等腰三角形的证明习题及答案
- 格式:docx
- 大小:252.37 KB
- 文档页数:6
等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
专题2.9等腰三角形的证明及计算大题一.解答题(共50小题)1.(2022秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF∥BC交CD于F,延长AB、DC交于点E.(1)求证:AC平分∠EAF;(2)求证:∠FAD=∠E;(3)若∠EAD=90°,AE=5,AF=3,求CF的长.2.(2022秋•铁西区期末)如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,延长线交OM于点G.(1)若∠MON=60°,则∠ACG=度;(2)若∠MON=n°,则∠ACG=度;(用含n的代数式表示)(3)如图2,若∠MON=72°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.3.(2022秋•单县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE 的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.4.(2022秋•巴彦县期末)如图,在△ABC中,点D是边BC上一点,点E在边AC上,且BD=CE,∠BAD =∠CDE,∠ADE=∠C.(1)如图1,求证:△ADE是等腰三角形;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠CDE相等的角(∠CDE 除外).5.(2022秋•石家庄期末)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.6.(2022秋•思明区校级期末)如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=12(AC﹣AB).(提示:延长BE交AC于点F).7.(2022秋•赛罕区校级期中)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线分别交AB、AC于点M、N.(1)求证:MO=MB;(2)若AB=7,AC=6,求△AMN的周长.8.(2022秋•建阳区期中)如图所示,已知点A,C分别在∠GBE的边BG,BE上,且AB=AC,AD∥BE,∠GBE的平分线BD与AD交于点D,连接CD.(1)求证:AC=AD;(2)猜想:∠BAC与∠BDC之间有何数量关系,并对你的猜想加以证明.9.(2022秋•微山县期中)已知:如图,在四边形ABCD中,AB∥DC,AC平分∠BAD,AC⊥BC于点C.(1)若∠B=75°,求∠D的度数;(2)求证:AB=2CD.10.(2022秋•高港区期中)如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=75°,求∠BCE的度数.11.(2022秋•播州区期末)已知△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=8,求DE的长;(2)如图2,若DE平分∠ADC,∠ABC=30°,在BC边上取点F使BF=DF,若BC=9,求DF的长.12.(2022春•汉阳区校级期中)如图,已知在△ABC中,CF平分∠ACB,且AF⊥CF于点F,BE平分△ABC 的一个外角,且AE⊥BE于点E.(1)求证:EF∥BC.(2)若BC=5,AC=4,EF=4,求AB的长.13.(2022春•桓台县期末)如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.14.(2022秋•新兴县期中)在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.15.(2022秋•浦城县期中)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.16.(2022春•凤翔县期末)如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD ∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.17.(2022春•宣汉县期末)如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.18.(2022春•未央区校级期末)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.19.(2022秋•雨花区校级月考)已知△ABC中,∠ACB的平分线CD交AB于点D,DE平分∠ADC,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=10,求DE的长;(2)在(1)的条件下,求证:△ADC是等腰三角形.(3)如图2,若∠ABC=30°,在BC边上取点F使BF=DF,若BC=18,求DF的长.20.(2022秋•庄浪县期中)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.21.(2022秋•兰陵县期中)如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.22.(2022春•浦东新区期末)已知△ABC中,∠A=70°,BP是∠ABC的平分线,CP是∠ACD的平分线.(1)如图1,求∠P的度数;(2)过点P作EF∥BC与边AB、AC分别交于点E、点F(如图2),判断线段BE、EF、CF之间的数量关系,并说明理由.23.(2022秋•天心区校级期中)如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是;(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.24.(2022秋•香坊区校级月考)已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于152的所有三角形.25.(2022春•莱州市期末)已知,如图,在△ABC中,过点A作AD平分∠BAC,交BC于点F,过点C作CD⊥AD,垂足为D,在AC上取一点E,使DE=CE,求证:DE∥AB.26.