专题 多面体的外接球问题
- 格式:doc
- 大小:509.78 KB
- 文档页数:4
专题2多面体的外接球第一讲长方体切割体的外接球a,b,c.图1墙角体图1鳖臑图3挖墙角体图4对角线相等的四面体图1与图2有重垂线,三视图都是三个直角三角形,图3无重垂线,俯视图是一矩形,AC为虚线,主视图和左视图为直角三角形.图4中,22222222222222222222228a b BCAD BCAB CD b c AC a b c RAC BD c a ABααβγαβγβγ⎧+===⎫⎪++++⎪=⇒+==⇒++=⇒=⎬⎨⎪⎪=+==⎭⎩,abcabcabcV BCDA31461=⨯-=-.【例1】在球面上有四个点P、A、B、C.如果PA、PB、PC两两互相垂直,且aPCPBPA===,则这个球的表面积是.【例2】在三棱锥BCDA-中,侧棱AB、AC、AD两两垂直,ABC∆、ACD∆、ADB∆的面积分别为22、32、62,则三棱锥BCDA-的外接球的体积为()A.6πB.26πC.36πD.46π【例3】如图所示,已知球O的面上有四点A、B、C、D,2===⊥⊥BCABDABCABABCDA,,面,则球O的体积等于.【例4】四面体BCDA-中,5==CDAB,34==BDAC,41==BCAD,则四面体BCDA-外接球的表面积为()A.π50B.π100C.π150D.π200础自测1.三棱锥ABC P -中,⊥PA 平面ABC ,BC AC ⊥,1==BC AC ,3=PA ,则该三棱锥外接球的表面积为()A .π5B .π2C .π20D .π42.在三棱锥ABC P -中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P -的外接球的表面积为()A .π8B .π12C .π26D .π243.已知三棱锥ABC P -的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且2===PC PB PA ,则球O 的体积为()A .π312B .π28C .π34D .π44.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥ABC P -为鳖臑,⊥PA 平面ABC ,2==AB PA ,4=AC ,三棱锥ABC P -的四个顶点都在球O 的球面上,则球O 的表面积为()A .π8B .π12C .π20D .π245.已知三棱锥ABC P -的各顶点都在同一球面上,且⊥PA 平面ABC ,若该棱锥的体积为332,2=AB ,1=AC ,︒=∠60BAC ,则此球的表面积等于()A .π5B .π8C .π16D .π206.已知三棱锥ABC S -的各顶点都在一个半径为r 的球面上,且1===SC SB SA ,2===AC BC AB ,则球的表面积为()A .π12B .π8C .π4D .π37.三棱锥ABC P -的四个顶点都在球O 的球面上,已知PA ,PB ,PC 两两垂直,1=PA ,4=+PC PB ,当三棱锥的体积最大时,球O 的体积为()A .π36B .π9C .29πD .49π8.如图所示,平面四边形ABCD 中,2===CD AD AB ,22=BD ,CD BD ⊥,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为()A .π328B .π24C .π34D .π12第二讲三棱柱的切割体的外接球⇒图1立着放的模型图2躺着放的模型图1:立着放的模型一定有重垂线,且重垂线在底面的射影一定位于底面三个顶点中的一个,底面三角形非直角三角形,将重垂线长度设为h ,底面三角形外接圆半径设为r ,A a r sin 2=可以求出,则222⎪⎭⎫⎝⎛+=h r R ;图2:躺着放的模型,底面是直角三角形或者矩形,侧面非直角三角形,底面一条棱垂直于侧面,222⎪⎭⎫⎝⎛+=h r R .【例5】如图,三棱锥的所有顶点都在一个球面上,在ABC ∆中,3=AB ,︒=∠60ACB ,︒=∠90BCD ,CD AB ⊥,22=CD ,则该球的体积为.【例6】已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A .π8B .π16C .π32D .π649.如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A .320πB .π8C .π9D .319π10.三棱锥的三视图如图所示,则该三棱锥外接球的体积为()A .π34B .π32C .π24D .π2211.四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,三角形BCD 是边长为3的等边三角形,若4=AB ,则球O 的表面积为()A .π36B .π28C .π16D .π4第9题图第10题图第12题图第13题图12.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为32π的等腰三角形,则该三棱锥外接球的表面积为()A .π20B .π17C .π16D .π813.如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为()A .π27B .π48C .π64D .π8114.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,⊥AD 平面ABC ,62==AB AD ,则该球的体积为()A .π332B .π48C .π24D .π16第三讲切瓜模型(两个平面互相垂直,最大高和最小高问题)图1BCAB BAC PAC ⊥⊥,面图2底面ABC 固定,P 在球面上运动,ABC P V -最值问题图1:由图可知,小圆ABC 直径AC 长可以求出,平面PAC 必在大圆上,由AaR sin 2=,解出R .图2:先根据Aar sin 2=求出底面圆的直径MN ,再根据几何性质求出球大圆的直径,最后根据垂径定理算出P 到底面距离的最大值和最小值.双半径单交线公式:4222212l R R R -+=2122212122D O E O D O OO OD R +=+==4)21()(222212122221222l R R D O BC C O D O CE C O -+=+-=+-=注意:常见的切瓜模型中,一旦出现21l R =或22lR =时,则2R R =或1R R =.双半径单交线公式适合所有的直二面角模型,两个半平面的外接圆半径分别为1R 和2R ,两半平面交线长度为l ,此公式属于一种开挂般的存在,在前面的直三棱柱切割体模型当中也可以使用,一旦两个半平面的二面角不是︒90时,此公式将不再适用.【例7】某几何体的三视图如图所示,则它的外接球表面积为()A .π12B .π16C .π20D .π24【例8】已知三棱锥ABC P -的四个顶点均在同一个球面上,底面ABC ∆满足3==BC AB ,3=AC ,若该三棱锥体积的最大值为433,则其外接球的半径为()A .1B .2C .3D .3215.矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折起,使面BAC ⊥面DAC ,则四面体BCDA -的外接球的体积为()A .π12125B .π9125C .π6125D .π312516.点A ,B ,C ,D 在同一个球面上,2==BC AB ,2=AC ,若球的表面积为π425,则四面体ABCD 体积最大值为()A .41B .21C .32D .217.在四面体ABC S -中,BC AB ⊥,2==BC AB ,2==SC SA ,平面⊥SAC 平面BAC ,则该四面体外接球的表面积为()A .π316B .π8C .π38D .π418.如图所示的三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在平面相互垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为()A .π4B .π12C .π16D .π36第4题图第5题图19.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为()A .π33B .πC .π326D .π27332第四讲全等三角形折叠模型作二面角剖面⇒作二面角剖面⇒题设:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角α='∠EC A ,h E A CE ='=如图,作左图的二面角剖面图如右图:1H 和2H 分别为BD A BCD '∆∆,外心,BCDBDr CH ∠==sin 21,r hEH -=1,()2tan1αr h OH -=,故()2tan 222212122αr h r CH OH OC R -+=+==.凡是有二面角的四面体,一定要找到二面角的平面角,将其作剖面图,对剖面图进行分析时,利用圆内接四边形和三角形性质,可以求出外接球半径,特殊情况要用CcB b A a R sin sin sin 2===进行处理.【例9】已知菱形ABCD 中,︒=∠60DAB ,3=AB ,对角线AC 与BD 的交点为O ,把菱形ABCD 沿对角线BD 折起,使得︒=∠90AOC ,则折得的几何体的外接球的表面积为()A .π15B .215πC .27πD .π7【例10】在三棱锥ABC P -中,2====BC AC PB PA ,32=AB ,1=PC ,则三棱锥ABC P -的外接球的表面积为()A .34πB .π4C .π12D .352π【例11】在边长为32的菱形ABCD 中, 60=∠BAD ,沿对角线AC 折成二面角D AC B --为 120的四面体ABCD ,则此四面体的外接球表面积为.第五讲等腰三角形底边与一直角三角形斜边构成二面角的四面体凡是遇到直角三角形,通常要转换直角顶点,因为直径所对的圆周角为直角,故可将直角顶点转换为共斜边的直角三角形直角顶点,如下图左:ABC △以斜边BC 为交线与其它平面形成的二面角可以转换为平面DBC 与其它平面构成的二面角.作二面角剖面⇒如上图中,ABC △为等腰三角形,且AC AB =,DBC △是以BC 为斜边的△Rt ,D BC A --二面角为α,令ABC △的外接圆半径为2r ,BC 边上的高为21h AO =,12r BC =,F 为ABC △的外心,则根据剖面图可知,外接球半径R 满足以下恒等式()21222221212sin r r h R E O OO OE +⎪⎭⎫⎝⎛-==+=α.【例12】在四面体ABC S -中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为.第六讲剖面图转化定理:剖面图一致的外接球一定一致两个等腰三角形(不全等)共底边的二面角,或等腰三角形底边与直角三角形直角边为公共边构成的二面角模型如图6:设二面角α=∠AED ,1h AE =,2h DE =,ABC ∆外接圆半径1r ,DBC △外接圆半径2r ,延长AE 交球于F ,DE 交球于G ,作如图6的二面角剖面图如图7所示,根据相交弦定理ED GE EF AE ⋅=⋅可知,若DE AE =或者GE AE =,则和全等等腰三角形共底边完全一样,利用公式()2tan 2222αr h r R -+=秒杀.