当前位置:文档之家› 机器人学概论第五讲

机器人学概论第五讲

机器人学概论第五讲

机器人学概论第五讲

机器人学概论

《我看机器人》 学院:理学院 学号:5502211005 姓名:黄志涵 班级:应用物理学111班

摘要:在21世纪,随着科学技术的发展,机器人的研究和发展也将会更进一步。机器人原本起源在美国,但其在美国的发展速度远远不如日本。这里面主要的原因,可能是因为日本劳动力短缺,大部分需要劳动力的工厂得不到劳动力,所以日本政府大力发展机器人产业,用机器人代替短缺的劳动力资源。本文通过三部分简要阐述有关机器人一些发展和应用,以及未来机器人更大的应用前景。 关键词:机器人,机器人发展史,关键技术,分类,应用 正文: 第一部分:机器人的发展史 从1920年捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻小说《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。机器人历史有了如下的发展:1939年美国纽约世博会上展出了西屋电气公司制造的家用机器人Elektro。它由电缆控制,可以行走,会说77个字,甚至可以抽烟,不过离真正干家务活还差得远。但它让人们对家用机器人的憧憬变得更加具体。 1942年美国科幻巨匠阿西莫夫提出“机器人三定律”。虽然这只是科幻小说里的创造,但后来成为学术界默认的研发原则。 1948年诺伯特·维纳出版《控制论》,阐述了机器中的通信和控制机能与人的神经、感觉机能的共同规律,率先提出以计算机为核心的自动化工厂。 1954年美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。 1956年在达特茅斯会议上,马文·明斯基提出了他对智能机器的看法:智能机器“能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义影响到以后30年智能机器人的研究方向。 1959年德沃尔与美国发明家约瑟夫·英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂——Unimation公司。由于英格伯格对工业机器人的研发和宣传,他也被称为“工业机器人之父”。 1962年美国AMF公司生产出“VERSTRAN”(意思是万能搬运),与Unimation 公司生产的Unimate一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。 1962年-1963年传感器的应用提高了机器人的可操作性。人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特采用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1965年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统. 1965年约翰·霍普金斯大学应用物理实验室研制出Beast机器人。Beast已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。 1968年美国斯坦福研究所公布他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。 1969年日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。日本专家

机器人学导论(克雷格)第二章作业答案

2、1 solution: According to the equation of pure transition transformation,the new point after transition is as follows: 2、3 solution: According to the constraint equations: Thus,the matrix should be like this: 2、4 Solution:

= 2、7 Solution: According to the equation of pure rotation transformation , the new coordinates are as follows: 2、9 Solution: Acording to the equations for the bined transformations ,the new coordinates are as follows: 010051 05110 0030010310(,90)(5,3,6)(,90)001060 1004900 0110 00111A B P Rot z Trans Rot x P -????????????????????-? ????????? =???==?????????? ? ????????? ??????????o o

A B Transformations relative to the reference frame Transformations relative to the current frame 2、10 P=Trans(5,3,6)Rot(x,90)Rot(a,90) P 1 0 0 5 1 0 0 0 0 -1 0 0 2 = 0 1 0 3 0 0 -1 0 1 0 0 0 3

机器人学概述

安徽工业大学 2015级工程硕士期末考核答题卷 专业:机械工程 课程:机器人学 姓名: 学号:1521190215

2017年1月

第一章引言 随着计算机技术的不断向智能化方向发展,机器人应用领域的不断扩展和深化,产业机器人已成为一种高新技术产业,为产业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。 本文概括了工业机器人的概念和发展、国外国内机器人的发展现状、未来机器人的发展方向。

