LMS类自适应算法参考文档
- 格式:ppt
- 大小:256.82 KB
- 文档页数:7
自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。
1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。
LMS类自适应滤波算法的研究LMS类自适应滤波算法的研究自适应滤波算法是一种可以根据输入信号的特性自动调整滤波器参数的方法。
它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
LMS(Least Mean Square)是一种常用的自适应滤波算法,它通过最小化均方差来更新滤波器的权重,以实现滤波器的自适应性。
LMS算法的基本原理是通过梯度下降法来调整滤波器的权重。
假设输入信号为 x(n),期望输出信号为 d(n),滤波器的输出信号为 y(n),滤波器的权重为 w(n)。
算法的更新公式如下:w(n+1) = w(n) + μe(n)x(n)其中,w(n+1)是下一时刻的权重,w(n)是当前时刻的权重,μ是步进因子,e(n)是误差信号,x(n)是输入信号。
误差信号可以通过期望输出信号和滤波器的输出信号之间的差异计算得到:e(n) = d(n) - y(n)LMS算法的核心思想是根据误差信号的大小来更新滤波器的权重,使得误差信号逐渐趋近于零,从而实现滤波器的自适应。
步进因子μ的选择对算法的性能有着重要的影响。
当μ过小时,算法的收敛速度较慢;当μ过大时,算法可能发散。
因此,在实际应用中需要根据具体情况选择适当的步进因子。
除了LMS算法,还有一些与之类似的自适应滤波算法,如NLMS(Normalized Least Mean Square)算法和RLS (Recursive Least Squares)算法。
NLMS算法是一种对LMS算法的改进,通过归一化步进因子来改善收敛速度和稳定性。
RLS算法是一种基于递推最小二乘法的自适应滤波算法,相对于LMS算法具有更好的性能,但计算量较大。
LMS类自适应滤波算法广泛应用于信号降噪、自适应控制、信号预测等领域。
在信号降噪方面,LMS算法可以根据输入信号的特性实时调整滤波器的权重,抑制噪声,提高信号的质量。
在自适应控制方面,LMS算法可以根据目标系统的反馈信息实时调整控制器的参数,使得控制系统能够自动适应不同的工况,提高控制精度和稳定性。
NLMSLMS算法介绍参考NLMS(Normalized Least Mean Squares)算法是一种自适应滤波算法,是LMS(Least Mean Squares)算法的一种改进版本。
可以应用于许多信号处理应用领域,例如声音增强、自适应滤波、自适应降噪等。
LMS算法是一种采用最小均方误差准则的自适应滤波算法。
它通过最小化输入信号与期望输出信号之间的均方误差来调整滤波器的系数,实现自适应滤波。
然而,LMS算法存在一个缺陷,就是它对输入信号的动态范围非常敏感,需要较小的步长参数才能保证算法的收敛性。
为了解决LMS算法的不足,NLMS算法在每次迭代中对步长参数进行了归一化处理。
具体来说,在更新滤波器系数时,NLMS算法除以输入信号的功率来归一化步长。
这样可以有效地改善算法的收敛速度和稳定性,提高算法的适应性。
NLMS算法的更新公式如下:w(k+1)=w(k)+μ/(α+x(k)*x(k)')*e(k)*x(k)其中,w(k)表示第k个迭代步骤时的滤波器系数向量,μ是步长参数,α是一个小的正常数,x(k)表示第k个迭代步骤时的输入信号向量,e(k)表示第k个迭代步骤时的误差信号。
NLMS算法的优点是可以自动调节步长参数,能够快速适应信号的变化。
此外,由于步长参数的归一化处理,算法对输入信号的幅度变化不敏感,能够更好地处理动态范围大的信号。
然而,NLMS算法也存在一些问题。
首先,算法的收敛速度可能会受到输入信号的动态范围变化的影响。
当信号的动态范围较大时,步长参数的归一化处理会导致算法的收敛速度变慢,甚至可能导致算法无法收敛。
其次,算法对输入信号的变化有一定的延迟响应,可能导致一些误差信号被忽略。
总而言之,NLMS算法是一种改进的自适应滤波算法,通过归一化步长参数来提高算法的收敛速度和稳定性。
它在许多信号处理应用领域都有广泛应用,同时也存在一些局限性。
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。
1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。