(备注:若︒=∠60BAC ,则EF AE 3=,若︒=∠120BAC ,则EF AE 31=)如图8:CD 为BCD Rt ∆的斜边,设二面角α=∠1AED ,1h AE =,21h E D =,ABC △外接圆的半径为1r ,DBC △外接圆的半径为22CDr =,221r h E O -=,延长AE 交球于F ,E D 1交球于G ,作如图8的二面角剖面图如图9所示,根据相交弦定理1ED GE EF AE ⋅=⋅可知,若E D AE 1=或者GE AE =,利用公式()2tan 2222αr h r R -+=秒杀.【例13】(2018•全国四模)已知三棱锥ABC D -所有顶点都在球O 的球面上,ABC △为边长为32的正三角形,ABD △是以BD 为斜边的直角三角形,且2=AD ,二面角D AB C --为︒120,则球O 的表面积()A .3148πB .π28C .337πD .π36【例14】(2018•全国一模)如图,虚线小方格是边长为1的正方形,粗实(虚)线为某几何体的三视图,则该几何体外接球的表面积为()A .π4B .π8C .π16D .π32【例15】(2018•长郡期末)四面体BCD A -中,︒=∠=∠=∠60CBD ABD ABC ,3=AB ,2==DB CB .则此四面体外接球的表面积为()A .219πB .243819πC .π17D .61717π第七讲含二面角的外接球终极公式双距离单交线公式:4sin cos 222222l mn n m R +-+=αα如右图,若空间四边形ABCD 中,二面角D AB C --的平面角大小为α,ABD 的外接圆圆心为1O ,ABC 的外接圆圆心为2O ,E 为公共弦AB 中点,则α=∠21EO O ,m E O =1,n E O =2,2lAE =,R OA =,由于21O E O O 、、、四点共圆,且αsin 221O O R OE ='=,根据余弦定理αcos 222221mn n m O O -+=,4sin cos 22222222l mn n m AE OE R +-+=+=αα.注意:此公式最好配合剖面图,需要求出两个半平面的外接圆半径,和外接圆圆心到公共弦的距离,通常是,剖面图能很快判断出两条相等弦的优先使用公式()2tan 2222αr h r R -+=.下面以此公式来解答一下前面出现的例题:【例12】在四面体ABC S -中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为.【例13】(2018•全国四模)已知三棱锥ABC D -所有顶点都在球O 的球面上,ABC △为边长为32的正三角形,ABD △是以BD 为斜边的直角三角形,且2=AD ,二面角D AB C --为︒120,则球O 的表面积为()A .3148πB .π28C .337πD .π36【例14】(2018•全国一模)如图,虚线小方格是边长为1的正方形,粗实(虚)线为某几何体的三视图,则该几何体外接球的表面积为()A .π4B .π8C .π16D .π32达标训练1.(2019•潮州二模)如图,四棱锥E ABCD -中,正方形ABCD 的边长为2,ABE ∆为E 为直角顶点的等腰三角形,平面ABE ⊥平面ABCD ,则该几何体外接球的表面积为()A .12πB .62πC .22πD .8π第1题图第5题图2.(2019•安徽模拟)在三棱锥E ABD -中,已知1,3AB DA ==,三角形BDE 是边长为2的正三角形,则三棱锥E ABD -的外接球的最小表面积为()A .233πB .833πC .163πD .32327π3.(2019•成都模拟)三棱柱111ABC A B C -中,棱AB ,AC ,1AA 两两垂直,AB AC =,且三棱柱的侧面积21,若该三棱柱的顶点都在同一个球O 的表面上,则球O 表面积的最小值为()A .πB 2πC .2πD .4π4.(2019•河北二模)已知四面体ABCD 的四个面都为直角三角形,且AB ⊥平面BCD ,2AB BD CD ===,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为()A .3πB .23πC .43πD .12π5.(2019•莆田二模)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为()A .16πB .20πC .80πD .100π6.(2019•南关月考)在四面体ABCD 中,若3AB CD ==2AC BD ==,5AD BC ==则四面体ABCD的外接球的表面积为()A .2πB .4πC .6πD .8π7.(2019•武侯模拟)在梯形ABCD 中,//AB CD ,AD AB ⊥,4AB =,2AD CD ==,将梯形ABCD 沿对角线AC 折叠成三棱锥D ABC -,当二面角D AC B --是直二面角时,三棱锥D ABC -的外接球的表面积为()A .4πB .8πC .12πD .16π8.(2019•深圳模拟)如右图所示,1AA ,1BB 均垂直于平面ABC 和平面111A B C ,11190BAC A B C ∠=∠=︒,AC AB =1112AC AB A A B C ====,则多面体111ABC A B C -的外接球的表面积为()A .2πB .4πC .6πD .8π9.(2018•金牛模拟)已知四边形ABCD 是边长为2的菱形,60BAD ∠=︒,沿对角线BD 将ABD ∆折起使A位于新位置A ',且3A C '=,则三棱锥A BCD '-的外接球的表面积为()A .529πB .509πC .6πD .25π10.(2019•渝水月考)已知三棱锥P ABC -中,AB BC ⊥,2AB =,3BC =32PA PB ==面角P AB C --的大小为150︒,则三棱锥P ABC -外接球的表面积为()A .100πB .108πC .110πD .111π11.(2018•临川期末)在三棱锥S ABC -中,2AB BC ==2SA SC AC ===,二面角S AC B --的余弦值是33,则三棱锥S ABC -外接球的表面积是()A .32πB .2πC 6πD .6π12.(2018•黄州三模)如图,四面体ABCD 中,面ABD 和面BCD 都是等腰Rt △,2AB =BAD CBD∠=∠2π=,且二面角A BD C --的大小为56π,若四面体ABCD 的顶点都在球O 上,则球O 的表面积为()A .12πB .20πC .24πD .36π13.已知一个四棱锥三视图如图所示,若此四棱锥的五个顶点在某个球面上,则该球的表面积为()12题图13题图14题图A .π48B .π52C .3172πD .3196π14.(2019•河北一模)某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A .8πB .9πC .414πD 41π15.(2019•黄山一模)已知三棱锥A BCD -,6BC =,且ABC ∆、BCD ∆均为等边三角形,二面角A BC D--的平面角为60︒,则三棱锥外接球的表面积是.16.(2019•城关月考)在三棱锥P ABC -中,AB BC ⊥,32AB BC ==侧面PAC 为正三角形,且顶点P在底面上的射影落在ABC ∆的重心G 上,则该三棱锥的外接球的表面积为.17.(2019•宝鸡一模)已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB CD a ==,5AC AD BC BD ====,则a =.18.(2018•南平一模)在三棱锥P ABC -中,3AB BC AC ===,PAC PAB ∠=∠,2PA =,PA 与平面ABC所成角的余弦值为33,则三棱锥P ABC -外接球的表面积为.。
巧解外接球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以与化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1 〔20XXXX高考题〕若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,23所以球的半径为3.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是43π.故该球的体积为2、求长方体的外接球的有关问题例3 〔20XXXX高考题〕一个长方体的各顶点均在同一球面上,且一个顶点上的三条1,2,3,则此球的表面积为.棱长分别为解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为14,故球的表面积为14π.例4、〔20XX全国卷I〕已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为〔〕.A.16πB.20πC.24πD.32π解析:正四棱柱也是长方体。
由长方体的体积16与高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C.3.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x,高为h,则有263,1,296,8xxx hh=⎧⎧=⎪⎪∴⎨⎨=⎪⎪=⎩⎩∴正六棱柱的底面圆的半径12r=,球心到底面的距离d=.∴外接球的半径1R==.43Vπ∴=球.小结本题是运用公式222R r d=+求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 〔20XXXX,则其外接球的表面积是_______________.解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则AC=BC=CD=表面积是9π.(如图1)例3.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有()222229R=++=.∴294R=.故其外接球的表面积249S Rππ==.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.出现“墙角〞结构利用补形知识,联系长方体。
多面体与外接球的三种题型 题型一(直接找直径) 1、在三棱锥S-ABC 中,SA=AC=,SB=,BC=1,则三棱锥S-ABC 的外接球的表面积是 。
2、若三棱锥S-ABC 的所有顶点都在同一个球O 的球面上,SA 面ABC ,SA=,AB=1,AC=2,∠BAC=60°,求球O 的体积。
题型二(作轴截面构造Rt △)1、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 是球O 的直径,且SC=2,求此棱锥的体积。
2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,则这个球的体积为 。
题型三(补形法)1、若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积为2、一个几何体的三视图如图所示,其中主视图和侧视图是腰长为4的两个全等直角三角形,若该几何体的所有顶点都在同一个球面上,则该球的表面积为 。