第二章机器人的概念与发展 2.1 机器人的定义 工业机器人的问世, 大约是25年前;微处理机的诞生, 大约是15年前。正是由于微处理机的出现, 以及各种LSI、VLSI的飞跃发展, 才使得工业机器人控制系统的机能大幅度提高, 从而使数百种不同结构、不同控制方法、不同用途的工业机器人终于在八十年代,真正进人了实用与普及的阶段, 并发挥了令人难以置信的巨大威力与经济效益。 那么, 什么是工业机器人?回答是令人遗憾的。因为关于工业机器人的定义, 仍在专家们的争议之中, 至今还没有人能够提出一个令人信服的明确定义。美国机器人协会(RIA)对机器人的定义是:“ 所谓工业机器人, 是为了完成不同的作业, 根据种种程序化的运动来实现材料、零部件、工具或特殊装置的移动并可重新编程的多功能操作机。”日本产业机器人协会(JIRA)的定义是:“ 所谓工业机器人, 是在三维空间具有类似人体上肢动作机能及其结构, 并能完成复杂空间动作的多自由度的自动机械” 或“根据感觉机能或认识机能, 能够自行决定行动的机器(智能机器人)。” 不管各国机器人专家们如何定义和解释工业机器人, 有一点是可以明确的, 这就是人们开发研究工业机器人的最终目标, 在于要研制出一种能够缥合人的所有动作特性——通用性、柔软性、灵活性的自动机械。 2.2 机器人的发展 自动化技术的发展,特别是计算机的诞生,推动了机器人的发展。人们通常把机器人划分为三代。第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。第二代是“感知机器人”,又叫做自适应机器人,它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感

机器人学导论复习题及参考答案 新

中南大学网络教育课程考试复习题及参考答案 机器人学导论 一、名词解释题: 二、简答题: 1.机器人学主要包含哪些研究内容? 2.机器人常用的机身和臂部的配置型式有哪些? 3.拉格朗日运动方程式的一般表示形式与各变量含义? 4.机器人控制系统的基本单元有哪些? 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 4.试论述机器人静力学、动力学、运动学的关系。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u 的坐标为[7,3,2]T ,对点u 依次进行如下的变换:(1)绕z 轴旋转90°得到点v ;(2)绕y 轴旋转90°得到点w ;(3)沿x 轴平移4个单位,再沿y 轴平移-3个单位,最后沿z 轴平移7个单位得到点t 。求u , v , w , t 各点的齐次坐标。 x y z O u v w t 2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。 θ1 θ2 θ3 L 2 L 1 L 3 x 0 y 0 O 3.如图所示为平面内的两旋转关节机械手,已知机器人末端的坐标值{x ,y },试求其关节旋转变量θ1 和θ2.

θ1 θ2 L 2 L 1 x y P 4.如图所示两自由度机械手在如图位置时(θ1= 0 , θ2=π/2),生成手爪力 F A = [ f x 0 ]T 或F B = [ 0 f y ]T 。求对应的驱动力 τ A 和τ B 。 τ1 L 2 x y P L 1 τ2F A F B 0y f ?? ???? 0x f ?????? 5.如图所示的两自由度机械手,手部沿固定坐标系在手上X 0轴正向以 1.0m/s 的速度移动,杆长 l 1=l 2=0.5m 。设在某时刻θ1=30°,θ2=-60°,求该时刻的关节速度。已知两自由度机械手速度雅 可比矩阵为 1121221211212 212l s l s l s l c l c l c θθ---?? =? ?+?? J θ1 -θ2 l 2 l 1 x 0 y 0 O x 3 y 3v 3

