霍尔元件测速电路
- 格式:docx
- 大小:12.45 KB
- 文档页数:4
霍尔测速测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
霍尔元件测速原理说明及应用霍尔元件是一种具有特殊结构和特殊材料的电子元件,是由半导体材料组成的。
霍尔元件的测速原理是基于霍尔效应。
霍尔效应是指当电流通过垂直于磁场的导体时,导体两侧产生电压差。
霍尔元件利用霍尔效应,可以将电流和磁场转换为电压信号。
霍尔元件的结构一般由霍尔片和固定在霍尔片上的金属触点组成。
霍尔片一般是在P型或N型半导体上叠加一层接近绝缘的金属层,这两个结构相对于磁场磁通线垂直。
当通过霍尔元件的电流流过时,霍尔片两侧会产生电压差。
这个电压差与磁场的强度、电流的大小及方向,以及霍尔元件的几何尺寸相关。
应用方面,霍尔元件主要用于测速和位置检测。
以下是几个常见的应用示例:1.汽车速度传感器:霍尔元件可以用来检测汽车轮胎凹凸不平引起的震动,从而测量汽车的速度。
它可以代替传统的速度传感器,具有精度高、反应快和不易受环境影响等优点。
2.磁盘驱动器:霍尔元件可用于检测磁盘的转速。
通过检测旋转磁盘上的磁头是否通过霍尔元件附近的磁场来测量转速。
这对于磁盘驱动器的控制和数据读取非常重要。
3.电动机控制:霍尔元件可以用于检测电动机的转速。
通过将霍尔元件固定在电动机旋转轴上,可以通过检测每个霍尔元件通过磁场所产生的电压来测量电动机的转速。
4.位置检测:通过将霍尔元件固定在物体上,可以实时检测物体的位置。
这在一些自动控制系统中很有用,比如门禁系统、自动灯光调节和行车记录仪。
霍尔元件在工业和生活中有很广泛的应用。
它具有高灵敏度、快速响应、抗干扰能力强等优点,可以实现非接触测量和控制。
随着科技的进步和应用领域的扩大,霍尔元件的应用将会更加广泛。
4.2.2霍尔传感器的测速电路设计首先选定传感器,霍尔传感器具有灵敏、可靠、体积小巧、无触点、无磨损、使用寿命长、功耗低等优点,综合了电机转速测量系统的要求。
其次设计一个单片机小系统,利用单片机的定时器和中断系统对脉冲信号进行测量或计数。
再次实时测量显示并有报警功能,实时测量根据脉冲计数来实现转速测量的方法。
要求霍尔传感器转速为0~5000r/min。
霍尔测速模块论证与选择采用霍尔传感器;选型号为CHV-25P/10的霍尔传感器,其额定电压为10v,输出信号5v/25mA,电源为12~15v。
体积大,价格一般为40~120元之间不等。
性价比较高计数器模块论证与选择采用片内的计数器。
其优点在于降低单片机系统的成本。
每到一个脉冲将会产生一个T1的计数,在T0产生的100ms中断完成后,T1的中断溢出次数就是所需要计的脉冲数。
特点在于:使用了内部的T1作为外部脉冲的计数器,并且,为了避免计数器的溢出,将T1的初值设为0。
显示模块论证与选择采用LCD液晶显示器作为显示模块核心。
LCD显示器工作原理简单,编程方便,节能环保。
报警模块论证与选择采用蜂鸣器与发光二极管作为声光报警主要器件。
该方案不论在硬件和焊接方面还是在编写软件方面都简单方便,而且成本低廉。
电源模块论证与选择采用交流220V/50Hz电源转换为直流5V电源作为电源模块。
该方案实施简单,电路搭建方便,可作为单片机开发常备电源使用。
单片机模块论证与选择选用P89C51的单片机速度极快、功耗低、体积小、资源丰富,有各种不同的规格,最快的达100MPS ,引脚还可编程确定功能选用51系列的单片机,是因为51的架构十分典型。
而且:1.价格便宜;2.开发手段便宜;3.自己动手焊接相对容易。
转速测量方案论证转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。
由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动[4]。
霍尔测速测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
运用霍尔元件作为检测传感器,将霍尔传感器安装在靠近圆盘的固定位置上,并在圆盘上分别安装上8个磁钢,当磁钢转到霍尔附近时, 霍尔元件的输出端输出低电平信号。
当转盘转动时,单片机可通过检测脉冲信号测出传感器的状态,从而能方便地测出转盘的运转速度.。
通过对脉冲信号的计数,可计算出在电机转动过程中悬绳摆动的变化量。
此电路运行稳定,检测灵敏度高又不防碍单摆运动工作。
具体结构与电路如图下图所示。
2K电阻用10K代替就可以了。
霍尔检测电路霍尔检测电路是一种常用的电子元件,它基于霍尔效应来检测磁场的存在和强度。
霍尔效应是指当电流通过一块载流子密度为n的半导体材料时,如果该材料处于磁场中,就会产生一种横向电场,这种电场称为霍尔电场。
这个现象是由美国物理学家爱德华·霍尔于1879年发现的。
霍尔检测电路主要由霍尔元件、电流源和测量电路组成。
霍尔元件是一个特殊的半导体材料,具有特殊结构,通常为长条形。
电流源将电流传递到霍尔元件中,形成载流子流动。
当载流子流动时,受到磁场的作用,会在霍尔元件的两侧产生霍尔电势差。
测量电路接收霍尔电势差并进行放大和测量,最终得到与磁场强度成正比的电压信号。
霍尔检测电路的应用非常广泛。
在工业领域,霍尔检测电路可以用来检测电机的转速、位置和方向,从而实现精确的控制。