(2022春•莲池区期中)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作BC平行线交AB、AC于E、F.试说明:EO=BE探究一:请写出图①中线段EF与BE、CF间的关系,并说明理由.探究二:如图②,△ABC若∠ABC的平分线与△ABC的外角平分线交于O,过点O作BC的平行线交AB于E,交AC于F.这时EF与BE、CF的关系又如何?请直接写出关系式,不需要说明理由.27.(2022ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?28.(2022秋•莆田期末)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC 于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.29.(2022秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF ⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.30.(2022秋•涞水县期末)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD 关于AD所在的直线对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?31.(2022秋•富源县校级期中)如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?32.如图1,DB为△ABC的角平分线,CE为∠ACB的外角平分线,过点A作AF⊥BD,交射线BD于点F,作AG⊥CE于G,连接EG.(1)求证:FG∥BC;(2)如图2,射线BD与CE相交于点M,若∠M=45°,AB=FG=6,求AD的长.33.(2022秋•平定县期中)如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.(1)请说出AD=BE的理由;(2)试说出△BCH≌△ACG的理由;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.34.(2022秋•海淀区校级期中)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD 和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图①,若∠ACD=60°,则∠AFB=;如图②,若∠ACD=90°,则∠AFB=;如图③,若∠ACD=120°,则∠AFB=;(2)如图④,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图④中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图⑤所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.35.(2022•承德县模拟)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.36.(2022•徐州)如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=12AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=14S,△D1E1F1的面积S1=14S.(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=13AB时如图2,①求证:△D2E2F2是等边三角形;②若用S表示△AD2F2的面积S2,则S2=;若用S表示△D2E2F2的面积S2′,则S2′=.(2)按照上述思路探索下去,并填空:当D n、E n、F n分别是等边△ABC三边上的点,AD n=BE n=CF n=1n+1AB时,(n为正整数)△D n E n F n是三角形;若用S表示△AD n F n的面积S n,则S n=;若用S表示△D n E n F n的面积S n′,则S′n=.37.(2022春•和平县期末)如图,在等边△ABC中,点D,E分别在边BC、AC上,若CD=3,过点D作DE ∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.38.(2022秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.39.(2022秋•莱芜区期末)如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD 于Q.求证:①△ADC≌△BEA;②BP=2PQ.40.(2022秋•乌海期末)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE ∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.41.(2022秋•桐城市期末)如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.42.(2022•阳城县模拟)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB 的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).43.(2022秋•松山区校级月考)如图,点P在等边△ABC内,点D在△ABC外,且∠ABP=∠ACD,BP=CD,问:△APD是什么形状三角形,试说明理由.44.(2022春•江岸区校级期中)(1)如图1,△ADE为等边三角形,AD∥EB,且EB=DC,求证:△ABC 为等边三角形.(2)相信你一定能从(1)中得到启示并在图2中作一个等边△ABC,使三角形的三个定点A、B、C分别在直线l1、l2、l3上,(l1∥l2∥l3且这三条平行线两两之间的距离不相等).请你画出图形,并写出简要作法.(3)①如图3,当所作△ABC的三个定点A、B、C分别在直线l2、l3、l1上时,如图所示,请结合图形填空:a:先作等边△ADE,延长DE交l3于B点,在l1上截取EC=,连AC、BC,则△ABC即为所求.b:证明△ABC为等边三角形时,可先证明≌从而为证明等边三角形创造条件.