3、已知S ,A ,B ,C 是球O 表面上的一点,SA 面ABC ,AB BC ,SA=AB=1,BC=,则球O 的表面积等于 。
23⊥3233⊥⊥24、四棱锥P -ABCD 的三视图如图所示,四棱锥P -ABCD 的五个顶点都在同一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截的线段长为,则该球的表面积为5、在三棱锥S -ABC 中,SA=BC=2,SB=AC=3,SC=AB=,则该三棱锥外接球的体积是 。
题型四(割补法)1、如图所示的四棱锥P -ABCD 中,底面ABCD 是边长为a的正方形,PD 底面ABCD ,且PD=a ,PA=PA=a ,若在这个四棱锥内放一球,则此球的最大半径是 。
2、已知正四面体的外接球的半径为1,则此正四面体的体积为 。
3、已知三棱锥D -ABC 的顶点都在球O 的球面上,AB=4,BC=3,AB BC ,AD=12,且DA 平面ABC ,则三棱锥A -BOD 的体积是 。
蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱2SA =,则该蹴鞠的表面积为( )A .6πB .12πC .32πD .36π【答案】B【详解】取AC 中点N ,连接BN 、SN ,N 为AC 中点,SA SC =,AC SN ∴⊥,同理AC BN ⊥,SN BN N =,AC ∴⊥平面SBN ,SB ⊂平面SBN ,AC SB ∴⊥,SB AM ⊥且AC AM A ⋂=,SB ∴⊥平面SAC ,SA 、SC ⊂平面SAC ,SA SB ∴⊥,SB SC ⊥,三棱锥S ABC -是正三棱锥,SA ∴、SB 、SC 三条侧棱两两互相垂直.将正三棱锥S ABC -补成正方体SADB CEFG -,如下图所示:因为2SA =,所以正方体SADB CEFG -的体对角线长为323SF SA ==,所以,正三棱锥S ABC -的外接球的直径223R =,所以,正三棱锥S ABC -的外接球的表面积是()224212S R R πππ==⨯=,ABC 与SBC 均为面积是 D .6423π,ABC 与, SAC ∴是等腰三角形,又SA ,22R ∴=()334464222333V R πππ∴===.2.已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π【答案】A【详解】设圆锥母线为l ,底面半径为r ,则2223133r l l ππππ⎧=⎪⎪⎨⎪⨯=⎪⎩,解得31l r =⎧⎨=⎩,如图,ABC 是圆锥轴截面,外接圆O 是球的大圆,设球半径为R ,1cos 3r ABC l ∠==,22sin 3ABC ∠=, 3922sin 4223l R ABC ===∠,928R =,所以球表面积为2292814488S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.3.为了给数学家帕西奥利的《神奇的比例》画插图,列奥纳多·达·芬奇给他绘制了一些多面体,如图的多面体就是其中之一.它是由一个正方体沿着各棱的中点截去八个三棱锥后剩下的部分,这个多面体的各棱长均为2,则该多面体外接球的体积等于( )A .16πB .8πC .16π3D .32π3【答案】D 【详解】如图,把该多面体补形为正方体,由所给多面体的棱长为2,得正方体的棱长为22,正方体的中心即为多面体的外接球球心,球心到多面体顶点的距离为()()22222+=,即所求外接球的半径2R =,其体积3432ππ33V R ==. 4.已知各顶点都在同一球面上的正四棱柱的底面边长为a ,高为h ,球的体积为86π,则这个正四棱柱的侧面积的最大值为( ) A .482 B .242C .962D .122【答案】B【详解】设球的半径为R ,则34863R ππ=,解得6R =.如图, 正四棱柱底面对角线2BD a =,在Rt D DB '中,由2222(2)(2)4a h R R +==,22(2)2422a h ah +=≥,62ah ∴≤,则侧面积4242S ah =≤,即侧面积的最大值为242.5.长方体1111ABCD A B C D -各顶点都在球O 面上,1::1:1:2AB AD AA =,,A B 两点球面距离m ,A 、1D 两点球面距离n ,则mn值( ) A .33B .3C .12D .2【答案】C【解析】如图所示:设AB a ,则AD a =,12AA a =⇒球的直径222222R a a a a =++=,即R a =,则OAB 是等边三角形11263m a a ππ⇒=⋅=,在1AOD 中,1OA OD a ==,13AD a =,1112023AOD n a π∠︒⇒=⋅= 故12m n =. 6.已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为 ( ) A .239π B .318π C .2327π D .354π 【答案】C【解析】因为球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,所以球O 为正方体1111ABCD A B C D -的内切球,则球O 的半径1r = ,球心O 到A 的距离为22222232OA ++==底面1ACB 为等边三角形,所以球心O 到平面1ACB 的距离为()22233633d ⎛⎫=-⨯= ⎪⎝⎭,所以平面1ACB 截球O 所得的截面圆的半径为2236133⎛⎫-= ⎪ ⎪⎝⎭ ,所以圆锥的体积为21632333327V ππ⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭,所以选C 7.在四棱锥S ABCD -中,四边形ABCD 是边长为2的正方形,SAD 是正三角形,且侧面SAD ⊥底面ABCD .若点S ,A ,B ,C ,D 都在同一个球面上,则该球的表面积为_________.【答案】283π【详解】由题意,可将该四棱锥补形为正三棱柱SAD PBC -,则该四棱锥的外接球即为正三棱柱SAD PBC -的外接球,记球心为O ,分别取BC 、AD 的中点为E 、F ;分别记SAD 与PBC 的外接圆圆心为H 、G ,连接SF ,PE ,HG ,因为SAD 与PBC 都是正三角形,所以22222213333SH SF ==-=,//HG AB 且2HG AB ==,根据球的性质,以及正棱柱的结构特征可得,球心O 必在HG 上,且O 为HG 的中点,连接OS ,则外接球的半径为2247133OS OH SH =+=+=,因此,外接球的表面积为2732843ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 8.已知正三棱锥P ABC -内接于半径为2的球O ,且扇形OPA 的面积为4π3,则正三棱锥P ABC -的体积为______.【答案】934【详解】设底面ABC 的中心为O ',平面PAO 如图所示,由扇形OPA 的面积为4π3,2OA OP ==,所以2π3POA ∠=,所以π3AOO '∠=,所以3O A '=,1OO '=,所以正三棱锥P ABC -的高为3PO '=, 底面ABC 的面积为934,因此体积为193933344⨯⨯=.9.已知边长为1的正ABC 的三点都在球O 的球面上,AO 的延长线与球面的交点为S ,若三棱锥S ABC -的体积为26,则球O 的体积为___________. 【答案】43π 【详解】作SD ⊥平面ABC 交1AO 的延长线与D ,设SD h =,设球心为O ,球的半径R ,过ABC 三点的小圆的圆心为1O ,则1OO ⊥平面ABC ,所以1//SD OO ,由O ∈平面SDA ,得1O ∈平面ADS , 且1O AD ∈,又AO OS R ==,所以11AO DO =,由正弦定理得132sin 603AC AO ==, 22213313OO R R ⎛⎫=-=- ⎪⎝⎭,①三棱锥S ABC -高12SD OO =,①ABC 是边长为1的正三角形,三棱锥S ABC -的体积为26,①34ABCS =,①13226,3463S ABC V h h -⨯⨯===三棱锥, ①2126233R -=,①1R =,则球O 的体积为344133ππ⨯=,10.棱长为1的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条互为异面直线的AB ,11A D 的中点,P Q 作直线,该直线被球面截在球内的线段的长为_______. 【答案】22【解析】以D 为坐标原点建立空间直角坐标系,所以球心111,,222O ⎛⎫⎪⎝⎭,111,,0,,0,122P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,62PQ =,22OP OQ ==,故O 到直线PQ 的距离为22262244⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,而球的半径为12,所以在球内的线段长度为221222242⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭.。
多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同9一个球面上,且该六棱柱的体积为三,底面周长为3,则这个球的体积为86x=3,f1JQ———解设正六棱柱的底面边长为X,高为则有9后,2'§=6x甘",]入=右.正六棱柱的底面圆的半径r=~,球心到底面的距离d=—.:.外接球的半径22R=J/+J?=]....v球=—.3小结本题是运用公式R2=r-+d2求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.16^B.20ttC.24>tD.32i解设正四棱柱的底面边长为X,外接球的半径为R,则有4/=16,解得%=2, 2R=a/22+22+42=2^6,:.R=£.这个球的表面积是4*=24^,选C.小结本题是运用''正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为右,则其外接球的表面积是—.解据题意可知,该三棱锥的三条侧棱两两垂直,...把这个三棱锥可以补成一个棱长为73的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为R,则有(27?)2=(、厅『+(、行『+(^3)2=9./.R2=|,故其外接球的表面积S=4*=9兀.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为0、/?、c,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为A,则有2R=7a2+b2+c2.寻求轴截面圆半径法例4正四棱锥S-ABC。
多面体外接球问题方法总结
求多面体的外接球的方法有两种:
1. 利用多面体的顶点坐标求解:
a. 首先求解多面体的质心坐标。
可以通过计算多面体的顶点坐标的平均值得到质心坐标。