基于LMS算法的自适应线性均衡器设计摘要:在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
影响移动通信质量和通信速度的一个重要因素是码间干扰,即串扰。
在一个实际的通信系统中,基带传输系统不可能完全满足理想的波形传输无失真条件,因而串扰几乎是不可避免的。
对串扰进行校正的电路称为均衡器,其实质是信道的一个逆滤波器。
信道均衡器是通信系统中一项重要的技术,它能够很好的补偿信道的非理想特性,从而减轻信号的畸变,降低误码率。
在高速通信、无线通信领域,信道对信号的畸变将更加的严重,因此信道均衡技术是不可或缺的。
本文介绍了自适应均衡器的基本理论、最小均方(LMS)算法的原理与设计、自适应的基本原理、线性均衡器的基本理论与设计,并结合归一化(NLMS)算法、递归最小二乘法(RLS)算法对最小均方(LMS)算法作了进一步说明,最终用MATLAB对基于LMS算法的自适应线性均衡器进行了仿真设计。
关键词:LMS算法;自适应;线性均衡器;(NLMS)算法;(RLS)算法LMS Algorithm Based on Adaptive LinearEqualizer DesignAbstract:The rapid development of information industry today, for fast and accurate communication is the basic requirement of various industries. Affect the quality of mobile communications and the communication speed is an important factor in inter-symbol interference, that is, crosstalk. In a practical communication system, base-band transmission system can not fully meet the ideal conditions for wave transmission without distortion, thus crosstalk is almost inevitable. The crosstalk correction circuit called equalizer, and its essence is an inverse channel filter. Channel equalizer is an important communication systems technology, it can be well compensated non-ideal characteristics of the channel, thereby reducing the signal distortion, reduce the error rate. In the high-speed communications, wireless communications, channel distortion of the signal will be more serious, so the channel equalization is indispensable.This article describes the basic theory of adaptive equalizer, the minimum mean square (LMS) algorithm and design principles, basic principles of adaptive linear equalizer of the basic theory and design, combined with normalized (NLMS) algorithm, recursive least squares (RLS) algorithm for least-mean-square (LMS) algorithm was further described, and ultimately using MA TLAB LMS algorithm based adaptive linear equalizer for simulation design.Key words:LMS algorithm; Adaptive; Linear equalizer; (NLMS) Algorithm; (RLS) Algorithm目录第1章绪论 (1)1.1均衡器研究背景及意义 (1)1.2国内外对均衡技术的研究动态 (3)1.3本文研究内容和主要工作 (4)第2章自适应均衡器基本理论 (5)2.1通信系统中的失真分析 (5)2.1.1、数字基带传输系统模型 (5)2.1.2通信系统中的噪声干扰 (5)2.1.3、通信系统的传输特性 (7)2.1.4、均衡技术 (8)2.2自适应滤波原理 (8)2.2.1、自适应滤波器的分类 (8)2.2.2、自适应滤波器的基本构成 (9)2.2.3、与普通滤波器的区别 (9)2.2.4、自适应过程 (10)2.3自适应滤波结构 (10)2.3.1、滤波器的实现结构 (11)第3章基于LMS算法自适应均衡原理 (14)3.1最小均方(LMS)算法基本原理 (14)3.1.1、最佳滤波器准则 (14)3.1.2MMSE准则 (14)3.1.3LMS迭代算法 (16)3.2最小均方(LMS)算法的性能分析 (18)3.2.1LMS算法的稳定性 (18)3.2.2LMS算法的收敛速度 (20)3.2.3LMS算法的性能学习曲线及稳态误差 (21)第4章基于LMS自适应均衡算法仿真 (23)4.1MATLAB简介 (23)4.2LMS算法的自适应均衡的计算机仿真实现 (23)4.2.1信道失真参数W(特征值分散)对系统的收敛性和稳态性的影响 (25)4.2.2迭代步长 对系统的收敛性和稳态性的影响 (27)4.2.3横向自适应滤波器的抽头数M对系统的收敛性和稳态性的影响 (28)第5章归一化LMS算法与RLS算法 (31)5.1基于LMS算法的归一化LMS算法 (31)5.1.1NLMS算法基本理论简介 (31)5.2.2RLS算法与LMS算法仿真比较 (31)5.2RLS算法的自适应均衡的计算机仿真实现 (32)5.2.1RLS算法基本理论简介 (32)5.2.2RLS算法与LMS算法仿真比较 (33)第6章结论 (35)致谢 (37)参考文献 (38)附录1 (39)第1章绪论1.1 均衡器研究背景及意义在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
用于消除工频干扰自适应滤波器的设计与仿真一、背景及意义脑科学研究不仅是一项重要的前沿性基础研究,而且是一项对人类健康有重要实际意义的应用研究。
随着社会的发展、人类寿命的延长,因脑衰老、紊乱或损伤而引起的脑疾患,对社会财富消耗和家庭的负担日益增大。
许多国家纷纷将脑科学的研究列入国家规划,并且制订长远的研究计划。
人们把21 世纪看成是脑科学研究高潮的时代。
在脑电信号的实际检测过程中,往往含有心电、眼动伪迹、肌电信号、50Hz工频干扰以及其它干扰源所产生的干扰信号,这给脑电分析以及脑电图的临床应用带来了很大的困难。
因此如何从脑电中提取出有用的信息是非常具有挑战性,且又很有学术价值、实用价值的研究课题。
本论文从信号处理的角度出发,采集脑电波,使得在强干扰背景下的脑电信号得以提取,还原出干净的脑电波,用于临床医学、家庭保健等。
医生可以利用所采集到的脑电波来进行对病人神经松弛训练,通过脑电生物反馈技术实现自我调节和自我控制。
运用生物反馈疗法,就是把求治者体内生理机能用现代电子仪器予以描记,并转换为声、光等反馈信号,因而使其根据反馈信号,学习调节自己体内不遂意的内脏机能及其他躯体机能、达到防治身心疾病的目的。
这种反馈疗法是在一定程度上发掘人体潜能的一种人—机反馈方法。
有研究表明脑电生物反馈对多种神经功能失调疾病有明显疗效。
对于有脑障碍或脑疾病的人,也可以随时监测其脑电信号,及早地发现问题,避免不必要的损失。
二、脑电数字信号处理的研究现状脑电的监护设备在国内外品种繁多,高新技术含量高,技术附加值高,相比而言,我国的产品较国际高水平产品落后10-15 年。
但近年来,国内产品也逐步利用高新技术使产品向自动化、智能化、小型化、产品结构模块化方向发展。
国内产品在抗干扰、数字处理、实时传输数据等方面已有很大进展,使脑电检测不再是只能在屏蔽室进行。
目前,脑电信号的数字滤波从原理上来看,主要有FIR滤波器和IIR滤波器。
FIR滤波器可以提供线性滤波,但存在阶数较高,运算较为复杂的缺点[11];而IIR滤波器是一种非线性滤波器,它可以用较少的阶数实现性能良好的滤波,是目前运用较广泛的一种滤波器[10]。
RLS 和LMS 自适应算法分析摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。
我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。
通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。