②若使等边△ABC的三个定点A、B、C分别在直线l3、l1、l2上时,请在图4中用类似的方法作出图形,并将构造的全等三角形用阴影标出.(只需画出图形,不要求写作法及证明过程)45.(2022秋•盘龙区校级月考)如图,在△ABC中,AB=AC,D是三角形外一点,且∠ABD=60°,BD+DC =AB.求证:∠ACD=60°.46.(2022秋•雨城区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?47.(2022•饶平县校级模拟)已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)48.(2022秋•濠江区校级期中)如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.49.(2022•浙江模拟)如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?50.(2022秋•东海县校级期中)为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是三角形;(2)同理由已知条件∠BCD=120°得到∠DCE=,且CE=CD,可知;(3)要证BC+DC=AC,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明….请你完成证明过程:。
等腰三角形练习题一、计算题:1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数3、AB 于⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数CFDA4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1,求∠ABC 的度数BBDC7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值二、证明题:8. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系9. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O求证:AE+CD=ACABCDAD FEABCDE12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线求证:CD=21CE14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=EDECA BDE1 2 ABCD15. 如图,△ABC 中,AB=AC,BE=CF,EF 交BC 于点G 求证:EG=FG16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD求证:AF=FC17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BDABDFECBD18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30° 求证:AD=DC19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD 求证:EC=ED20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FHBCDHADCEF一、计算题:1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36°3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160°CFDAB4. 如图,△ABC中,AB=AC,BC=BD=ED=EA求∠A的度数设∠A为x∠A=71805. 如图,△ABC中,AB=AC,D在BC上, ∠BAD=30°,在AC上取点E,使AE=AD, 求∠EDC的度数设∠ADE为x∠EDC=∠AED-∠C=15°BB2xx-15°6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1,求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90°在Rt △DBF 中, BD=21,DF=1所以∠F =∠1=30°7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AEDFABCDE由AC=AB+BD,得DE=EC,所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题:8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 证明△PBD 和△PEA 是等腰三角形9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系 DF+AD=AE在AE 上取点B,使AB=AD10. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC 在AC 上取点F,使AF=AE 易证明△AOE ≌△AOF, 得∠AOE=∠AOF由∠B=60°,角平分线AD 、CE,CBAD EPAD FEBOABC DEF得∠AOC=120°所以∠AOE=∠AOF=∠COF=∠COD=60° 故△COD ≌△COF,得CF=CD 所以AE+CD=AC11. 如图,△ABC 中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD延长BD 到点E,使BE=BC,连结CE 在BC 上取点F,使BF=BA 易证△ABD ≌△FBD,得AD=DF 再证△CDE ≌△CDF,得DE=DF 故BE=BC=BD+AD也可:在BC 上取点E,使BF=BD,连结DF 在BF 上取点E,使BF=BA,连结DE先证DE=DC,再由△ABD ≌△EBD,得AD=DE,最后证明DE=DF 即可 12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD在AB 上取点E ,使BE=BD , 在AC 上取点F ,使CF=CD得△BDE 与△CDF 均为等边三角形, 只需证△ADF ≌△AEDACFACEFABC DEF13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线求证:CD=21CE延长CD 到点E,使DE=CD.