b. 然后,求解多面体顶点到质心的距离,取最大距离作为外接球的半径。
c. 外接球的中心坐标为质心坐标,半径为最大距离。
2. 利用多面体的边长/面积求解:
a. 首先,根据多面体的类型,求解多面体的特定的边长、面积或者角度。
b. 利用上述的边长、面积或者角度的关系,可以求解外接球的半径。
c. 外接球的中心坐标可以通过找到多面体的对称中心或者中心对称点来获取。
需要注意的是,方法一比方法二更为常用且通用,但对于某些特殊的多面体,可能需要使用方法二来求解。
同时,在实际应用中,还可以借助计算机软件来进行多面体外接球的求解,提高计算的精度和效率。
多面体的外接球问题题型一 直角四面体的外接球 补成长方体,长方体对角线长为球的直径1.三棱锥P ABC -中,ABC ∆为等边三角形,2PA PB PC ===,PA PB ⊥,三棱锥P ABC -的外接球的表面积为( )A .48πB .12πC. D.解析:由题意得:,,PA PB PC 两两相互垂直,以,,PA PB PC 为边补成一个正方体,其外接球就为三棱锥P ABC -2412ππ=,选B .C2.在正三棱锥A BCD -中,,E F 分别是,AB BC 的中点,EF DE ⊥,若BC =A BCD -外接球的表面积为A πB 2πC 3πD 4πC3.在正三棱锥S ABC -中,,M N 分别是,SC BC 的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥S ABC -外接球的表面积为A 12πB 32πC 36πD 48π 4.(2019全国1理12).已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A.B.C. D5.设A ,B ,C ,D 是半径为2的球面上的四个不同点,且满足AB →·AC →=0,AD →·AC →=0,AB →·AD →=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是________. 答案 8解析 由AB →·AC →=0,AD →·AC →=0,AB →·AD →=0,∴AB →⊥AC →,AD →⊥AC →,AB →⊥AD →,由点A ,B ,C ,D 构成的三棱锥,可以补形成一个长方体,该长方体的外接球半径为2,∴AB 2+AC 2+AD 2=(2+2)2=16,即AB 2+AC 22+AB 2+AD 22+AD 2+AC 22=16≥AB ·AC +AB ·AD +AC ·AD ,∴S 1+S 2+S 3=12(AB ·AC +AB ·AD +AC ·AD )≤12×16,当且仅当AB =AC =AD =433时,S 1+S 2+S 3取得最大值8.题型二 等腰四面体的外接球 补成长方体,长方体相对面的对角线为等腰四面体的相对棱1.在四面体ABCD 中,若AB CD =,2AC BD ==,AD BC ==ABCD 的外接球的表面积为( ) A .2π B .4πC .6πD.8π解:如下图所示,将四面体ABCD 放在长方体AEBF GCHD -内,设该长方体的长、宽、高分别为x 、y 、z , 则长方体的体对角线长即为长方体的外接球直径,设该长方体的外接球半径为R ,由勾股定理得222222222345AB x y AC x z AD y z ⎧=+=⎪=+=⎨⎪=+=⎩,上述三个等式全加得2222()12x y z ++=,所以,该四面体的外接球直径为2R = 因此,四面体ABCD 的外接球的表面积为224(2)6R R πππ=⨯=, 故选:C .2.A B C D ,,,四点在半径为225的球面上,且5AC BD ==,AD BC ==,AB CD =,则三棱锥D ABC -的体积是____________.【答案】2秒杀法:根据题意构造长方体,其面上的对角线构成三棱锥D ABC -,如图所示,设长方体的长、宽、高分别为a b c ,,,则有2222222254150a b a c a b c ⎧+=⎪+=⎨⎪++=⎩,解得4a =,3b =,5c =,所以三棱锥的体积为435⨯⨯-11443532⨯⨯⨯⨯⨯=20.点拨:3.在三棱锥S ﹣ABC 中,底面△ABC 的每个顶点处的三条棱两两所成的角之和均为180°,△ABC 的三条边长分别为AB=3,AC=5,BC=6, 则三棱锥ABC S -的体积( )A .22B . 10C .232D .234解:∵底面△ABC 的每个顶点处的三条棱两两所成的角之和均为180°, ∴三棱锥的三个侧面与底面ABC 全等.∴三棱锥S ﹣ABC 可看做是面对角线分别为6,5,3的长方体沿着面对角线切去四个小棱锥得到的几何体.设长方体的棱长为z y x ,,,则⎪⎩⎪⎨⎧=+=+=+6y 53222222z z x y x ,解得⎪⎩⎪⎨⎧===421222z y x ,∴22=xyz∴三棱锥的体积3223142131==⨯⨯-=xyz xyz xyz V 故选C .题型三 有公共斜边的两个直角三角形组成的三棱锥 ,球心在公共斜边的中点处C1.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A.π12125 B.π9125 C.π6125 D.π3125解:由于SA=AC=SB=BC=,SC=2,则SA 2+AC 2=SC 2,SB 2+BC 2=SC 2,即有SA ⊥AC ,SB ⊥BC ,取SC 的中点O ,连接OA ,OB , 则由直角三角形的斜边上的中线即为斜边的一半,可得OA=OB=OC=OS=1,即有球的半径r 为1,则球的体积为=.故选:B .B2.三棱锥S ABC -的所有顶点都在球O 的球面上,且SA AC SB BC ====,4SC =,则该球的体积为 A2563π B 323π C 16π D 64π解析:D3.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥====,二面角S AC B --的余弦值是3-)A .B .6πC .24π DA4.在平面四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥,将其沿对角线BD 折成四面体'A BCD -,使平面'A BD ⊥平面BCD ,若四面体'A BCD -顶点都在同一个球面上,则该球的体积为A 2B 3πC 3D 2π5.平行四边形ABCD 中,AB ·BD =0,沿BD 将四边形折起成直二面角A 一BD -C ,且4=,则三棱锥A -BCD 的外接球的表面积为( )A .2π B .4π C .π4 D .2π分析:0AB BD ⋅=,所以AB BD ⊥,因为ABCD 为平行四边形,所以,CD BD AB CD ⊥=.因为A BD C --为直二面角,所以⊥面ABD 面CBD ,因为=面ABD 面CBD BD ,⊂AB 面ABD ,AB BD ⊥,所以⊥AB 面CBD .因为⊂BC 面CBD ,所以AB BC ⊥.分析可知三棱锥A BCD -的外接球的球心为AC 的中点.因为22222222()24A C A B B C A B C D B D A B C D =+=++=+=,所以2AC =.则三棱锥A BCD -的外接球的半径为1,表面积为4π.故C 正确.6已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为 .4π题型四 侧棱垂直于地面或侧面垂直于地面 过底面外心做垂线,球心有垂线上1.已知四面体P ABC -,其中ABC ∆是边长为6的等边三角形,PA ⊥平面ABC ,4PA =,则四面体P ABC -外接球的表面积为________.π64解:∵△ABC 是边长为6的等边三角形,∵PA ⊥平面ABC ,PA=4,△ABC 的外接圆的半径为32,∴四面体P ﹣ABC 外接球的半径为=4∴四面体P ﹣ABC 外接球的表面积为4π•42=64π.故答案为:64π.D2.已知三棱锥BCD A -中,2====CD BD AC AB ,AD BC 2=,直线AD 底面BCD 所成的角是3π,则此时三棱锥外接球的体积是 ( ) A π8 Bπ32 C π324 D π328 3. 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的( )A .外接球的半径为33B .表面积为137++C .体积为3D .外接球的表面积为π4 解:由三视图可知,这是侧面ACD ⊥ABC ,高3=DE 的三棱锥,AC=2,BE=1,所以三棱锥的体积为33322131=⨯⨯⨯,设外接球的圆心为0,半径为x ,则x OE -=3 在直角三角形OEC 中,OE 2+CE 2=OC 2,即221)3(x x =+-,整理得221323x x x =++-,解得半径332=x ,所以外接球的表面积为,31642ππ=x 所以A ,C ,D 都不正确,故选B .题型五 其中一条侧棱满足某个特殊的条件1.已知三棱锥BCD A -中,2====CD BD AC AB ,AD BC 2=,直线AD 底面BCD 所成的角是3π,则此时三棱锥外接球的体积是 ( ) A π8 Bπ32 C π324 D π328 选D(太原2016届高三上学期考试)在四面体ABCD 中,已知060=∠=∠=∠CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为( )A .2B .2C .3D .3解:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设P ,M 分别为AB ,CD 的中点,则N 在DP 上,且ON ⊥DP ,OM ⊥CD .因为∠CDA=∠CDB=∠ADB=60°,设CD 与平面ABD 所成角为θ,∴cosθ=31,sinθ=32.在△DMN 中,DM==1,DN=332=DP由余弦定理得3131231⨯⨯⨯-+=MN 2= ∴四边形DMON 的外接圆的半径3sin ==θMNOD .故球O 的半径3=R 故选:D .巩固提高:1.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE ∆,BCF ∆,CDG ∆,ADH ∆分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE ∆,BCF ∆,CDG ∆,ADH ∆,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为()A .163πB .253πC .643πD .1003π解:连接OE 交AB 与I ,E ,F ,G ,H 重合为P ,得到一个正四棱锥,设正方形ABCD 的边长为x .则2x OI =,62x IE =-.由四棱锥的侧面积是底面积的2倍,可得24(6)222x xx ⨯⨯-=,解得4x =.设外接球的球心为Q ,半径为R ,可得OC =OP =222)R R =+.解得R =∴该四棱锥的外接球的表面积210043S ππ=⨯=. 故选:D .2.已知正方形ABCD 的边长为2,CD 边的中点为E ,现将ADE ∆,BCE ∆分别沿AE ,BE 折起,使得C ,D 两点重合为一点记为P ,则四面体P ABE -外接球的表面积是( )A .1712πB .1912πC .193πD .173π解:如图,PE PA ⊥,PE PB ⊥,1PE =,PAB ∆是边长为2的等边三角形, 设H 是PAB ∆的中心,OH ⊥平面PAB ,O 是外接球的球心,则1122OH PE ==,PH =,则22221912R OP OH PH ==+=. 