机器人学导论习题

1. 自由度:指描述物体运动所需要的独立坐标数。 2. 机器人工作载荷:机器人在规定的性能范围内,机械接口处能承受的最大负载量(包括手部)。 3. 柔性手:可对不同外形物体实施抓取,并使物体表面受力比较均匀的机器人手部结构。 4. 制动器失效抱闸:指要放松制动器就必须接通电源,否则,各关节不能产生相对运动。 5. 机器人运动学:从几何学的观点来处理手指位置与关节变量的关系称为运动学。 6. 机器人动力学:机器人各关节变量对时间的一阶导数、二阶导数与各执行器驱动力或力矩之间的 关系,即机器人机械系统的运动方程。 7. 虚功原理:约束力不作功的力学系统实现平衡的必要且充分条件是对结构上允许的任意位移(虚位 移)施力所作功之和为零。 8. PWM 驱动:脉冲宽度调制驱动。 9. 电机无自转:控制电压降到零时,伺服电动机能立即自行停转。 10. 直流伺服电机的调节特性:是指转矩恒定时,电动机的转速随控制电压变化的关系。 11. 直流伺服电机的调速精度:指调速装置或系统的给定角速度与带额定负载时的实际角速度之 差,与给定转速之比。 12. PID 控制:指按照偏差的比例、积分、微分进行控制。 13. 压电元件:指某种物质上施加压力就会产生电信号,即产生压电现象的元件。 14. 图像锐化:突出图像中的高频成分,使轮廓增强。 15. 隶属函数:表示论域U 中的元素u 属于模糊子集A 的程度,在[0, 1]闭区间内可连续取值。 16. 脱机编程:指用机器人程序语言预先进行程序设计,而不是用示教的方法编程。 17. AUV :无缆自治水下机器人,或自动海底车。 二、简答题: 1.机器人学主要包含哪些研究内容? 2.机器人常用的机身和臂部的配置型式有哪些? 4.机器人控制系统的基本单元有哪些? 5.直流电机的额定值有哪些? 6.常见的机器人外部传感器有哪些? 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成? 9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些? 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类? 12.仿人机器人的关键技术有哪些? 1.答:机器人研究的基础内容有以下几方面:(1) 空间机构学;(2) 机器人运动学;(3) 机器人静力学;(4)机器人动力学;(5)机器人控制技术;(6)机器人传感器;(7)机器人语言。 2.答:目前常用的有如下几种形式:(1)横梁式。(2)立柱式。(3)机座式。(4)屈伸式。 4.答:构成机器人控制系统的基本要素包括: (1) 电动机,(2) 减速器,(3) 驱动电路,(4) 运动特性检测传感器,(5) 控制系统的硬件,(6) 控制系统的软件, 5.答:直流电动机的额定值有以下几项:(1)额定功率,(2)额定电压,(3)额定电流,(4)额定转速, 6.答常见的外部传感器包括 触觉传感器,分为;接触觉传感器、压觉传感器、滑觉传感器和力觉传感器。距离传感器,包括超声波传感器,接近觉传感器,以及视觉传感器、听觉传感器、嗅觉传感器、味觉传感器等。 7.答:在脉冲回波式中,先将超声波用脉冲调制后发射,根据经被测物体反射回来的回波延迟时间Δt ,计算出被测物体的距离R ,假设空气中的声速为v ,则被测物与传感器间的距离R 为: /2R v t =?? 如果空气温度为T (℃),则声速v 可由下式求得: ()331.50.607m/s v T =+ 8.答:(1) 景物和距离传感器,常用的有摄像机、CCD 图像传感器、超声波传感器和结构光设备等;(2) 视频信号数字化设备,其任务是把摄像机或者CCD 输出的信号转换成方便计算和分析的数字信号;(3)

最新机器人学导论复习题及参考答案

中南大学网络教育课程考试复习题及参考答案机器人学导论 一、名词解释题: 1.自由度: 2.机器人工作载荷: 3.柔性手: 4.制动器失效抱闸: 5.机器人运动学: 6.机器人动力学: 7.虚功原理: 8.PWM驱动: 9.电机无自转: 10.直流伺服电机的调节特性: 11.直流伺服电机的调速精度: 12.PID 控制: 13.压电元件: 14.图像锐化: 15.隶属函数: 16.BP 网络: 17.脱机编程: 18.AUV: 二、简答题: 1.机器人学主要包含哪些研究内容? 2.机器人常用的机身和臂部的配置型式有哪些? 3.拉格朗日运动方程式的一般表示形式与各变量含义? 4.机器人控制系统的基本单元有哪些? 5.直流电机的额定值有哪些? 6.常见的机器人外部传感器有哪些? 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成? 9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些? 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类? 12.仿人机器人的关键技术有哪些? 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。 4.试论述机器人静力学、动力学、运动学的关系。 5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的? 6.试论述工业机器人的应用准则。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2] T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v; (2)绕y 轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿

人工智能机器人学导论

人工智能机器人学导论 (1) 简介: (1) 作者简介 (2) 机器人控制器与程序设计 (3) 简介: (3) 机器人制作入门篇 (6) 简介: (6) 作者简介 (6) 机器人智能控制工程 (8) 简介: (8) 人工智能机器人学导论 作者:Ricky 文章来源:本站原创更新时间:2006年05月03日打印此文浏览数:2370 Slides for Second Edition (Beta) Chapter 1: What are Robots?. ppt slides and the pdf version (good a quick look) Chapter 2: Telesystems. the pdf version Chapter 3: Biological Foundations of the Reactive Paradigm. ppt slides and pdf version Chapter 5: The Reactive Paradigm Chapter 6: Selecting and Combining Behaviors Chapter 7: Common Sensors and Sensing Techniques Chapter 8: Designing a Behavior-Based Implementation Chapter 9: Multi-Agents Chapter 10: Navigation and the Hybrid Paradigm Chapter 11: Topological Path Planning Chapter 12: Metric Path Planning Chapter 13: Localization and Mapping Chapter 14: Affective Robots Chapter 15: Human-Robot Interaction Chapter 16: What Can Robot Do and What Will They Be Able to Do? 简介: 本书系统地介绍了人工智能机器人在感知、导航、路径规划、不确定导航等领域的主要内容。全书共分两大部分。第一部分共八章,它定义了什么是人工智能机器人,并介绍了为什么需要人工智能。重点介绍了人工智能机器人中智能组织的三个主要结构范式:慎思式、反应式及慎思/反应混合式。这部分还专门介绍了反应式行为的感知和编程技术,以及多智能体群体之间的协调和控制等问题。第二部分共四章,其中三章讲述了定性和定量导航、路径规划技术和在不确定性管理方面的工作。最后一章总结性地介绍了计算机视觉方面的最新技术在机器人中的应用,以及移动机器人在各个领域应用的发展展望。本书每章后均附有参考文献和习题。许多章节还列举了一些实例,用以说明本书讲述的概念和方法在实际机器人中的应用。本书内容丰富,反映了智能机器人学的基础和先进的理论和技术。本书可作为计算机、电子及自动化等专业本科高年级学生和研究生的教材或参考书,也可供从事智能机器人方面研究的教师和研究人员学习参考。

机器人学导论期末作业

机器人学导论期末作业 题目: (图说明,图中的圆柱是只沿特定的转轴方向转动的转动副,不是空间圆柱副,没有沿轴线方向的移动) 要求:应用螺旋理论方法求解该机构运动的自由度以及受到的约束。 过程求解: 1、 首先先求解每个分支运动链的运动螺旋系。分析1分支运动系: (1) 11R 的分析。首先该转动副的轴线方向与x 轴相同,所以我将取它的(10 0)s =, 1111 11()r x y z =, 求解011 111111111111(0)10 0i j k s r s x y z z j y k z y ?? ? =?==-=- ? ?? ? , 所以运动螺旋111111(100;0)R z y =- (2) 因为12R 、13R 的轴线方向与11R 相同,都是平行于x 轴,所以它们的s 是相同的,均为 (100)s =,只是相对于坐标原点的位置不同,向量r 不同,所以最终求得各自的运 动螺旋为121212(10 0;0)R z y =-,131313(100;0)R z y =-。

(3) 综上可得,分支运动链1的运动螺旋系为:1111111212 1213 1313(100;0)(100;0)(100;0) R z y R z y R z y =-?? =-??=-?,根据 互矩为0,可以求出该分支的约束螺旋系111213 (100;000)(000;010)(000;001)r r r R R R ?=?=??=?,其中11r R 表 示作用在x 轴线上的约束线矢,12r R 表示绕y 轴的约束力偶,13 r R 表示绕z 轴的约束力偶。 2、 分析3分支运动系。由于分支3的各转动副的轴线方向完全与分支1的对应相同,都平 行于x 轴,所以同理可得分支3的运动螺旋系为3131 313232 3233 3333(100;0)(100;0)(100;0) R z y R z y R z y =-?? =-??=-?, 而相应的约束螺旋系为313233 (100;000)(000;010)(000;001)r r r R R R ?=?=??=?,其中31r R 表示作用在x 轴线上 的约束线矢,32r R 表示绕y 轴的约束力偶,33r R 表示绕z 轴的约束力偶。 3、 分析2分支运动系。 (1) 21R 的分析首先该转动副的轴线方向与y 轴相同,所以我将取它的(010)s =, 212121() r x y z =, 求解 02 1 (0) 01 i j k s r s x y ?? ?=?==-+=- ? ?? ? ,所以运动螺旋1121 21(010;0)R z x =- (2) 同理可求得, 122222(010;0)R z x =-,132323(010;0)R z x =-。 (3) 综上所述,分支运动链2的运动螺旋系为:21212122222223 2323(010;0) (010;0)(010;0)R z x R z x R z x =-?? =-??=-?,约束 螺旋系为:212223 (010;000)(000;100)(000;001)r r r R R R ?=?=??=?, 其中21r R 表示作用在y 轴线上的约束线矢,22 r R 表示作绕x 轴的约束力偶,23r R 表示作绕z 轴的用在z 轴上的约束力偶。