连结AE 证明△ACE ≌△BCE14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED在CE 上取点F,使AB=AF 易证△ABD ≌△ADF, 得BD=DF,∠B=∠AFD由∠B+∠BAC+∠C=∠DEC+∠EDC+∠C=180° 所以∠B=∠DEC 所以∠DEC=∠AFD 所以DE=DF,故BD=ED15. 如图,△ABC 中,AB=AC,BE=CF,EF 交BC 于点G 求证:EG=FGECA BDE1 2FF16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC 边上的高,B 到点E ,使BE=BD 求证:AF=FC17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且AE=BE 求证:AH=2BD由△AHE ≌△BCE,得BC=AH18. 如图,△ABC 中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30° 求证:AD=DC作AF ⊥BD 于F,DE ⊥AC 于E 可证得∠DAF=DAE=15°, 所以△ADE ≌△ADF 得AF=AE,由AB=2AF=2AE=AC, 所以AE=EC,因此DE 是AC 的中垂线,所以AD=DCABDFE CBD19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD 求证:EC=ED延长BD 到点F,使DF=BC, 可得等边△BEF,只需证明△BCE ≌△FDE 即可20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FH 延长EH 交AF 于点G 由∠BAD+∠BCD=180°, ∠DCF+∠BCD=180° 得∠BAD=∠DCF, 由外角定理,得∠1=∠2, 故△FGM 是等腰三角形 由三线合一,得EH ⊥BCDFABDCEFHG 12 M。
等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。
等腰三角形证明1.如图,已知:点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE2. 如图:△ABC中,AB=AC,PB=PC.求证:AD⊥BC3. 已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:HB=HC4. 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F. 求证:△AEF为等腰三角形.5. 如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.6.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.7.已知:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,且AD=AC。
求证:DE+DC=AE。
等腰三角形练习题答案1. 证:作AM⊥BC于M∵AD=AE,∴DM=EM∵AB=AC,∴BM=CM∴BM-DM=CM-EM∴BD=CE2. 证明:在△ABP和△ACP中∵AB=AC,BP=PC,AP=AP∴△ABP≌△ACP (SSS)∴∠BAP=∠CAP∴AD⊥BC(等腰三角形顶角平分线又是底边的垂线)3. 证明:∵△ABC是等边三角形∴AB=AC,∠BAC=60°在△ABD和△ACE中∵AB=AC,∠1=∠2,BD=CE∴△ABD≌△ACE (SAS)∴AD=AE,∠BAD=∠CAE=60°∴在△ADE中∵AD=AE,∠DAE=60°∴△ADE为等边三角形.4. 证明:连结AC和AD在△ABC和△AED中AB=AE BC=ED ∠B=∠E∴△ABC≌△AED (SAS)∴∠ACB=∠ADE,AC=AD∴△ACD是等腰三角形∴∠ACD=∠ADC;∠BCA=∠CDE∴∠C=∠D5. 证明:∵BE、CF是△ABC的高线.∴∠1=∠2=90°∴△BCF和△CBE都是Rt△.在Rt△BCF和Rt△CBE中∵CF=BE,BC=CB∴Rt△BCF≌Rt△CBE∴∠3=∠4在△HBC中∵∠3=∠4∴HB=HC(同一三角形中,等角对等边)6. 证明:∵AE=AD,∠1=∠2,∠A公共角∴△AEF≌△ADC (AAS)∴AB=AC,EB=DC∴∠ABC=∠ACB∴∠3=∠4,BF=CF∴DF=EF7. 证明:∵AB=AC∴∠B=∠C∵ED⊥BC∴∠B+∠BFD=∠B+∠EFA=90°∠C+∠E=90°。
等腰三角形(习题)例题示范例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】① 读题标注:② 梳理思路: 由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点 ∴12BE BC = ∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点∴AE ⊥BC∴∠AEB =90°∵CD ⊥AD∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL )∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .AC D【思路分析】等腰三角形一边长为5cm,这一边可能是底,也可能是腰,故需分类讨论:①如果5cm为底,则根据周长为12cm,可知腰长为3.5cm.此时两边之和大于第三边,这个三角形存在.②如果5cm为腰,则根据周长为12cm,可知底边长为2cm.此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm或2cm.巩固练习1.已知:如图,在△ABC中,AB=AC,∠A=80°,求∠C的度数.2.如图,在△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=______.第2题图第3题图3.已知:如图,在△ABC中,AB=AC,D为AB边上一点,若CD=AD=BC,则∠A=_________.4.如图,在△ABC中,∠ABC的平分线和∠ACB的平分线相交于点E,过点E作MN∥BC,交AB于点M,交AC于点N.若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点P在AD上.求证:PB=PC.6.已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】巩固练习1.50°2.50°3.36°4. D5.证明略提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC 6.证明略提示:根据等边对等角可得∠B=∠C,∠ADE=∠AED,进而可得∠BAD=∠CAE,从而证明△ABD≌△ACE,根据全等三角形对应边相等,可得BD=CE7.208.80°或40°9.这样的点能找4个,作图略 思考小结1.①全等②等腰2.等边,=,12,12,一半。