故四面体P ABE -外接球的表面积是21943S R ππ==.故选:C .3.在梯形ABCD 中,//AB CD ,AD AB ⊥,4AB =,2AD CD ==,将梯形ABCD 沿对角线AC 折叠成三棱锥D ABC -,当二面角D AC B --是直二面角时,三棱锥D ABC -的外接球的表面积为( ) A .4πB .8πC .12πD .16π解:如图:4AB =,2AD CD ==,AC ∴=BC = 取AC 的中点E ,AB 的中点O ,连结DE ,OE , 平面DCA ⊥平面ACB ,DE AC ⊥,DE ∴⊥平面ACB ,2DE =OE =,2OD ∴=,OB OA OC OD ∴===,2OB ∴=,即外接球的半径为2,此时三棱锥外接球的表面积为24216ππ=.故选:D .4.已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是 .解:设AB m =,AC n =,则12ABC S mn ∆=,ABC ∆的外接圆直径BC =取BC 的中点M ,则当PM ⊥平面ABC 时,三棱锥的体积最大此时球心O 在PM 上,113)32maxV mn =⨯⨯2213)34m n +⨯⨯…令224m n t +=,则1()3)3f t t =,1()3)3f t '=由()0f t '=,解得0t =(舍),8t =,()f t 在(0,8)递增,在(8,9)递减 故f (8)最大,为323,所以三棱锥P ABC -的最大体积为3235.已知C B A P ,,,是半径为2的球面上的点,2===PC PB PA ,2ABC π=∠,点B 在AC 上的射影为D ,则三棱锥ABD P -体积的最大值为________.【分析】P 在平面上的射影G 为△ABC 的外心,即G 为AC 中点,球的球心在PG 的延长线上,设PG =h ,则OG =2﹣h ,求出h =1,则AG =CG =,过B 作BD ⊥AC 于D ,设AD =x ,则CD =2﹣x ,设BD =y ,由△BDC ~△ADB ,得,从而y =,则=,令f (x )=﹣x 4+2,则,利用导数性质能求出三棱锥P ﹣ABD 体积的最大值.解:如图,根据题意得P A =PB =PC =2,∠ABC =90°,∵P ,A ,B ,C 是半径为2的球面上的点,P A =PB =PC =2,2π=∠ABC ,点B 在AC 上的射影为D ,∴P 在平面上的射影G 为△ABC 的外心,即G 为∴OB 2﹣AC 中点,则球的球心在PG 的延长线上,设PG =h ,则OG =2﹣h ,OG 2=PB 2﹣PG 2,即4﹣(2﹣h )2=4﹣h 2,解得h =1,则AG =CG =3,过B 作BD ⊥AC 于D ,设AD =x ,则CD =23﹣x ,设BD =y ,由△BDC ~△ADB ,得,解得y =,则=, 令f (x )=﹣x 4+2,则,由f ′(x )=0,得x =,∴当x =时,f (x )max =,∴△ABD 面积的最大值为=,∴三棱锥P ﹣ABD 体积的最大值为.故答案为:833. 6.已知三棱柱111C B A ABC -的底面是正三角形,侧棱⊥1AA 底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则1AA 的长度为______. 13.【详解】由题意,的外接圆即为球的大圆设底面外接圆圆心,从而正三角形边长为,设圆心,由题意在球面上,为中点,则在中,,,则,,则故答案为。
多面体的外接球专题模型总结终极版题型一、长方体的外接球1.长方体外接球半径R=√a2+b2+c22a2.正方体外接球半径R=√323.长方体外接球的切割体(从长方体八个顶点中任取四个顶点)(1)三条侧棱两两垂直的三棱锥简称墙角型(2)一条侧棱垂直于底面,底面是直角三角形的三棱锥(双垂直)(3)各棱相等的三棱锥(正四面体)(4)对棱相等的三棱锥专题练习例1.在三棱锥BCD A −中,侧棱AB 、AC 、AD 两两垂直,ABC ∆、ACD ∆、ADB ∆的面积分别为22、32、62,则三棱锥BCD A −的外接球的体积为( )A .6πB .26πC .36πD .46π例2. 如图所示,已知球O 的面上有四点A 、B 、C 、D ,2===⊥⊥BC AB DA BC AB ABC DA ,,面,则球O 的体积等于 .例 3.已知三棱锥BCD A −的所有棱长都为2,则该三棱锥外接球的体积为_________例4.四面体BCD A −中,5==CD AB ,34==BD AC ,41==BC AD ,则四面体BCD A −外接球的表面积为( )A .π50B .π100C .π150D .π200变式练习1.在三棱锥ABC P −中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P −的外接球的表面积为( )A .π8B .π12C .π26D .π242.已知三棱锥ABC P −的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且2===PC PB PA ,则球O 的体积为( ) A .π312 B .π28 C .π34 D .π43.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥ABC P −为鳖臑,⊥PA 平面ABC ,2==AB PA ,4=AC ,三棱锥ABC P −的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .π8 B .π12 C .π20 D .π244.已知三棱锥ABC S −的各顶点都在一个半径为r 的球面上,且1===SC SB SA ,2===AC BC AB ,则球的表面积为( )A .π12B .π8C .π4D .π35.已知三棱锥ABC P −的各顶点都在同一球面上,且⊥PA 平面ABC ,若该棱锥的体积为332,2=AB ,1=AC ,︒=∠60BAC ,则此球的表面积等于( ) A .π5 B .π8 C .π16 D .π206.三棱锥ABC P −的四个顶点都在球O 的球面上,已知PA ,PB ,PC 两两垂直,1=PA ,4=+PC PB ,当三棱锥的体积最大时,球O 的体积为( ) A .π36 B .π9C .29π D .49π7.如图所示,平面四边形ABCD 中,2===CD AD AB ,22=BD ,CD BD ⊥,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A .π328B .π24C .π34题型二、上下对称几何体外接球(直棱柱)直棱柱外接球半径R=√r 2+h 24,其中r 是底面外接圆半径,h 是直棱柱的高 r =a 2sinA(正弦定理)例1.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73.πa 2 C. 113πa 2 D. 5πa 2例2.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为 .例3.如图,三棱锥的所有顶点都在一个球面上,在ABC ∆中,3=AB ,︒=∠60ACB ,︒=∠90BCD ,CD AB ⊥,22=CD ,则该球的体积为 .例4. 如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( ) A .320πB .π8C .π9D .319π例5. 如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为( ) A .π27 B .π48 C .π64D .π81变式练习1.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,⊥AD 平面ABC ,62==AB AD ,则该球的体积为( ) A .π332 B .π48 C .π24 D .π162.四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,三角形BCD 是边长为3的等边三角形,若4=AB ,则球O 的表面积为( ) A .π36B .π28C .π16D .π43.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为32π的等腰三角形,则该三棱锥外接球的表面积为( ) A .π20B .π17C .π16D .π8题型三、正N 棱锥外接球正N 棱锥外接球半径R=l 22ℎ,其中l 是侧棱长度,h 是正棱锥的高例1. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B. 16πC. 9πD.27π4题型四、等腰三角形底边与一直角三角形斜边构成二面角的四面体如上图中,ABC △为等腰三角形,且AC AB =,DBC △是以BC 为斜边的△Rt ,D BC A −−二面角为α,令ABC △的外接圆半径为2r ,BC 边上的高为21h AO =,12r BC =,F 为ABC △的外心,则根据剖面图可知,外接球半径R 满足以下恒等式()21222221212sin r r h R E O OO OE +⎪⎭⎫ ⎝⎛−==+=α.例1在四面体ABC S −中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S −−的余弦值为33−,则四面体ABC S −的外接球表面积为 .CB图3图4图5作二面角剖面⇒例2.在四面体ABCD 中,AB=AD=2,∠BAD =60。
