工程力学梁横截面上的切应力及梁的切应力强度条件
- 格式:ppt
- 大小:521.50 KB
- 文档页数:2
6 弯曲应力1、平面弯曲梁横截面上的正应力计算。
正应力公式是在梁纯弯曲情况下导出的,并被 推广到横力弯曲的场合。
横截面上正应力公式为j zM y I σ=横截面上最大正应力公式为 max zM W σ=2、横力弯曲梁横截面上的切应力计算,计算公式为*2z QS I bτ= 该公式是从矩形截面梁导出的,原则上也适用于槽形、圆形、工字形、圆环形截面梁横截面切应力的计算。
3、非对称截面梁的平面弯曲问题,开口薄壁杆的弯曲中心。
4、梁的正应力强度条件和切应力强度条件为[]max σσ≤[]max ττ≤根据上述条件,可以对梁进行强度校核、截面设计和容许荷载的计算,与此相关的还要考虑梁的合理截面问题。
5、梁的极限弯矩6.1图6-6所示简支梁用其56a号工字钢制成,试求此梁的最大切应力和同一截面腹板部分在与翼板交界处的切应力。
图 6.1[解]作剪力图如图(c).由图可知,梁的最大剪力出现在AC段,其值为max7575000Q kN N==利用型钢表查得,56a号工字钢*247.7310z zS I m-=⨯,最大切应力在中性轴上。
由此得以下求该横截面上腹板与翼板交界处C的切应力。
此时*zS是翼板面积对中性轴的面积矩,由横截面尺寸可计算得*3435602116621()9395009.401022zS mm m-=⨯⨯-==⨯由型钢表查得465866zI cm=,腹板与翼板交界处的切应力为*max max maxmax23*max7500012600000126.47.731012.510zazzzQ S QMPII d dSτ--=====⨯⨯⨯⨯aMP6.12解题范例483750009.40108.6658661012.510fc a MP τ---⨯⨯==⨯⨯⨯6.2长为L 的矩形截面悬臂梁,在自由端作用一集中力F ,已知b =120mm ,h =180mm 、L =2m ,F =1.6kN ,试求B 截面上a 、b 、c 各点的正应力。