用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。
关键词:自适应滤波、LMS 、RLS 、Matlab 仿真Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS, Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process.Keywords:, LMS and RLS adaptive filter, the Matlab simulation课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产生的AR 过程。
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
LMS类自适应算法LMS(最小均方算法)是一种自适应算法,用于根据输入数据的统计特性,自动调整系统参数以达到最佳性能。
LMS算法的主要目标是最小化均方误差(MSE),它在各种应用中都得到了广泛的应用,包括自适应滤波、信号处理和通信系统等。
LMS算法基于梯度下降的思想,通过反复调整系统参数,来不断逼近最小均方误差的目标。
LMS算法的关键是通过观察输入数据和系统输出之间的误差,来估计相应的梯度信息,并以此来调整系统参数。
具体而言,LMS算法根据如下的迭代公式进行更新:w(n+1)=w(n)+μ*e(n)*x(n)其中w(n)是参数矢量的估计值,μ是步长参数,e(n)是误差信号,x(n)是输入信号。
通过不断重复上述迭代过程,LMS算法能够逐步改善系统性能,并收敛到最优解。
LMS算法的自适应性体现在参数调整的过程中。
由于输入数据是实时提供的,所以LMS算法能够动态地跟随输入数据的变化,从而适应不同的统计特性。
步长参数μ的选取也是一个关键的问题,它决定了系统的收敛速度和稳定性。
一般而言,如果步长参数过大,系统可能无法收敛;如果步长参数过小,系统收敛速度较慢。
因此,需要选择适当的步长参数才能获得最佳的性能。
LMS算法在自适应滤波中有着广泛的应用。
自适应滤波主要用于信号去噪和系统辨识等问题。
在信号去噪中,LMS算法通过从输入信号中估计噪声的统计特性,来自动抑制噪声成分,从而提高信号质量。
在系统辨识中,LMS算法能够自动估计系统的冲激响应,从而实现对输入信号的准确重建。
除了自适应滤波,LMS算法还被广泛应用于信号处理和通信系统中。
在信号处理中,LMS算法可以用于自适应降噪、自适应模拟滤波和自适应均衡等问题。
在通信系统中,LMS算法可以用于自适应预编码和自适应均衡,以提高通信系统的传输性能。
总之,LMS类自适应算法是一种非常有效的自适应算法,通过不断调整系统参数,能够实现对输入数据的自动适应。
它在各种应用中都有广泛的应用,尤其在自适应滤波、信号处理和通信系统中具有重要的地位。
自适应滤波LMS算法及RLS算法及其仿真1.引言2.自适应滤波LMS算法LMS(Least Mean Square)算法是一种最小均方误差准则的自适应滤波算法。
其基本原理是通过不断调整滤波器的权值,使得输出信号的均方误差最小化。
LMS算法的迭代公式可以表示为:w(n+1)=w(n)+μ*e(n)*x(n)其中,w(n)为滤波器的权值向量,μ为步长因子,e(n)为误差信号,x(n)为输入信号。
通过迭代更新权值,LMS算法逐渐收敛,实现了自适应滤波。
3.RLS算法RLS(Recursive Least Square)算法是一种递归最小二乘法的自适应滤波算法。
相比于LMS算法,RLS算法具有更好的收敛性能和适应性。
RLS算法基于最小二乘准则,通过递归式地计算滤波器权值矩阵,不断优化滤波器的性能。
迭代公式可以表示为:P(n)=(P(n-1)-P(n-1)*x(n)*x(n)'*P(n-1)/(λ+x(n)'*P(n-1)*x(n))) K(n)=P(n)*x(n)/(λ+x(n)'*P(n)*x(n))w(n+1)=w(n)+K(n)*e(n)其中,P(n)为滤波器的协方差矩阵,K(n)为最优权值,λ为遗忘因子(用于控制算法的收敛速度),e(n)为误差信号。
4.仿真实验为了验证LMS算法和RLS算法的性能,我们进行了一组仿真实验。
假设输入信号为一个正弦信号,噪声为高斯白噪声。
我们分别使用LMS和RLS算法对输入信号进行自适应滤波,比较其输出信号和原始信号的均方误差。
在仿真中,我们设置了相同的滤波器长度和步长因子,比较LMS和RLS算法的收敛速度和输出质量。
实验结果表明,相对于LMS算法,RLS 算法在相同条件下具有更快的收敛速度和更低的均方误差。