几类特殊的多面体的外接球问题沈清臣(湖南省长沙市长郡中学㊀410000)摘㊀要:本文主要通过空间球体的截面性质引入ꎬ介绍几类锥体㊁柱体的外接球问题的求解策略.关键词:多面体ꎻ外接球ꎻ截面ꎻ补体中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0061-03收稿日期:2020-07-05作者简介:沈清臣(1979.11-)ꎬ男ꎬ湖南省沅陵人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.基金项目:本文系长沙市教育科学规划重点资助课题«高中数学必修模块易错点提前干预策略的研究»成果.㊀㊀空间几何体与球的组合问题是近几年高考中的一个频考点ꎬ且考查形式灵活多样ꎻ要正确求解此类问题ꎬ学生必须通过读㊁想㊁画㊁转㊁算五个基本环节ꎬ找准熟悉的基本几何模型及相应的求解策略.此类问题可划分为旋转体㊁多面体的内切㊁外接球问题ꎻ而旋转体的内切㊁外接球问题ꎬ通过轴截面可转化为平面几何问题求解ꎻ多面体的内切球问题ꎬ利用等体法可直接求解.因此ꎬ本文主要介绍多面体(棱柱㊁棱锥)的外接球问题ꎬ在此之前ꎬ我们先熟悉空间球体的截面性质及其应用.㊀㊀一㊁球的截面性质及其应用如图1ꎬ空间球体有如下性质:(1)用一个平面去截球ꎬ所得截面是一个圆面ꎻ(2)球心与截面圆心的连线与截面垂直ꎬ且满足:R2=r2+d2(其中R表示球的半径ꎬr表示截面圆的半径ꎬd表示球心到截面的距离).图1㊀㊀㊀㊀㊀㊀㊀㊀图2例1㊀(2018年全国卷Ⅲ理第10题)设AꎬBꎬCꎬD是同一个半径为4的球的球面上四点ꎬәABC为等边三角形且其面积为93ꎬ则三棱锥D-ABC体积的最大值为(㊀㊀).A.123㊀B.183㊀C.243㊀D.543分析㊀如图2ꎬ设等边三角形әABC外接圆圆心为O1ꎬ则易知当O1㊁O㊁D共线ꎬ即DO1为高时ꎬ棱锥体积最大.又由等边三角形әABC的面积可求得边长AB=6ꎬ所以AO1=12 ABsin60ʎ=23ꎬ所以OO1=AO2-AO21=2ꎬ即可得三棱锥D-ABC体积的最大值为13SΔABC DO1=13ˑ93ˑ(4+2)=183ꎬ故选答案B.上例的求解过程ꎬ充分利用球体的截面性质ꎬ即球心与截面圆圆心的连线与截面垂直ꎬ使得求解难度大大降低.类似的问题还在高考试题中曾多次出现ꎬ如2013年新课标Ⅰ(理)第6题㊁2013年新课标Ⅰ卷(文)第15题㊁2013年大纲卷(文)第16题㊁2013年大纲卷(理)第16题等.其实ꎬ更多几何体的外接球问题的求解均需要利用到球体的截面性质ꎬ在后面的问题中将作介绍.㊀㊀二㊁棱柱的外接球问题此处我们主要介绍直棱柱(侧棱垂直于底面)的外接球问题.因为正方体㊁长方体的外接球直径即为体对角线ꎬ因此遇到直棱柱的外接球问题ꎬ首先可以考虑将该直棱柱补体为长方体或正方体ꎻ若不能补体ꎬ再考虑利用球体的截面性质确定球心位置ꎬ再由勾股定理求解.图3如图3ꎬ设直三棱柱ABC-A1B1C1上㊁下底面的外接圆圆心分别为H1㊁Hꎬ连接H㊁H1ꎬ则易知HH1的中点O即为该棱柱外接球的球心ꎬAH即为底面外接圆的半径ꎬAO即为球的半径R.利用平面几何知识求出AHꎬ再结合球的截面性质可直接求解.例2㊀(2013年辽宁文㊁理第10题)已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上ꎬ若AB=3ꎬAC=4ꎬABʅACꎬAA1=12ꎬ则球O的半径为(㊀㊀).16A.3172㊀㊀B.210㊀㊀C.132㊀㊀D.310分析1㊀由题设条件ꎬ可将该三棱柱补成长㊁宽㊁高分别为3ꎬ4ꎬ12的长方体ꎬ则长方体的对角线长为13ꎬ即外接球的直径为13ꎬ半径为132ꎬ故选答案C.分析2㊀易知底面әABC为Rtәꎬ所以其外接圆半径r=BC2=52ꎬ球心到底面的距离d=AA12=6ꎬ因此由球的截面性质可得所求球的半径R=r2+d2=132ꎬ故选答案C.直接考查正方体㊁长方体的外接球问题ꎬ在高考试题中曾多次出现ꎬ如2013年天津文第10题㊁2014年陕西理第5题㊁2016全国Ⅱ文第4题㊁2017年天津文㊁理第10题㊁2017年全国Ⅱ文第15题等ꎬ此类问题难度不大.补体的策略在后面的锥体的外接球问题中将进一步详细介绍.㊀㊀三㊁棱锥的外接球问题球与锥体的组合问题ꎬ在高考真题及各地的模拟试题中出现频率最高ꎬ试题形式多样ꎬ灵活多变.类似于柱体的求解策略ꎬ我们首先考虑补体ꎬ再者利用截面性质确定球心ꎬ进而可得解.下面将按四种类型进行详细阐述.1.有条侧棱垂直于底面的棱锥若棱锥的一条侧棱垂直于底ꎬ则补体为直棱柱求解ꎬ如图4ꎬ三棱锥S-ABC中ꎬ侧棱SAʅ底面ABCꎬ则可补体成直棱柱SQP-ABC(如图5)ꎬ即转化为直棱柱的外接球问题.图4㊀㊀㊀㊀㊀㊀㊀㊀图5例3㊀(2019年全国Ⅰ理第10题)已知三棱锥P-ABC的四个顶点在球O的球面上ꎬPA=PB=PCꎬәABC是边长为2的正三角形ꎬEꎬF分别是PAꎬAB的中点ꎬøCEF=90ʎꎬ则球O的体积为(㊀㊀).A.86π㊀B.46π㊀C.26π㊀D.6π分析㊀如图6ꎬ易知三棱锥P-ABC为正棱锥ꎬ故对棱相互垂直ꎬ即PBʅACꎬ又由题设条件知EFʅECꎬPBʊEFꎬʑPBʅECꎬ即PBʅ平面PAC.结合正三棱锥的结构特征ꎬ可知PAꎬPBꎬPC两两垂直ꎬ且PA=PB=PC=2.将三棱锥P-ABC补成正方体ꎬ如图7.所以外接球的半径R=32ˑ2=62ꎬ体积为V=43πR3=43π(62)3=6πꎬ故选答案D.图6㊀㊀㊀㊀㊀㊀㊀㊀图7在三棱锥中ꎬ若共顶点的三条棱两两垂直ꎬ则将棱锥补体为正方体或长方体ꎬ可迅速求解.类似问题再如ꎬ2012年辽宁文理第16题.2.对棱相等的锥体正方体或长方体中ꎬ相对面的对角线相等ꎬ因此当三棱锥的对棱相等的时候ꎬ可以将该三棱锥放于正方体或长方体内ꎬ即补体为正方体或长方体.例4㊀三棱锥D-ABC中ꎬAB=CD=6ꎬ其余四条棱均为2ꎬ则三棱锥D-ABC的外接球的表面积为.图8分析㊀如图8ꎬ将三棱锥D-ABC放入到长方体中ꎬ并设该长方体的长㊁宽㊁高分别为aꎬbꎬcꎬ则a2+b2=6ꎬb2+c2=4ꎬc2+a2=4{⇒a2+b2+c2=7ꎬʑ球的半径R满足4R2=a2+b2+c2=7ꎬ故表面积为S=4πR2=7π.本例也可以取AB或CD的中点ꎬ作出截面ꎬ根据几何体的对称特征ꎬ确定球心的位置ꎬ利用球的截面性质列出方程组求解.但两种解法对比ꎬ可体现上述解法的简便快捷.特别是准确熟悉正四面体与正方体之间的联系ꎬ可快速解决正四面体的外接球问题ꎬ比如下面的例题.3.正棱锥(底面为正三角形ꎬ顶点在底面的射影为底面的中心)由正棱锥的结构特征可知ꎬ其外接球的球心一定在图9其高线上.如图9ꎬ在正三棱锥S-ABC中ꎬ设底面边长为aꎬ侧棱长为bꎬ高为hꎬ外接球球心为Oꎬ半径为Rꎬ则AH即为底三角形的外接圆半径ꎬ且AH=33aꎬh=b2-(33a)2ꎬ再由AO2=AH2+OH2得ꎬR2=(33a)2+(h-R)2ꎬ即可求出外接球半径R的值.26例5㊀(2014年大纲文第10题㊁理第8题)正四棱锥的顶点都在同一球面上ꎬ若该棱锥的高为4ꎬ底面边长为2ꎬ则该球的表面积为(㊀㊀).A.81π4㊀B.16π㊀C.9π㊀D.27π4图10分析㊀如图10ꎬ正四棱锥P-ABCD的高为PEꎬ则PE=4ꎬAB=2ꎬAE=12AC=2.设外接球的球心为Oꎬ半径为Rꎬ连接AOꎬ则在RtәAOE中ꎬ有AO2=AE2+OE2ꎬ即R2=(2)2+(4-R)2ꎬ解得R=94.ʑ球的表面积为S=4πR2=4πˑ(94)2=814πꎬ故选择答案A.上述例题的求解过程ꎬ还是利用球体的截面性质.前述例3(2019年全国Ⅰ理第10题)亦可利用上述方法求解.4.有两个面垂直的棱锥如图11ꎬ已知球O1㊁O2的两个截面圆所在平面垂直ꎬ则四边形OO1HO2为矩形ꎬ且әOAO1ꎬәOBO2均为RtәꎬAO=BO=R.利用勾股定理结合已知条件列出方程组ꎬ即可求解.例6㊀四面体A-BCD中ꎬøABC=øABD=øCBD=60ʎꎬAB=3ꎬCB=DB=3ꎬ则此四面体外接球的表面积为(㊀㊀).A.19π2㊀B.1938π24㊀C.17π㊀D.1717π6图11㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图12分析㊀如图12ꎬ由题设条件知әBCD是边长为3的正三角形ꎬ设E为其外接圆圆心ꎬ则其外接圆半径r1BE=23BF=233ꎬ且EF=33.又ȵøABC=øABD=60ʎꎬAB=3ꎬCB=DB=3ꎬ由余弦定理可得AD=AC=7ꎬCD边上高AF=6ꎬ则AF2+BF2=AB2ꎬʑAFʅBFꎬ即可得AFʅ平面BCDꎬ即有平面ACDʅ平面BCD.设әBCDꎬәACD的外接圆圆心分别为E㊁Hꎬ四面体A-BCD的外接球球心为Oꎬ则OEʅ平面BCDꎬOHʅ平面ACDꎬOEFH为矩形ꎬʑOE=HFꎬOH=EF.连接AO㊁BOꎬ并设外接球半径为RꎬOE=HF=xꎬ则分别在RtәBOEꎬRtәAOH中可得:BO2=BE2+OE2ꎬAO2=AH2+OH2ꎬ{即R2=(233)2+x2ꎬR2=(6-x)2+(33)2ìîíïïïï解得R2=198.ʑ四面A-BCD的外接球的表面积S=4πR2=19π2ꎬ故选答案为A.上述例题的求解过程ꎬ还是利用球的截面性质(过截面圆圆心且与截面垂直的直线一定过球心)ꎬ通过两个截面来确定球心的位置ꎬ再利用勾股定理求解.其实ꎬ一般情况下ꎬ并要求两个截面圆所在平面垂直.如下例:例7㊀(2020年广州市一模文第12题)在三棱锥A-BCD中ꎬәABD和әCBD均为边长为2的等边三角形ꎬ且二面角A-BD-C的平面角为120ʎꎬ则此三棱锥的外接球的表面为(㊀㊀).A.7π㊀㊀B.8π㊀㊀C.16π3㊀㊀D.28π3图13分析㊀如图13ꎬ取BD的中点为Eꎬ并连结AEꎬCEꎬ易知øAEC=120ʎ.设әABD和әCBD的外心分别为H2ꎬH1ꎬ并过H2ꎬH1作平面ABD和平面CBD的垂线交于点Oꎬ则O即为三棱锥A-BCD的外接球的球心ꎬ且EH1=EH2=13CE=33ꎬʑRtәOEH1≅RtәOEH2ꎬøOEH1=øOEH2=12øAEC=60ʎꎬOE=2EH1=233ꎬ故所求外接球半径为R=OB=OE2+BE2=213.ʑ三棱锥A-BCD的外接球的表面积S=4πR2=28π3ꎬ故选答案D.以上内容是对常见的棱柱㊁棱锥的几类外接球问题及其求解策略的归纳.因为题型可以灵活多变ꎬ问题的求解途径多种多样ꎬ以上肯定有阐述不全面不到位的地方ꎬ期盼读者去补充完善.㊀㊀参考文献:[1]周瑜芽.对一道三棱外接球高考题的解法探究[J].中学数学研究(华南师范大学版)ꎬ2020(02):57-59.[2]熊向前ꎬ杨墁.例析破解三棱锥外接球问题的六种方法[J].中学数学研究ꎬ2020(03上):38-40.[责任编辑:李㊀璟]36。
专题12 多面体的外接球和内切球一、结论1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
类型一 球的内切问题(等体积法)例如:在四棱锥P ABCD −中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V −−−−−−=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r −=⋅+⋅+⋅+⋅+⋅,可求出r .类型二 球的外接问题 1、公式法正方体或长方体的外接球的球心为其体对角线的中点 2、补形法(补长方体或正方体) ①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC −中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=); 图2图3②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .4、双面定球心法(两次单面定球心) 如图:在三棱锥P ABC −中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .二、典型例题1.(2022·山西吕梁·一模(文))在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为( ) A .3π B.(3π− C .12π D.(3π+【答案】B 【解析】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S −−−−=+++=+++△△△△内,所以3ABCDVr S =内, 因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==−球, 故选:B【反思】本例中涉及到求内切球问题,典型的等体积法.2.