机器人学

《机器人学》 大作业 姓名: 学号: 南京航空航天大学

并联机器人概论 摘要:机器人技术的发展与应用极大的改变了人类的生产和生活方式。利用机器人不仅能够迅速准确的完成枯燥的重复性工作,而且能在危险恶劣的环境下可靠地完成许多复杂操作,可以大大减轻人们的劳动前度,改善产品质量。并联机器人具有结构简单、刚度好、定位精度高、动态响应快等优良特性,特别适用于高精度、大载荷且工作空间较小的场合,其应用日益广泛,应用领域不断扩展,对其进行全面而系统的研究并推向实际应用,具有重要的理论意义和实用价值。 关键词:并联机器人;概论 引言 机器人技术的发展与应用极大的改变了人类的生产和生活方式。利用机器人不仅能够迅速准确的完成枯燥的重复性工作,而且能在危险恶劣的环境下可靠地完成许多复杂操作,可以大大减轻人们的劳动前度,改善产品质量。并联机器人具有结构简单、刚度好、定位精度高、动态响应快等优良特性,特别适用于高精度、大载荷且工作空间较小的场合,其应用日益广泛,应用领域不断扩展,对其进行全面而系统的研究并推向实际应用,具有重要的理论意义和实用价值。 正文 传统机器人一般采用开链式结构,其基座和末端执行器之间只有一条运动链连接,对于具有这样结构的机器人,也称其为串联机器人。为了实现末端执行器在工作空间中多个自由度的灵巧操作,串联机器人的运动链往往具有多个关节,通过控制各个关节的运动,可以实现末端执行器对工作空间中任意连续轨迹的跟踪运动。一般而言,串联机器人具有结构简单、工作空间大、操作灵活、正向运动学求解简便等优点,因此在工业生产中得到了广泛的应用。但是由于所有关节都集中在一条运动链上,串联机器人存在关节误差累积效应,末端执行器所能达到的位置精度往往有限,而较低的末端执行器刚度和负载驱动能力进一步限制了串联机器人在实际应用中的性能。当在实际应用中需要机器人有高的承载能力、良好的动力学性能及高精度等要求时,人们迫切需要有另外一种机械结构形式的机器人可供选择。图1.1是并联机器人的基本结构

机器人概论教学大纲+考试大纲

《机器人概论》教学大纲 课程编号:176204 课程名称:机器人概论 学时/学分:64 /4 先修课程:《传感器与自动检测技术》、《线性代数》、《现代控制理论》 适用专业:自动化 开课系或教研室:机电工程系 一、课程性质与任务 1.课程性质:本课程是自动化类专业的专业方向课。课程包括了机器人学所有必要的基础知识、机器人部件和子系统以及机器人应用等内容。 2.课程任务:通过本课程的教学,应使学生达到下列要求:了解机器人的发展历史、构成、特征及应用等;掌握机器人的正向和逆向运动学,包括坐标的描述、变换、位姿分析以及机器人运动学的D-H描述等;熟悉机器人坐标的微分运动和速度分析;掌握用拉格朗日力学作为主要分析和研究方法对机器人动力学和相关力的分析;掌握关节空间和直角坐标空间的路径和轨迹规划;熟悉并掌握机器人中用到的驱动器和传感器。 二、课程教学基本要求 共64学时,一个学期进行。 三、课程教学内容 (一)基础知识 1. 机器人的诞生及发展 2. 机器人的组成部件 3. 机器人的应用领域 (二)机器人位置运动学 ※1. 机器人运动学的矩阵表示 ※2. 运动学矩阵的变换送 3. 机器人的正逆运动学 ※4. 机器人正运动学方程的D-H方法 (三)微分运动和速度 1. 雅可比矩阵及其计算述 2. 微分变化 ※3. 雅可比矩阵和微分算子之间的关联器 (四)动力学分析和力

1. 拉格朗日力学 2. 多自由度机器人的动力学方程 ※3. 坐标系间力和力矩的变换 (五)轨迹规划 1. 路径与轨迹的概念 ※2. 关节空间描述及其规划 3. 直角坐标空间描述及其规划 (六)驱动器 1. 驱动器的性能和比较 2. 液压驱动器 3. 电动机 (七)传感器 (八)模糊逻辑控制 (九)机器人应用 包括工业机器人、拟人机器人、仿生机器人、空间机器人等 五、教材及参考书 教材:《机器人学导论---分析、系统及应用》孙富春等译 出版社:电子工业出版社 2004.01 参考书:《机器人引论》主编:张涛 出版社:机械工业出版社 2010.05