这验证了RLS 算法在自适应滤波中的优越性。
5.结论本文介绍了自适应滤波LMS算法和RLS算法的原理及其在仿真中的应用。
实验结果表明,相对于LMS算法,RLS算法具有更好的收敛性能和适应性。
LMS自适应线性预测算法LMS(最小均方)自适应线性预测算法是一种常用的信号处理算法,用于估计未知信号的值。
它基于线性模型,通过逐步地调整权重以最小化预测误差的均方差来实现预测。
在该算法中,自适应性体现在权重的自适应更新上,使得算法能够适应不断变化的信号环境。
LMS算法的基本思想是,通过输入信号的相关性来构造一个线性模型,并使用已知的输入信号和相应的输出信号来估计模型的权重。
这样,当没有给定输出信号时,我们可以使用该模型来预测未知信号的值。
预测误差被定义为实际输出信号与预测输出信号之间的差异。
LMS算法的核心是权重的自适应更新。
为了通过最小化均方误差来优化权重,算法使用了梯度下降的思想。
具体来说,算法使用误差信号(预测输出与实际输出的差异)来调整每个权重的值,使得误差信号的均方差尽可能小。
LMS算法的更新规则如下:w(n+1)=w(n)+μ*e(n)*x(n)其中,w(n)是上一次权重的值,w(n+1)是当前权重的值,μ是步长参数(控制权重更新的速度),e(n)是误差信号,x(n)是输入信号。
LMS算法的步骤如下:1.初始化权重w(0)为一个适应信号长度的零向量。
2.对于每一个时间步n,计算输出y(n):y(n)=w^T(n)x(n),其中x(n)是输入信号,w^T(n)是权重向量的转置。
3.计算误差信号e(n):e(n)=d(n)-y(n),其中d(n)是实际输出信号。
4.更新权重w(n+1):w(n+1)=w(n)+μ*e(n)*x(n)。
5.重复步骤2-4,直到达到预定的停止条件(如达到最大迭代次数、误差信号小于一些阈值等)。
LMS算法的性能取决于步长参数μ的选择。
如果步长参数过小,算法收敛速度较慢;如果步长参数过大,算法可能发散。
因此,在实际应用中,需要仔细选择适当的步长参数。
LMS算法的优点是简单、易于实现,对于大多数实时信号处理应用而言,具有较高的计算效率。
此外,LMS算法对于非线性系统也能够进行利用,但是需要注意对非线性情况下的模型做一定的适应。
基于LMS算法的自适应线性均衡器设计摘要:在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
影响移动通信质量和通信速度的一个重要因素是码间干扰,即串扰。
在一个实际的通信系统中,基带传输系统不可能完全满足理想的波形传输无失真条件,因而串扰几乎是不可避免的。
对串扰进行校正的电路称为均衡器,其实质是信道的一个逆滤波器。
信道均衡器是通信系统中一项重要的技术,它能够很好的补偿信道的非理想特性,从而减轻信号的畸变,降低误码率。
在高速通信、无线通信领域,信道对信号的畸变将更加的严重,因此信道均衡技术是不可或缺的。
本文介绍了自适应均衡器的基本理论、最小均方(LMS)算法的原理与设计、自适应的基本原理、线性均衡器的基本理论与设计,并结合归一化(NLMS)算法、递归最小二乘法(RLS)算法对最小均方(LMS)算法作了进一步说明,最终用MATLAB对基于LMS算法的自适应线性均衡器进行了仿真设计。
关键词:LMS算法;自适应;线性均衡器;(NLMS)算法;(RLS)算法LMS Algorithm Based on Adaptive LinearEqualizer DesignAbstract:The rapid development of information industry today, for fast and accurate communication is the basic requirement of various industries. Affect the quality of mobile communications and the communication speed is an important factor in inter-symbol interference, that is, crosstalk. In a practical communication system, base-band transmission system can not fully meet the ideal conditions for wave transmission without distortion, thus crosstalk is almost inevitable. The crosstalk