的,是用来描述三维物体的
空间结构的一种技术。
空间群可以帮助科学家和工程师深入理解物体的表
面结构,从而更好地控制物体的生长和变化。
一些物理对象能够在一定的操作下保持不变,这种性质称为对称性,使物理对象保持不变的操作O叫做对称操作。
按顺序先做对称操作O1,再做对称操作O2,显然物理对象保持不变,因此连做两次对称操作是一个新的对称操作O3,可以记为O3 O2O1,O2O1称为对称操作的乘积。
对称操作O的逆操作也保持物理对象不变,因此也是一个对称操作,记为O−1,按照数学上的定义,对称操作全体关于前面定义的乘法成为一个群,称为对称群,对称操作O称为对称元素。
使晶体保持不变的空间变换构成的群称为空间群。
空间群的元素一般写成 R| ,其中R是一个3 3矩阵,代表对称操作的旋转部分(包括空间反演), 是一个矢量, R| 把空间矢量r 变为 R| r Rr 。
乘法规则R2| 2 R1| 1 r R2| 2 R1r 1R2R1r R2 1 2R2R1|R2 1 2 r就是说R2| 2 R1| 1 R2R1|R2 1 2因此R−1|−R−1 R| I|0R| −1 R−1|−R−1一般来说即使 R| 是一个对称操作,单纯的转动R也不是对称操作,但是按照上面的乘法和取逆规则,空间群元素的旋转部分全体也构成一个群,这个群叫做点群。
晶体的点群的元素R一般不能保持晶体不变,点群一般不是晶体的空间群的子群。
下面证明几个基本事实:1.对任意格矢l 和对称操作 R| ,都有Rl l ′,也就是说虽然 R|0 一般不能保持晶体不变,但是 R|0 可以保持空间点阵不变。
证明: R| 、 I|l 和 R| −1 R−1|−R−1 都是对称操作,因此它们的乘积也是对称操作,按照上面的乘法规则,我们有R| I|l R−1|−R−1R|Rl R−1|−R−1I|Rl这是一个单纯的平移,因此Rl l ′必定是一个格矢。
2.对称操作的旋转角只能取0,60∘,90∘,120∘,180∘及其整数倍。
证明:首先任取一个不平行于转轴的格矢l ,按照上面的结论,Rl 也是格矢,因此非零矢量Rl −l (如果det R −1,R包含空间反演或镜面反射,则取Rl l )也是格矢,且从几何关系易知格矢Rl −l (如果det R −1,R包含空间反演或镜面反射,则取Rl l )垂直于转轴。