机器人学导论课后习题答案

第三章课后习题答案 3.3和3.4 步骤: 1、建立坐标系; 2、列D -H 参数表; 3、根据 写出 ; 4、根据 写出 3.3具体计算: i )()()()(111i Z i Z i X i X i i d D R a D R T θα---=T i i 1 -T T T T T N N N 12312010...-=T N αa d θ?? ????? ?????-=100001000000111 101 θθθθc s s c T ?? ??? ?? ?????-????????????-=100 00100 0001000 0010 010000 122 122 12θθθθc s L s c T ?? ??? ???????-=1000010 00003323323 θθθθc s L s c T T T T T B w 2 3 1201=

i 3.8具体计算: 因为标定过程中{G}和{T}是重合的,所以 则: αa d θ????????????+-=1000100000021111101L L c s s c T θθθθ?? ??? ?? ?????-????????????-=100 0010000001000001001000001222212θθθθc s s c T ????????????-=100001000003333323 θθθθc s L s c T T T B G B T =T T T T S G B S W T B W =T T T T S G B S B W W T 1-=

3.13、3.15—3.21答案 ? ? ? ? ? ? ? ? ? ? ? ? = 1 2 2 l P tip tip tip P T P2 2 0=

机器人学概论论文

机器人概论 内容提要:在当今社会中,机器人越来越受到人们的广泛关注。此文从机器人的发展史说起,着重于机器人的分类与应用和关键技术。 关键词:发展史分类与应用关键技术 班级: 姓名:唱双截棍的他 学号:

正文: 一、机器人的发展史 机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 早在三千多年前的西周时代,我国就出现了能歌善舞的木偶,称为“倡者”,这可能是世界上最早的“机器人”。 在近代,随着第一次、第二次工业革命,各种机械装置的发明与应用,世界各地出现了许多“机器人”玩具和工艺品。这些装置大多由时钟机构驱动,用凸轮和杠杆传递运动。 1920年,捷克作家K.凯比克在一科幻剧本中首次提出了ROBOT(汉语前译为“劳伯”)这个名词。现在已被人们作为机器人的专用名词。 1950年美国作家I.阿西莫夫提出了机器人学(Robotics)这一概念,并提出了所谓的“机器人三原则”,即:1.机器人不可伤人; 2.机器人必须服从人给与,但不和(1)矛盾的指令; 3.在与(1)、(2)原则不相矛盾的前提下,机器人可维护自身不受伤害。 1954年美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。 本世纪50、60年代,随着机构理论和伺服理论的发展,机器人进入了使用化阶段。1954年美国的G.C.Devol发表了“通用机器人”专利;1960年美国AMF公司生产了柱坐标型Versatran机器人,可作点位和轨迹控制,这是世界上第一种用于工业生产上的机器人。 1962年-1963年传感器的应用提高了机器人的可操作性。人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特采用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1964年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。 1968年美国斯坦福研究所公布他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。 1969年日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。日本专家一向以研发仿人机器人和娱乐机器人的技术见长,后来更进一步,催生出本田公司的ASIMO和索尼公司的QRIO。 1973年世界上第一次机器人和小型计算机携手合作,就诞生了美国Cincinnati Milacron公司的机器人T3。 70年代,随着计算机技术、现代控制技术、传感技术、人工智能技术的发展,机器人得到了迅速发展。1974年CincinnatiMilacron公司开发成功多关节机器人;1979年,Unimation公司又推出了PUMA机器人,它是一种多关节、全电动驱动、多CPU二级控制;采用VAL专用语言;可配视觉、触觉、力觉传感器,在当时是一种技术先进的工业机器人。现在的工业机器人结构大体上是以此为基础的。这一时期的机器人属于“示教再现”(Teach-in/Playback)型机器人。只具有记忆、存储能力,按相应程序重复作业,但对周围环境基本没有感知与反馈控制能力。这种机器人被称作第一代机器人。 进入80年代,随着传感技术,包括视觉传感器、非视觉传感器(力觉、触觉、接近觉等)以及信息处理技术的发展,出现了第二代机器人—有感觉的机器人。它能够获得作