correction circuit called equalizer, and its essence is an inverse channel filter. Channel equalizer is an important communication systems technology, it can be well compensated non-ideal characteristics of the channel, thereby reducing the signal distortion, reduce the error rate. In the high-speed communications, wireless communications, channel distortion of the signal will be more serious, so the channel equalization is indispensable.This article describes the basic theory of adaptive equalizer, the minimum mean square (LMS) algorithm and design principles, basic principles of adaptive linear equalizer of the basic theory and design, combined with normalized (NLMS) algorithm, recursive least squares (RLS) algorithm for least-mean-square (LMS) algorithm was further described, and ultimately using MA TLAB LMS algorithm based adaptive linear equalizer for simulation design.Key words:LMS algorithm; Adaptive; Linear equalizer; (NLMS) Algorithm; (RLS) Algorithm目录第1章绪论 (1)1.1均衡器研究背景及意义 (1)1.2国内外对均衡技术的研究动态 (3)1.3本文研究内容和主要工作 (4)第2章自适应均衡器基本理论 (5)2.1通信系统中的失真分析 (5)2.1.1、数字基带传输系统模型 (5)2.1.2通信系统中的噪声干扰 (5)2.1.3、通信系统的传输特性 (7)2.1.4、均衡技术 (8)2.2自适应滤波原理 (8)2.2.1、自适应滤波器的分类 (8)2.2.2、自适应滤波器的基本构成 (9)2.2.3、与普通滤波器的区别 (9)2.2.4、自适应过程 (10)2.3自适应滤波结构 (10)2.3.1、滤波器的实现结构 (11)第3章基于LMS算法自适应均衡原理 (14)3.1最小均方(LMS)算法基本原理 (14)3.1.1、最佳滤波器准则 (14)3.1.2MMSE准则 (14)3.1.3LMS迭代算法 (16)3.2最小均方(LMS)算法的性能分析 (18)3.2.1LMS算法的稳定性 (18)3.2.2LMS算法的收敛速度 (20)3.2.3LMS算法的性能学习曲线及稳态误差 (21)第4章基于LMS自适应均衡算法仿真 (23)4.1MATLAB简介 (23)4.2LMS算法的自适应均衡的计算机仿真实现 (23)4.2.1信道失真参数W(特征值分散)对系统的收敛性和稳态性的影响 (25)4.2.2迭代步长 对系统的收敛性和稳态性的影响 (27)4.2.3横向自适应滤波器的抽头数M对系统的收敛性和稳态性的影响 (28)第5章归一化LMS算法与RLS算法 (31)5.1基于LMS算法的归一化LMS算法 (31)5.1.1NLMS算法基本理论简介 (31)5.2.2RLS算法与LMS算法仿真比较 (31)5.2RLS算法的自适应均衡的计算机仿真实现 (32)5.2.1RLS算法基本理论简介 (32)5.2.2RLS算法与LMS算法仿真比较 (33)第6章结论 (35)致谢 (37)参考文献 (38)附录1 (39)第1章绪论1.1 均衡器研究背景及意义在信息业快速发展的今天,进行快速准确的通信是各个行业的基本要求。
CO N T E N T改进的LMS算法——NLMS算法LMS算法原理两种算法性能分析总结LMS(最小均方误差)算法是基于梯度的算法,应用准则是均方误差函数(MSE )最小化原则,它在迭代运算中不断地调整滤波器权系数,直到MSE 达到最小值为止。