等腰三角形的判定家庭作业 1.(5分)CD 是等腰直角三角形ABC 斜边上的高,写出图中的等腰三角形 .2.(5分)已知等腰三角形ABC 中,AB=AC ,D 为BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,则 ∠C 的度数是 .3.(5分)如图,在△ABC 中,AB=AC , BF 与CF 是角平分线且交于点F ,DE ∥BC,若BD+CE=9,则线段DE 的长为 ( )A .6个B .7个C .8个D .9个4.(5分)如图,△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( )A .1个B .2个C .3个D .4个 5.(5分)如图,O 是∠ABC ,∠ACB 的平分线的交点, OD ∥AB ,交BC 于D ,OE ∥AC 交BC 于E , 若BC=10cm ,则△DOE 的周长为( ) A .8cm B .9cmC .10cmD .11cm6.(10分)已知,OD 平分∠AOB ,ED ∥OB ,求证:EO=ED.7.(12分)如图,在ΔABC 中,BD 平分∠ABC ,CD 平分∠ACB 的外角,且EF ∥BC. 请你猜想:线段EF 、BE 和CF 的关系如何?并证明.8.(12分)如图,在△ABC 中BC=AC ,CD ⊥AB ,DE ∥BC ,试说明△ADE 和△CED 都是等腰三角形.9.(16分)(1)如图,∠BAC=90°,AD ⊥BC ,垂足为D ,BE 平分∠ABC ,交AC 于E ,交AD 于F.试判断△AEF 的形状,并说明理由;(2)如图,已知∠BAC=90°,AD ⊥BC ,垂足为D ,AE=AF.试说明BE 平分∠ABC.10.(12分)已知,如图,CE 是△ABC 的角平分线,过点E 画BC 的平行线,交AC于点D ,交外角∠ACG 的平分线于点F.试证明DE=DF.11.(13分)已知,如图,AD 平分∠BAC ,∠B =2∠C ,求证:AC =AB+BD .尖子班补充作业1.已知:如图,OA 平分∠BAC ,∠1=∠2(第3题) A B CD EF B 第1题 A B C D第4题A B C O D E 第5题 A BO D E 第6题 AB C M E F D第7题ECA B C D EF第9题A B C D E F G 第10题A B CD 第11题求证:△ABC 是等腰三角形.2.已知:如图,在△ABC 中,∠ACB =90°,高CD 和角平分线AE 交于点F ,FG ∥AB 交BC 于点G , 求证:CG =BGCADBE F G 第2题答案(供参考)家庭作业1.△ABC、△ACD和△BCD2.45°或36°3.D4.C5.C6.略7.关系是:EF=BE-CF,证明提示:证明BE=ED,FC=FD8.略9.⑴△AEF是等腰三角形,提示:∠AFE=∠ABE+∠BAD,∠AEF=∠EBC+∠C可证∠BAD=∠C而∠ABE=∠EBC,所以∠AFE=∠AEF⑵略10.提示:证明DE=DC,DC=DF11.提示:在AC上截取AE=AB,连接DE,证明△ABD≌△AED,则BD=DE,再证ED=EC尖子班补充作业1.提示:过O点作OG⊥AB,OH⊥AC,G、H是垂足,证明△OGB≌△OHC,则∠ABO=∠ACO,因此,可证∠ABC=∠ACB2.提示:过E点作EH⊥AC,H是垂足,证明△CFG≌△EHB,注意利用家庭作业的第9题⑴的结论.。
等腰三角形的性质应用及判定【例1】 如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O 。
给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO ;③BE=CD.(1) 上述三个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形) (2) 选择第(1)小题中的一种情形,证明△ABC 是等腰三角形【例2】如图,△ABC 为等边三角形,延长BC 到D ,又延长BA 到E,使AE=BD,连接CE,DE 。
求证:△CDE 为等腰三角形【例3】如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数有( ) ①DC '平分∠BDE②BC 长为(22 )a③△BC 'D 是等腰三角形 ④△CED 的周长等于BC 的长 A 。
1个 B.2个 C 。
3个 D.4个【例4】如图,△ABC 是边长为1的正三角形,△BDC 是顶角为120°的等腰三角形,以D 为顶点作一个60°的∠MDN,点M,N分别在AB ,AC 上,则△AMN 的周长是【例5】已知一个等腰三角形两内角的度数比为1:4,则这个等腰三角形顶角的度数为( ) A 。
20° B.120° C 。
20°或120° D.36°AEBCO D EA BCDD BE CDBC '. E ACB A MNDBC【例6】等腰三角形两边长分别为4和9,则第三边长为【例7】如图,点O 事等边△ABC 内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD ,则△COD 是等边三角形;(1)当α为多少度时,△AOD 是等腰三角形?(2)求证:△COD 是等边三角形(3)当α=150°时,试判断△AOD 的形状,并说明理由等边三角形的性质应用及判定【例8】如图,在等边△ABC 中,点D ,E 分别在边BC ,AB 上,BD=AE,AD 与CE 交于点F.求证:(1)AD=CE;(2)求∠DFC 的度数。