仿生机器人学概论

仿生机器人学概论 ——读Direct control of paralysed muscles by cortical neurons有感 机械设计制造及其自动化XXXX班 Wdl U201XXXXXX

关于侵入式脑-机接口的探索 读Direct control of paralysed muscles by cortical neurons有感Direct control of paralysed muscles by cortical neurons(神经运动弥补 术)于2008年发表于nature。并被评为当年的最佳论文。因为其打破先前的常规研究,省去了对神经电信号的采集、解码、再输出的繁琐过程,直接将脑细胞的电信号通过人造电路传输到运动神经元从而实现对目标肌肉的意识控制。这样便省去了复杂的解码过程,也大大降低了技术难度和设备体积。使通过人工设备恢复神经中枢受损而导致的瘫痪病人恢复运动能力变得更加现实。下面便是我读过这篇文章后的一些感想与受到的启发。 文章指出将控制信号从大脑直接通过人工电路连接到执行器是一个潜在的治疗脊髓损伤所造成的瘫痪的方法。然后,这样的信号可以控制肌肉的电刺激,从而恢复瘫痪肢体的运动。以前独立的实验表明,无论是与真实运动或虚拟运动有关的运动皮质神经元的活动,都已经证实可以被用于控制电脑光标或机器人手臂,并且可以用功能性电刺激来激活瘫痪肌肉。在这里,本文中所述实验表明,可以用运动皮质的神经元细胞的活动来直接控制肌肉的刺激信号,从而恢复目标定向运动的暂时瘫痪的手臂。此外,神经细胞可以控制得同样出色,无论之前与运动的联系如何,神经元都可以很好地控制功能性电刺激,这一发现大大扩展了脑-机接口控制信号源。猴子学会使用这些人造肌肉皮层细胞连接,产生双向手腕扭矩,并同时控制多个神经肌肉对。这种直接转换可以实现由独立电子电路实现从皮层活动到肌肉刺激的连接,创造一个相对自然的神经假肢。这些结果首次证明了直接人工皮质细胞和肌肉之间的连接可以弥补中断生理的途径从而恢复瘫痪肢体运动的意志控制。 脊髓受伤损坏了从大脑到肢体的神经通路,但运动皮质和肢体事实上都是正常的,近年的研究显示,瘫痪多年的患者仍然可以有意识地调节手部的运动皮质。其它的脑-机接口研究都使用复杂的算法来解码与任务相关的大量神经活动,并以此来计算所需的对外部设备的控制参数。作者另辟蹊径,直接连接皮质神经元细胞活动控制病人的瘫痪肢体刺激来重新建立肢体功能。这个实验表明了猴子可以学会使用从任意运动皮质神经元细胞的人工联系对传递到多块肌肉上的刺激分级,从而在瘫痪的手臂上恢复有目的的运动。

机器人学导论(克雷格)第二章作业答案

机器人学导论(克雷格)第二章作业答案 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

2.1 solution: According to the equation of pure transition transformation,the new point after transition is as follows: 100235010358(,,)0014711000111trans x y z old P Trans d d d P ??????????????????=?==?????????????????? 2.3 solution: According to the constraint equations: 0;0;0 1n a n o a o n ?=?=?== Thus,the matrix should be like this: 00150015100310030102010200010001or --????????-????????--???????? 2.4 Solution:

X Y Z P P P ?? ? ? ???=cos 0sin 010sin 0cos θθθθ?? ? ? ?-??0n a P P P ?? ? ? ??? 2.7 Solution: According to the equation of pure rotation transformation , the new coordinates are as follows: 10022222(,45)0 3422720222new P rot x P ??????????? ?????=?==???????????????????????? 2.9 Solution: Acording to the equations for the combined transformations ,the new coordinates are as follows:

机器人学导论复习题及参考答案

《机器人学导论》课程复习资料 一、名词解释: 1.自由度 2.机器人工作载荷 3.柔性手 4.制动器失效抱闸 5.机器人运动学 6.机器人动力学 7.虚功原理 8.PWM驱动 9.电机无自转 10.直流伺服电机的调节特性 11.直流伺服电机的调速精度 12.PID控制 13.压电元件 14.图像锐化 15.隶属函数 16.BP网络 17.脱机编程 18.AUV 二、简答题: 1.机器人学主要包含哪些研究内容? 2.机器人常用的机身和臂部的配置型式有哪些? 3.拉格朗日运动方程式的一般表示形式与各变量含义? 4.机器人控制系统的基本单元有哪些? 5.直流电机的额定值有哪些? 6.常见的机器人外部传感器有哪些? 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成? 9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些? 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类? 12.仿人机器人的关键技术有哪些? 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。 4.试论述机器人静力学、动力学、运动学的关系。 5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的? 6.试论述工业机器人的应用准则。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y 轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。求u, v, w, t各点的齐次坐标。