(2021·四川省南充高级中学高二期中(文))在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为( )A .494π B .56πC D .14π【答案】D【解析】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .【反思】由题意PA ,PB ,PC 两两垂直,可直接用补形法,补成长方体,利用长方体求外接球.3.(2021·全国·高一课时练习)已知三棱锥P ABC −,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA = )A .163πB .C .323πD .16π【答案】D 【解析】设ABC 的外接圆半径为R ,因为30A =,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设ABC 的外接圆圆心为D ,过点D 做PA 的平行线,则球心一定在该直线上,设为O ,因为PA ⊥面ABC ,PA =由于OP OA R ==,故12OD PA =2OA =,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D【反思】此题典型的单面定球心求外接球的问题,先确定ABC 的外接圆圆心D ,再过D 做PA 的平行线,则可确定球心O 在该直线上,进而通过计算求出外接球半径R . 4.三棱锥ABC P −中,平面PAB ⊥平面ABC ,PAB ∆和ABC ∆均为边长为2的正三角形,则三棱锥ABC P −外接球的半径为 .【解析】:由于ABC ∆是正三角形,并且边长为2,所以ABC ∆的外接圆圆心为1O ,则1HO =,1O C =同理可得PAB ∆的外接圆圆心为2O,可得到23HO =,23O P =,分别过1O 做面ABC 的垂线,过2O 做面PAB 的垂线交于O ,因为平面PAB ⊥平面ABC ,所以四边形12HO OO 为正方形,且OC R =,利用勾股定理:2222221153OC OO OC R =+⇒=+=,所以R =【反思】此题典型的双面定球心,由于选定的面ABC ∆,PAB ∆都是正三角形,故其外心都是中心,如果是普通三角形,可以采用正弦定理定外心.三、针对训练 举一反三一、单选题1.(2021·湖北黄冈·高一期末)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为( ) A .2 B .4CD.2.(2021·青海·海南藏族自治州高级中学高三开学考试(理))如图正四棱柱1111ABCD A B C D −中,底面面积为36,11A BC V 的面积为111B A B C −的外接球的表面积为( )A .68πB .C .172πD .3.(2022·全国·高三专题练习)已知四面体P ABC −中,PA ⊥平面ABC ,2PA AB ==,BC 3tan 2ABC ∠=,则四面体P ABC −的外接球的表面积为( ) A .15πB .17πC .18πD .20π4.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π5.(2021·云南·弥勒市一中高二阶段练习)设直三棱柱111ABC A B C −的所有顶点都在一1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是( )A .1B .2C .D .46.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE −的体积最大时,该三棱锥外接球的表面积为( ) A .525π48B .5π4C .25π4D .25π7.(2021·广西·柳铁一中高三阶段练习(理))在三棱锥A BCD −中,3AB AD BC ===,5CD =,4BD =,AC =( ) A .63π10B .64π5C .128π5D .126π58.(2021·江西省南丰县第二中学高一学业考试)已知四棱锥S ABCD −,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A −−的大小为3π.若四面体S ACD −的四个顶点都在同一球面上,则该球的体积为( )A B .C .10πD .323π 二、填空题9.(2022·河南焦作·一模(理))已知三棱锥P ABC −的每条侧棱与它所对的底面边长相等,且ABC 是底边长为积为___________.10.(2022·河南驻马店·高三期末(文))在三棱锥P ABC −中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ==P ABC −外接球的表面积为______.11.(2022·全国·模拟预测(理))已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD −体积最大时,其外接球的表面积为______.12.(2022·安徽马鞍山·一模(理))三棱锥-P ABC 中,PAC △是边长为角形,2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______13.(2021·湖北荆州·高一期中)如图,在一个底面边长为2锥P ABCD −中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.。
高考数学中的内切球和外接球问题---专题复习高考数学:内切球和外接球问题多面体的顶点都在同一球面上时,称该多面体为球的内接多面体,该球为多面体的外接球。
多面体外接球问题是立体几何的重点,也是高考的热点,考查学生的空间想象能力和化归能力。
解决该问题需要运用多面体和球的知识,并特别注意多面体的几何元素与球的半径之间的关系。
多面体外接球半径的求法在解题中往往起到至关重要的作用。
一、直接法(公式法)1、求正方体的外接球的有关问题例1:若正方体的棱长为3且顶点都在同一球面上,求该球的表面积。
解析:要求球的表面积,只需知道球的半径。
由于正方体内接于球,所以它的体对角线正好为球的直径,因此求球的半径可转化为先求正方体的体对角线长,再计算半径。
故表面积为27π。
例2:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为多少?解析:要求球的体积,还需先求出球的半径。
由正方体表面积可求出棱长,从而求出正方体的体对角线长为3√3.因此,该球的半径为3,故该球的体积为36π。
2、求长方体的外接球的有关问题例1:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1、2、3,则该球的表面积为多少?解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。
长方体体对角线长为√14,故球的表面积为14π。
例2:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则该球的表面积为多少?解析:正四棱柱也是长方体。
由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2、2、4.故该球的表面积为24π。
3、求多面体的外接球的有关问题例:一个底面为正六边形的六棱柱,侧棱垂直于底面,已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为8,底面周长为3,则该球的体积为多少?解析:设正六棱柱的底面边长为x,高为h。
由底面周长可得x=3/6=1/2,由体积可得h=4/3.因此,正六棱柱的底面圆的半径为√3/2,外接球的半径为√13/2.故该球的体积为(52/3)π。
专题 多面体的外接球问题一、考点分析:有关多面体外接球问题,是立体几何中的一个重点,也是近几年高考考题的一个热点,研究多面体外接球的知识,既要运用多面体的知识又要运用球的相关知识;特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中会起着至关重要的作用。
二、教学目标1、了解多面体与其外接球的关系2、掌握几种常见的多面体的外接球的计算方法。
三、教学重点、难点不同类型的多面体与其外接球半径的求法 四、教学过程 (一)球的性质性质1:用一个平面去截球,截面是圆面; 用一个平面去截球面, 截线是圆。
大圆--截面过球心,半径等于球半径; 小圆--截面不过球心性质2: 球心和截面圆心的连线垂直于截面.性质3: 球心到截面的距离d 与球的半径R 及截面的半径r 下面的关系:22d R r -=(二)球体的体积与表面积:3413球、V R π=224球面、S R π= (三)球与多面体的接、切1.外接球球心到各顶点的距离相等(R )2. 内切球球心到各面的距离相等(r ) 五、经典模型:(一)汉堡模型(直棱柱和圆柱外接球问题)例1、已知正四棱柱的各个顶点都在同一个球面上,且高为4,体积为16.其外接球的表面积是111120ABC A B C -∠1例2:直三棱柱的各个顶点都在同一个球面上,若AB=AC=AA =2,BAC=,则此球的表面积等于( )(二)对棱相等模型题型:三棱锥(即四面体)中,已知三组对棱分别相等(AB=CD,AD=BC,AC=BD ),求外接球问题画出一个长方体(补形),标出三组互为异面直线第一步:的对棱;AA1C 1B BC1A()222222222222222a b x x y z b c y R a b c R a c z ⎧+=⎪+++=⇒=++==⎨⎪+=⎩222第二步:设长方体的长宽高分别为a,b,c.AD=BC=x,AB=CD=y,AC=BD=z,列出方程,例3:三棱锥A-BCD 中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD 的外接球的表面积为( )(三)墙角模型(三条两两垂直的棱)解题方法:找三条两两垂直的线段,直接利长方体对角线公式即可:()2222R a b c R =++⇒=2例题4:(1)已知三棱锥的三条侧棱两两垂直,且侧棱长均为,其外接球的表面积是( )(2)已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1正方形,则该几何体外接球的体积 .(四) 垂面模型PA ABC ⊥题型一、侧棱垂直于底面的棱锥(平面)步骤:ABC ∆将画在小圆面上,以A 为小第一步:圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心OCBDA1111O ABC OO ABC O O D r∆⊥=为的外心,所以平面,计算出小圆的半径第二步:()r 利用正弦定理计算可得利用勾股定第三步:理即可:2221R r OO =+,S ABC SA ABC ABC SA -⊥例5:三棱锥中,侧棱平面底面则该三棱锥的外接球体积等于( )P ABC -题型二:三棱锥的三条侧棱相等,且各个顶点都球面上 ∆11确定球心O 的位置,取ABC 的外心O ,则P,第一O,O 三步:点共线; 11,;AO r PO =1第二步:先计算出小圆O 的半径,再算出棱锥的高()22222211,OA O A O O R h R r R =+⇒=-+勾股定理第三步::解出 ()2sin aR a θθ=为棱长,为侧棱与底方法二:面所成角2S ABC ABC -例6:正三棱锥中,底面,则该三棱锥的外接球体积等于( )(五)折叠模型题型:两个全等三角形或等腰三角形拼在一起或菱形折叠BCD ∆先画出如图所示的图形,将画在第一步:小圆上, 12'BCD A BD H H ∆∆找出和的外心和12过H 和H 分别作平面BCD 和平面A'BD 的垂线,两垂线的交点即为球心O ,连接OE 第二步:,OC;1OCH R ∆∆1122211解OEH ,算出OH ,在RT 中,勾股第三步:OH +即CH 定理=可:60,BAD BCD ∠=⊥例7:棱形ABCD 的边长为2,且,将棱形ABCD 沿对角线BD 折叠,使得平面A'BD 平面则三棱锥A'-BCD 的外接球的半径为( )120BCD BCD ⊥“平面A'BD 平面”改为“平面A'BD 与平面所成角为”则三棱锥 A'-BCD 的外接球的半径为(变式: )ASCBASCBCDBA六、课堂小结1、汉堡型(直棱柱或圆柱)如何找外接球的半径呢?