等腰三角形证明练习题一.选择题(共20小题)1.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A .13 B.10 C.12 D.52.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A .5个B.4个C.3个D.2个3.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=()A .4:3 B.3:4 C.16:9 D.9:164.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A .70°B.80°C.40°D.30°5.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A .30°B.36°C.40°D.45°6.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A .145°B.110°C.70°D.35°7.如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是()A .2 B.3 C.4 D.58.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A .2 B.3 C.6 D.不能确定9.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A 3.8cmB 7.6cmC 11.4cmD 11.2cm10.△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=()A 110°B 120°C 130°D 140°11.如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6,则PF的长为()A 2B 4C 6D 812.如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是()A 13cmB 14cmC 15cmD 16cm13.如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A .50°B.75°C.80°D.105°14.如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′15.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则()A .BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP16.如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF 等于()A .90°﹣∠A B.90°﹣∠AC.180°﹣∠A D.45°﹣∠A17.如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACD B.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形18.如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上19.如图,在∠ECF的两边上有点B,A,D,BC=BD=DA,且∠ADF=75°,则∠ECF的度数为()A .15°B.20°C.25°D.30°20.如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有()A .1个B.2个C.3个D.4个二.解答题(共10小题)21.如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠AOC=α,∠BOC=β,请用含有α,β的式子表示∠NOC.(2)如果∠BOC=90°,OM平分∠AOC,那么∠MON的度数是多少?22.(2014秋•阿坝州期末)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.23.如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,DE⊥AB(E在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△DFC的周长.24.如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.25.如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠BDE的度数.26.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.27.如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.28.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.29.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.30.如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.31.如图:△ABC和△ADE是等边三角形.证明:BD=CE.AEDB C32..如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线。