机器人导论-习题答案

机器人技术导论 课后习题

1、智能机器人的含义是什么? 因为这样,我们才说这种机器人才是真正的机器人,尽管它们的外表可能有所不同。 2、直流电机的额定值有哪些? 答:型号、额定功率、额定电压、额定电流、额定转速、励磁方式、励磁电压、励磁电流、定额、绝缘等级、额定温升。 3、机器人视觉的硬件系统由哪些部分组成? 答:光源:用于表现特征 光源控制器:用于给光源供电 镜头:用于成像 延长管:用于改变像距 相机:用于物理图像到电子信号的转换 采集卡:用于将相机中的电子信号传输到计算机中 计算机、嵌入式系统、智能相机等:用于分析图像 机器视觉软件:用于处理图像,得到所以需要数据结果 运动控制:用于控制气缸、机械手、马达等运动,以完成机器的功能 传感器:位置传感器、存在传感器、安全传感器,用于判断产品有没有、到位否之类 4、简述模糊控制器的组成及各组成部分的用途。 答:模糊逻辑控制器由4个基本部分组成,即模糊化、知识库、推理算法和逆模糊化。 (1) 模糊化:将检测输入变量值变换成相应的论域,将输入数据转换成合适的语言值。 (2) 知识库:包含应用领域的知识和控制目标,它由数据和模糊语言控制规则组成。 (3) 推理算法:从一些模糊前提条件推导出某一结论,这种结论可能存在模糊和确定两种情况。 (4) 逆模糊化:将推理所得到的模糊值转换为明确的控制讯号,作为系统的输入值。 5、试述机器人滑模变结构控制的基本原理。 答:滑模变结构控制是变结构控制系统的一种控制策略。这种控制策略与常规控制的根本区别在于控制的不连续性,即一种使系统“结构”随时间变化的开关特性。该控制特性可以迫使系统在一定特性下沿规定的状态轨迹作小幅度、高频率的上下运动,即所谓的“滑动模态”或“滑模”运动。这种滑动模态是可以设计的,且与系统的参数及扰动无关。这样,处于滑模运动的系统就具有很好的鲁棒性。 6、机器人轨迹控制过程如图所示。试列出各步的主要内容。

机器人学导论chapter4

Chapter 4 Planar Kinematics Kinematics is Geometry of Motion . It is one of the most fundamental disciplines in robotics, providing tools for describing the structure and behavior of robot mechanisms. In this chapter, we will discuss how the motion of a robot mechanism is described, how it responds to actuator movements, and how the individual actuators should be coordinated to obtain desired motion at the robot end-effecter. These are questions central to the design and control of robot mechanisms. To begin with, we will restrict ourselves to a class of robot mechanisms that work within a plane, i.e. Planar Kinematics . Planar kinematics is much more tractable mathematically, compared to general three-dimensional kinematics. Nonetheless, most of the robot mechanisms of practical importance can be treated as planar mechanisms, or can be reduced to planar problems. General three-dimensional kinematics, on the other hand, needs special mathematical tools, which will be discussed in later chapters. 4.1 Planar Kinematics of Serial Link Mechanisms Example 4.1 Consider the three degree-of-freedom planar robot arm shown in Figure 4.1.1. The arm consists of one fixed link and three movable links that move within the plane. All the links are connected by revolute joints whose joint axes are all perpendicular to the plane of the links. There is no closed-loop kinematic chain; hence, it is a serial link mechanism. Figure 4.1.1 Three dof planar robot with three revolute joints To describe this robot arm, a few geometric parameters are needed. First, the length of each link is defined to be the distance between adjacent joint axes. Let points O, A, and B be the locations of the three joint axes, respectively, and point E be a point fixed to the end-effecter. Then the link lengths are E B B A A O ===321,,A A A . Let us assume that Actuator 1 driving

相关主题
文本预览
相关文档 最新文档