(1)先找外接球的球心:它的球心是连接上下两个多边形的外心的线段的中点; (2)再构造直角三角形,勾股定理求解2、三组对棱分别型的三棱锥如何找外接球的半径呢? 方法:直接补成长方体,求其体对角线;3、三条棱两两垂直的三棱锥如何找外接球的半径呢? 方法:直接补成长方体,求其体对角线;4、墙面型(侧棱垂直于底面的棱锥)如何找外接球的半径呢?111();O O O D r r =找底面多边形外接圆的圆心,计算出小圆的半径利用正弦定理第:计算可得一步1111=()2O OO O O O h h ⊥第二步:过作底面,为球心且为椎体的高利用勾股定第三步:理即可:5、侧棱不垂直于底面且侧棱都相等的棱锥,如何找外接球的半径呢?111();O O O D r r =找底面多边形外接圆的圆心(顶点在底面的投影),计算出小圆的半径利用正弦定理计算(可得1)O (2)在高线上取一点作为球心;利用勾股定理求出(3)半径即可6、折叠问题(对称性)12();O O r r 找两底面多边形外接圆的圆心、,计算出小圆的半径利用正弦定理计算(可得1)O 12在过小圆圆心O ,O 作两面的垂线,两高线交点为()球心2;利用勾股定理求出(3)半径即可七、课后作业,,,,S ABCD S A B C D -1、正四棱锥都在同一个球面上,则该球的体积是( )2、在三棱锥P-ABC 中,PA=PB=PC= ,侧棱PA 与底面ABC 所成的角为60 ,则该三棱锥外接球的体积为( )八、教学反思ABCDP。
专题讲解立体几何中的外接球与内切球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点。
考查学生的空间想象能力以及化归能力。
研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作。
当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径。
球与多面体的关系是高考考查的重点,但同学们又因为缺乏较强的空间想象能力,较难找到解题的切入点和突破口。
解决这类题目是要认真分析图形,明确切点和接点的位置及球心的位置是关键。
常见题型有求对应外接球或内切球半径、表面积、体积或球内接几何体最值等问题。
本章节将对常见的关于内切球和外接球的模型作一总结,并附有针对性训练题,供教师和学生参考使用。
一.常见模型归纳1. 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决。
外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a 2+b2+c2。
),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:【例1】已知二面角α-l-β的大小为π3,点P∈α,点P在β内的正投影为点A,过点A作AB⊥l,垂足为点B,点C∈l,BC=22,P A=23,点D∈β,且四边形ABCD满足∠BCD+∠DAB=π.若四面体P ACD的四个顶点都在同一球面上,则该球的体积为________.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型【例2】已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A .68πB .64πC .62πD .6π【变式练习1】在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π【变式练习2】在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点, 若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.2. 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决。
专题 多面体的外接球问题
一、考点分析:
有关多面体外接球问题,是立体几何中的一个重点,也是近几年高考考题的一个热点,研究多面体外接球的知识,既要运用多面体的知识又要运用球的相关知识;特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中会起着至关重要的作用。
二、教学目标
1、了解多面体与其外接球的关系
2、掌握几种常见的多面体的外接球的计算方法。
三、教学重点、难点
不同类型的多面体与其外接球半径的求法 四、教学过程 (一)球的性质
性质1:用一个平面去截球,截面是圆面; 用一个平面去截球面, 截线是圆。
大圆--截面过球心,半径等于球半径; 小圆--截面不过球心
性质2: 球心和截面圆心的连线垂直于截面.
性质3: 球心到截面的距离d 与球的半径R 及截面的半径r 下面的关系:22d R r -=
(二)球体的体积与表面积:
3
4
13球、V R π=
224球面、S R π= (三)球与多面体的接、切
1.外接球球心到各顶点的距离相等(R )
2. 内切球球心到各面的距离相等(r ) 五、经典模型:
(一)汉堡模型(直棱柱和圆柱外接球问题)
例1、已知正四棱柱的各个顶点都在同一个球面上,且高为4,体积为16.其外接球的表面积是
111120ABC A B C -∠1例2:直三棱柱的各个顶点都在同一个球面上,若AB=AC=AA =2,BAC=,则此球的表面积等于( )
(二)对棱相等模型
题型:三棱锥(即四面体)中,已知三组对棱分别相等(AB=CD,AD=BC,AC=BD ),求外接球问题
画出一个长方体(补形),标出三组互为异面直线第一步:的对棱;
A
A
1
C 1B B
C
1A
()22222222
222222
22
228
a b x x y z x y z b c y R a b c R a c z ⎧+=⎪+++++=⇒=++=
=⎨⎪+=⎩
222第二步:设长方体的长宽高分别为a,b,c.AD=BC=x,AB=CD=y,AC=BD=z,列出方程,
例3:三棱锥A-BCD 中,AB=CD=2,AD=BC=3,AC=BD=4,则三棱锥A-BCD 的外接球的表面积为( )
(三)墙角模型(三条两两垂直的棱)
解题方法:找三条两两垂直的线段,直接利长方体对角线公式即可:
()
222
2
222
2
a b c R a b c R ++=++⇒=
2
例题4:(1)已知三棱锥的三条侧棱两两垂直,且侧棱长均为
3 ,其外接球的表面积是( )
(2)已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1正方形,则该几何体外接球的体积 .
(四) 垂面模型
PA ABC ⊥题型一、侧棱垂直于底面的棱锥(平面)
步骤:
ABC ∆将画在小圆面上,以A 为小第一步:圆直径的
一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O
C
B
D
A
1111O ABC OO ABC O O D r
∆⊥=为的外心,所以平面,计算出小圆的半径第二步:()r 利用正弦定理计算可得
利用勾股定第三步:理即可:
2221R r OO =+ ,3=23S ABC SA ABC ABC SA -⊥例5:三棱锥中,侧棱平面底面是边长为的正三角形,,则该三棱锥的外接球体积等于( )
P ABC -题型二:三棱锥的三条侧棱相等,且各个顶点都球面上 ∆11确定球心O 的位置,取ABC 的外心O ,则P,第一O,O 三步:点共线; 11,;
AO r PO =1第二步:先计算出小圆O 的半径,再算出棱锥的高()2
2222211,OA O A O O R h R r R =+⇒=-+勾股定理第三步::解出 ()2sin a
R a θθ
=
为棱长,为侧棱与底方法二:面所成角 32S ABC ABC -例6:正三棱锥中,底面是边长为的正三角形,侧棱长为,则该三棱锥的外接球体积等于( )
(五)折叠模型
题型:两个全等三角形或等腰三角形拼在一起或菱形折叠
BCD ∆先画出如图所示的图形,将画在第一步:小圆上, 12
'BCD A BD H H ∆∆找出和的外心和12过H 和H 分别作平面BCD 和平面A'BD 的垂线,两垂线的交点即为球心O ,连接OE 第二步:,OC;1OCH R ∆∆11222
11解OEH ,算出OH ,在RT 中,勾股第三步:OH +即CH 定理=可:
60,BAD BCD ∠=⊥例7:棱形ABCD 的边长为2,且,将棱形ABCD 沿对角线BD 折叠,使得平面A'BD 平面则三棱锥A'-BCD 的外接球的半径为( )
120BCD BCD ⊥“平面A'BD 平面”改为“平面A'BD 与平面所成角为”则三棱锥 A'-BCD 的外接球的半径为(变式: )
A
S
C
B
A
S
C
B
C
D
B
A
六、课堂小结
1、汉堡型(直棱柱或圆柱)如何找外接球的半径呢?
(1)先找外接球的球心:它的球心是连接上下两个多边形的外心的线段的中点; (2)再构造直角三角形,勾股定理求解
2、三组对棱分别型的三棱锥如何找外接球的半径呢? 方法:直接补成长方体,求其体对角线;
3、三条棱两两垂直的三棱锥如何找外接球的半径呢? 方法:直接补成长方体,求其体对角线;
4、墙面型(侧棱垂直于底面的棱锥)如何找外接球的半径呢?
111();
O O O D r r =找底面多边形外接圆的圆心,计算出小圆的半径利用正弦定理第:计算可得一步1111
=()
2O OO O O O h h ⊥第二步:过作底面,为球心且为椎体的高
利用勾股定第三步:理即可:
5、侧棱不垂直于底面且侧棱都相等的棱锥,如何找外接球的半径呢?
111();
O O O D r r =找底面多边形外接圆的圆心(顶点在底面的投影),计算出小圆的半径利用正弦定理计算(可得1)O (2)在高线上取一点作为球心;利用勾股定理求出(3)半径即可
6、折叠问题(对称性)
12();O O r r 找两底面多边形外接圆的圆心、,计算出小圆的半径利用正弦定理计算(可得1)O 12在过小圆圆心O ,O 作两面的垂线,两高线交点为()球心2;
利用勾股定理求出(3)半径即可
七、课后作业
,,,,S ABCD S A B C D -1、正四棱锥都在同一个球面上,则该球的体积是( )
2、在三棱锥P-ABC 中,
PA=PB=PC= ,侧棱PA 与底面ABC 所成的角为60 ,则该三棱锥外接球的体积为( )
八、教学反思
A
B
C
D
P。