专题:等腰三角形的性质与判定※题型讲练考点一等腰三角形的性质定理1:“等边对等角”1.等腰三角形的性质定理:(1)性质定理1:等腰三角形的两个相等(该定理可以简写成“”).注意:等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高) .【例1】(1)已知等腰三角形的一个外角是100°,则其底角的度数是50°或80°.(2)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=___18°_____.(3)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠BAC的度数是108°.(4)如图,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接AF.求证:∠BAF=∠ACF.变式训练1:1.已知等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.2.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数度数是50°.3.如图,在△ABC中,AB=AC,D是AB上一点,延长CA到点E,使AE=AD,求证:ED⊥BC.考点二等腰三角形的性质定理2:“三线合一”(2)性质定理2:等腰三角形的的角平分线、底边上的、底边上的互相重合,简写成“”.【例2】(1)如图,在△ABC中,AB=AC,D为BC中点,∠BAD =35°,则∠C的度数为___55°_____.(2)如图,△ABC的周长为32,且AB=AC,AD⊥BC于点D,△ACD的周长为24,则AD的长为____8___.(3)如图,△ABC中,AB=AC=10cm,S△ABC=48cm2,AD平分∠BAC,DE⊥AC于点E,则DE等于___4.8____.变式训练2:1.如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是___35°___.2.如图,△ABC中,AB=AC,点D是BC边的中点,作∠EAB =∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.试证明:BE=CF.考点三等腰三角形的判定定理:“等角对等边”1.等腰三角形的判定定理:如果一个三角形有相等,那么这两个角所对的边也相等(简写成“”).【例2】(1)如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为( D )A.3个B.4个C.5个D.6个(2)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.(3)如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于点E,EF∥AC交AB于点F.求证:AF=FB.变式训练3:1.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是____30____.2.如图,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.考点四等腰三角形的综合问题【例4】如图,在△ABC中,AB=AC,点D、E、F分别在AB 、BC 、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.※课后练习1.等腰三角形是轴对称图形,它的对称轴是( D )A.过顶点的直线B.腰上的高所在的直线C.顶角的角平分线D.底边的垂直平分线2.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC 的长为半径画弧,交AC于点D,连接BD,则∠ABD=(B) A.30°B.45°C.60°D.90°3.如图所示,已知AB=AC=BD,那么∠1和∠2之间的关系是(D)A.∠1=2∠2 B.2∠1-∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°4.已知等腰三角形中有一个内角为70°,则该等腰三角形的顶角度数为70°或40°.5.如图,已知OC平分∠AOB,CD∥OB,若OD=4 cm,则CD等于____4 cm ___.6.如图,在△ABC中,∠B=∠C,点E在CA延长线上,EP⊥BC于点P,交AB于点F.若AF=3,BF=5,则CE的长度为11.7.在平面直角坐标系中,O为坐标原点,已知点A(2,4),在坐标轴上确定一点P,使△AOP为等腰三角形,则所有符合条件的点P有8 个.8.如图,在△ABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB.则∠A的度数为45°.9.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE 交AD于F,交AC于E.(1)若BE平分∠ABC,试判断△AEF的形状,并说明理由;(2)若AE=AF,请证明BE平分∠ABC.10.如图,AD是∠BAC的平分线,AB=AC+DC.求证:∠C=2∠B.证明:在AB上截取AE=AC,连接DE.∵AB=AC+DC,AE=AC,∴BE=DC.∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴△AED≌△ACD( SAS ).∴DE=DC=BE,∠AED=∠C,∴∠B=∠EDB.∵∠AED=∠B+∠EDB,∴∠AED=2∠B,∴∠C=2∠B.11.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D 分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?请给出证明.(2)过点C作AB边上的高CG,请问DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.解:(1)当D为BC的中点时,DE=DF.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∴△BED≌△CFD( AAS ),∴DE=DF.(2)CG=DE+DF.连接AD,∵S△ABC=S△ADB+S△ADC,AB×CG=AB×DE+AC×DF,又∵AB=AC,∴CG=DE+DF.12.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC,CB于点D,E,图1,图2,图3是旋转得到的三种图形.(1)以图2为例证明:PD=PE;(2)△PBE能否构成等腰三角形?若能,求出∠PEB的度数;若不能,请说明理由.。
MED CBA等腰三角形一、选择题1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm 二、填空题1. 边长为6cm 的等边三角形中,其一边上高的长度为________.2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为5. 如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6,则AD=_______.6.如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
7. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.三、解答题1. 如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.题1图(1)B HFA (D )GCEC (E )BFA (D )题1图(2)2、如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.3. 如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC ; (2)若点M 在DE 上,且DC=DM , 求证: ME=BD .ABC EDO4. 如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.5. 数学课上,李老师出示了如下框中的题目.在等边三角形ABC中,点E在AB上,点D 在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB (填“>”,“<”或“=”).(2)特例启发,解答題目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).等腰三角形答案一、选择题 BDD二、填空题 1、3√3 2、4或6 3、-------- 4、80 5、4 6、80 7、15 三、解答题1. 1(2011广东东莞,21,9分)【答案】解:(1)△HAB ,△HGA 。
(2)∵△AGC ∽△HAB ,∴AC GCHB AB =,即9=9x y 。
∴81=y x 。
又∵BC=229992092<x <+=∴ ,。
∴y 关于x 的函数关系式为()81=092y <x <x。
(3)①当∠GAH= 45°是等腰三角形.的底角时,如图1, 可知9222BC x CG ===。
②当∠GAH= 45°是等腰三角形.的顶角时, 如图2,在△HGA 和△AGC 中 ∵∠AGH=∠CGA ,∠GAH=∠C=450,∴△HGA ∽△AGC 。
∵AG=AH ,∴9x CG AC === ∴当922x =或9x =时,△AGH 是等腰三角形。
【考点】三角形外角定理,相似三角形的判定和性质,勾股定理,几何问题列函数关系式,等腰三角形的判定。
【分析】(1)在△AGC 和△HAB 中,∵∠AGC=∠B+∠BAG=∠B+900—∠GAC=1350—∠GAC ,∠BAH=∠BAC+∠EAF —∠EAC=900+450—∠GAC ,∴∠AGC=∠BAH 。
又∵∠ACG=∠HBA=450,∴△AGC ∽△HAB 。
在△AGC 和△HGA 中,∵∠CAG=∠EAF —∠CAF=450—∠CAF ,∠H=1800-∠ACH —∠CAH=1800—1350—∠CAF=450—∠CAF , ∴∠CAG=∠H 。
又∵∠AGC=∠HGA ,∴△AGC ∽△HGA 。
(2)利用△AGC ∽△HAB 得对应边的比即可得。
(3)考虑∠GAH 是等腰三角形.底角和顶角两种情况分别求解即可。
2、(2011山东德州19,8分)(1)证明:在△ACD 与△ABE 中,∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC ,∴ △ACD ≌△ABE .∴AD=AE . (2) 互相垂直 在Rt △ADO 与△AEO 中, ∵OA=OA ,AD=AE ,∴ △ADO ≌△AEO . ∴ ∠DAO =∠EAO .即OA 是∠BAC 的平分线. 又∵AB =AC ,∴ OA ⊥BC .ABEC DO3、(2011山东日照,23,10分) 证明:(1)在等腰直角△ABC 中,∵∠CAD =∠CBD =15o ,∴∠BAD =∠ABD =45o -15o =30o ,∴BD=AD ,∴△BDC ≌△ADC , ∴∠DCA =∠DCB =45o .由∠BDM =∠ABD+∠BAD =30o +30o =60o ,∠EDC=∠DAC +∠DCA =15o +45o =60o , ∴∠BDM =∠EDC ,∴DE 平分∠BDC ;(2)如图,连接MC ,∵DC=DM ,且∠MDC =60°,∴△MDC 是等边三角形,即CM=CD . 又∵∠EMC =180°-∠DMC =180°-60°=120°,∠ADC =180°-∠MDC =180°-60°=120°, ∴∠EMC =∠ADC .又∵CE=CA ,∴∠DAC =∠CEM =15°,∴△ADC ≌△EMC ,∴ME=AD=DB .4、(2011湖北鄂州,18,7分)【解题思路】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,得BF=4,BE=3,再运用勾股定理求得EF=22BE BF +=5【答案】连结BD ,证△BED ≌△CFD 和△AED ≌△BFD ,求得EF=5【点评】此题考查了直角三角形斜边上的中线是斜边的一半,三角形全等的判定和性质和勾股定理。
只要抓住等腰直角三角形的性质和全等三角形的判定,解决起来并不困难。
5、(2011•绍兴)考点:全等三角形判定与性质;三角形内角和定理;等边三角形判定与性质。
专题:计算题;证明题;分类讨论。
分析:(1)根据等边三角形的性质和三角形的内角和定理求出∠D=∠DEB=30°,推出DB=BE=AE 即可得到答案; (2)作EF ∥BC ,证出等边三角形AEF ,再证△DBE ≌△EFC 即可得到答案;(3)分为两种情况:一是如上图在AB 边上,在CB 的延长线上,求出CD=3,二是在BC 上求出CD=1,即可得到答案. 解答:解:(1)故答案为:=. (2)故答案为:=.证明:在等边△ABC 中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC , ∵EF ∥BC ,∴∠AEF=∠AFE=60°=∠BAC ,∴AE=AF=EF ,∴AB ﹣AE=AC ﹣AF ,即BE=CF , ∵∠ABC=∠EDB+∠BED=60°,∠ACB=∠ECB+∠FCE=60°, ∵ED=EC ,∴∠EDB=∠ECB ,∴∠BED=∠FCE ,∴△DBE ≌△EFC ,∴DB=EF ,∴AE=BD . (3)答:CD 的长是1或3.点评:本题主要考查对全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.。