设计自适应滤波器的最常用的结构就是横向滤波器结构,输出信号y n 为:y n =w T n ∗x n = i=0N−1w i n x(n −i)N 为滤波器阶数,w T n 为权系数的转置。
FIR 自适应滤波器输出的形式可以看做是x n 与w n 两个矩阵的卷积,误差信号为参考输入信号与实际输出信号的差值e n =d n −y n =d n −w T n ∗x(n)1LMS算法的基本思想是利用e n与x(n)的某种关系,来不断更新自适应滤波器的权系数,从而使均方误差达到最小值,达到最优滤波效果。
均方误差J n为:J n=E e2n=E[d2n−2d n w T n∗x n+w T n∗x n2]通过对J n求导来得到使取得最小值的滤波器权系数,得到使代价函数最小的滤波器系数值:w=R−1∗P其中P=E d n∗x n为输入信号和参考信号的互相关矩阵R=E[x n∗x T n]为输入信号的自相关矩阵将均方误差E e2n对各w i矢量求导,获得均方误差梯度∇n为:∇n=ðE[e2(n)]ðw i⋮ðE[e2(n)]ðw n1设w n +1表示n +1时刻的滤波器系数权矢量,根据最陡下降法,滤波器权系数递归迭代公式表示为:w n +1=w n +μx n ∗e(n)其中μ为自适应步长,用来控制滤波器算法收敛性和稳定性。
对于LMS 算法为了保证收敛,μ的取值范围为:0<μ<2λmax输入信号为加了高斯噪声后的随机信号,取μ=1,α=0.001,μ= 0.2得到两种算法的误差曲线如下图所示:下降曲线的斜率反应了算法的收敛速度,稳定后的误差反映了算法的精度。
自适应均衡算法LMS研究一、自适应滤波原理与应用所谓自适应滤波器,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。
根据环境的改变,使用自适应算法来改变滤波器的参数和结构。
1.1均衡器的发展及概况均衡是减少码间串扰的有效措施。
均衡器的发展有史已久,二十世纪60年代前,电话信道均衡器的出现克服了数据传输过程中的码间串扰带来的失真影响。
但是均衡器要么是固定的,要么其参数的调整是手工进行。
1965年,Lucky在均衡问题上提出了迫零准则,自动调整横向滤波器的权系数。
1969年,Gerhso和Porkasi,Milier分别独立的提出采用均方误差准则(MSE)。
1972年,ungeboekc将LMS算法应用于自适应均衡。
1974年,Gedard 在kalmna滤波理论上推导出递推最小均方算法RLS(Recursive least-squares)。
LMS类算法和RLS类算法是自适应滤波算法的两个大类。
自适应滤波在信道均衡、回波抵消、谱线增强、噪声抑制、天线自适应旁瓣抑制、雷达杂波抵消、相参检测、谱估计、窄带干扰抑制、系统辨识、系统建模、语音信号处理、生物医学、电子学等方面获得广泛的应用。
1.2均衡器种类均衡技术可分为两类:线性均衡和非线性均衡。
这两类的差别主要在于自适应均衡器的输出被用于反馈控制的方法。
如果判决输出没有被用于均衡器的反馈逻辑中,那么均衡器是线性的;如果判决输出被用于反馈逻辑中并帮助改变了均衡器的后续输出,那么均衡器是非线性的。
图1.1 均衡器的分类1.3自适应算法LMS 算法LMS 算法是由widrow 和Hoff 于1960年提出来的,是统计梯度算法类的很重 要的成员之一。
它具有运算量小,简单,易于实现等优点。
LMS 算法是建立在Wiener 滤波的基础上发展而来的。
Wiener 解是在最小均方误差(MMSE)意义下使用均方误差作为代价函数而得到的在最小误差准则下的最优解。
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
Harbin Institute of Technology自适应信号处理实验课程名称:自适应信号处理设计题目:LMS算法自适应均衡器实验院系:电子与信息工程学院专业:信息与通信工程设计者:宋丽君学号:11S005090指导教师:邹斌设计时间:2011.4.10哈尔滨工业大学一、实验目的研究用LMS算法自适应均衡未知失真的线性色散信道。
通过本实验加深对LMS算法的理解,并分析特征值扩散度和步长参数对收敛迭代次数的影响。
二、实验原理最小均方算法(LMS算法)是线性自适应滤波算法,包括滤波过程和自适应过程,这两个过程一起工作组成了反馈环。
图1给出了自适应横向滤波器的框图。
图1 自适应横向滤波器框图LMS算法是随机梯度算法中的一员,LMS算法的显著特点是实现简单,同时通过对外部环境的自适应,它可以提供很高的性能。
由于LMS算法在计算抽头权值的迭代计算的过程中移走了期望因子,因此抽头权值的计算会受到梯度噪声的影响。
但是因为围绕抽头权值起作用的反馈环像低通滤波器,平均时间常数与步长参数μ成反比,所以通过设置较小的μ可以让自适应过程缓慢的进行,这样梯度噪声对抽头权值的影响在很大程度上可以滤除,从而减少失调的影响。
LMS算法在一次迭代中需要2M+1次复数乘法和2M次复数加法,计算的复杂度为O(M),M 为自适应滤波器中抽头权值的数目。
LMS算法广泛地应用于自适应控制、雷达、系统辨识及信号处理等领域。
主要应用有:处理时变地震数据的自适应反卷积,瞬态频率的测量,正弦干扰的自适应噪声消除,自适应谱线增强,自适应波束形成。
三、 实验内容在实验中假设所使用的数据是实数,进行研究的系统框图如下图2所示。
随机数发生器1产生用来探测信道的测试信号n x ;随机数发生器2用来干扰。
信道输出的白噪声源()v n 。
这两个随机数发生器是彼此独立的。
自适应均衡器用来纠正存在加性白噪声的信道畸变。
经过适当延迟,随机数发生器1也提供用做训练序列的自适应均衡器的期望响应。
自适应天线阵的LMS方法考虑如图所示的由三个阵元组成的LMS阵,一个频率为勺三元LMS阵需要信号以相对于侧射方向为%的角度入射到阵上,同时和需要信号频率相同的干扰信号以相对于侧射方向为◎的角度入射到阵上,设阵元间距为在频率©时的半波长•假设复信号©(f)中包含需要信号,干扰信号和热噪声信号,即X k (0 = d k (r) + i k (/) + n k (/) k = 1,2,3式中心⑴,*(/)和®(0分别为需要信号,干扰信号和热噪声分量。
需要信号久(『)为d k(0 =A d *ex P (j [w d t+Vd -(k-1) R = 1,2,3干扰信号*(/)为i k (0 =A, *exp {j [ w d t+ -(k-1) ^ ]) R = 1,2,3式中A d为需要信号的幅度,A:为「扰信号的幅度,必和为分别为阵元1处的需要信号和「•扰信号的相位,久和件分别为两阵元之间需要信号和「•扰信号的相位差,因为阵元间距为半波长,故5 = "sin 0A , ((\=龙sin假设热噪声为功率为b?的零均值随机过程,且彼此之间以及和需要信号之间统计无关,则 日“:(5;(/)]=,爲E|J ; (/>;(/)] =01 i = j式中①={ \最后假设参考信号为和需要信号相关的连续波信号T 。
&j r(t)=R*exp[j(w d t+^)]1 U d = expCj©) exp(・j2%) 1 exp (诃) exp(・j2q).X” = “2(/)信号相关矩阵为<D = £[X*X r ] = E[X^ ] + E[X ;X ; ] + E[X ;Xj ]可以得到<r 2 0 0E[X ;,X^] = a 2I = 0 cr 21X 厂■ = A d exp[j(w d t+^)] exp(-j%)4⑴一 exp(-j2®).式中,= A d exp[j(w d t+^rf )]t/rf1X 严= A i exp[j(w d t+^)] expCj©)MLexp(-j2^)A 1exp[j(w d t+^/)]t/, 1E[X ;X ;] = A ;t/;t/;=A ; exp(+g )exp(+j2^) expCj©) exp(+j%)exp(-j2^) expCj©) 1E[X ;X ;] = ArU ;Ul =A 2 exp(+j°)exp(+j2©) exp(-je) exp(-j2%) 1 exp(-j^) exp(+je )因而信号协方差矩阵为Aj + A~ + a2+ 人2/供A;"% 4- A~e'i2t>,6= Aj + A2 + cr2 A 診吨+4:严AjC i2c>rf+A^e)2<?, A 詁皿+4% 钙A~ + A.2 + a2信号参考相关矢量由式S = E[X>(t)]计算,因为和X”和尸⑴是统汁无关的,所以S = E[X*r(t)] = E[X^t)] = A d RU^最后,稳态加权的解可由下式算出W =①"S阵输岀信号为s = W T X下而是本人参照上而叙述所编的MATLAB程序:关于本程序做以下说明fii=0=输入干扰信号相位fid=^=输入需要信号相位sitai= (p,=输入F•扰信号相位sitad=^,=输入需要信号相位wd= 需要信号和干扰信号的频率&,=需要信号的幅度人=干扰信号的幅度Sinma=热噪声信号的方差的开根,程序中以1代替以上参数均可调,由于本程序是抑制噪声的功能,所以可以修改fii=®=输入干扰信号相位人=干扰信号的幅度sitai=^=输入干扰信号角度来观察方向图的变化,从而体现该程序抑制噪声的特性。