在汽车领域,霍尔检测电路可以用来检测车速、转向角度和刹车信号。
在电子设备中,霍尔检测电路可以用来检测磁卡、磁条和磁传感器等。
此外,霍尔检测电路还被广泛应用于磁力计、磁力传感器和磁力计等领域。
霍尔检测电路的工作原理是基于霍尔效应的。
当电流通过霍尔元件时,载流子受到磁场的作用,会在霍尔元件的两侧产生霍尔电势差。
霍尔电势差的大小与磁场的强度成正比,与电流的方向和载流子的种类有关。
为了使霍尔检测电路正常工作,需要选择合适的霍尔元件、适当的电流源和合适的测量电路。
在选择霍尔元件时,需要考虑其灵敏度、线性度、响应时间和工作温度范围等因素。
通常,霍尔元件的灵敏度越高,对磁场的检测越敏感。
线性度是指霍尔元件输出电压与磁场强度的关系是否符合线性关系。
响应时间是指霍尔元件从受到磁场作用到输出电压稳定所需的时间。
工作温度范围则是指霍尔元件能够正常工作的温度范围。
在设计电流源时,需要考虑电流的大小和方向。
电流的大小应根据霍尔元件的要求来确定。
电流的方向则决定了霍尔电势差的极性,从而影响了测量电路的设计。
测量电路的设计主要包括放大和滤波。
放大电路用于放大霍尔电势差,以便得到足够大的电压信号。
1.霍尔传感器测速原理利用霍尔器件将喷药设备的转速转化为脉冲信号,将测量转速的霍尔传感器和喷药设备的车轴同轴连接,与霍尔探头相对的喷药设备的轴上固定着一片磁钢块,车轮每转一周,霍尔传感器便发出一个脉冲信号,由霍尔器件电路输出。
将此脉冲信号接到单片机的IO口上,单片机通过采集IO口的信号来计算单位时间内的脉冲个数,从而计算出喷药设备的行进速度。
2.电磁阀工作原理电磁阀里有密闭的腔,在不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。
这样通过控制电磁铁的电流就控制了机械运动。
2.1直动式电磁阀原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。
2.2分布直动式电磁阀原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。
当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。
2.3先导式电磁阀原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。
3.光电耦合器光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件.它对输入、输出电信号有良好的隔离作用.当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
霍尔元件的测量电路及补偿1.基本测量电路霍尔元件的基本测量电路如图4.3所示。
在图4.3所示电路中,激励电流由电源E 供给,调节可变电阻可以改变激励电流I ,R L 为输出的霍尔电势的负载电阻,它一般是显示仪表、记录装置、放大器电路的输入电阻。
由于霍尔电势建立所需要的时间极短,约为10-14~10-12s ,因此其频率响应范围较宽,可达109 Hz 以上。
图4.3霍尔元件的基本测量电路霍尔元件属于半导体材料元件,它必然对温度比较敏感,温度的变化对霍尔元件的输入、输出电阻以及霍尔电势都有明显的影响。
因此实际应用中必须进行温度补偿。
2.温度补偿的方法霍尔元件的温度补偿通常采用以下几种方法。
(1)恒流源补偿法。
温度的变化会引起内阻的变化,而内阻的变化又使激励电流发生变化以致影响到霍尔电势的输出,采用恒流源可以补偿这种影响。
(2)选择合理的负载电阻进行补偿。
在图4.3所示的电路中,当温度为T 时,负载电阻R L 上的电压为OL L H L R R R U U += (4.3) 式中,R o 为霍尔元件的输出电阻。
当温度变化时,由于受霍尔电势的温度系数α、霍尔元件输出电阻的温度系数β的影响,霍尔元件的输出电阻R o 以及霍尔电势U H 均受到影响,使得负载电阻R L 上的电压R L 产生变化。
要U L 使不受温度变化的影响,通过推导可知,R L 、α、β必须满足下式:ααβ-=O L R R (4.4) 对一个确定的霍尔元件,可查表得到α、β和R o 值,再求得R L 值,即只要合理选择R L 使温度变化时R L 上的电压U L 维持不变,这样在输出回路就实现了对温度误差的补偿。
(3)利用霍尔元件输入回路的串联电阻或并联电阻进行补偿的方法。
霍尔元件在输入回路中采用恒压源供电工作,并使霍尔电势输出端处于开路工作状态。
此时可以利用在输入回路串入电阻的方式进行温度补偿,如图4.4所示。
图4.4 串联输入电阻补偿原理 经分析可知,当串联电阻取io R R ααβ-=时,可以补偿因温度变化而带来的霍尔电势的变化,其中R io 为霍尔元件在0℃时的输入电阻。
霍尔测速实验报告霍尔测速实验报告引言:霍尔测速实验是一种常用的物理实验,通过测量霍尔电压来确定导体中电子的速度。
本实验旨在通过实际操作,深入了解霍尔效应的原理和应用,并验证霍尔电压与导体中电子速度之间的关系。
一、实验器材和原理1. 实验器材:- 霍尔元件- 恒流源- 磁场源- 数字万用表- 直流电源- 连接线等2. 实验原理:霍尔效应是指当导体中有电流通过时,垂直于电流方向施加磁场时,导体两侧产生的电压差。
这个现象可以通过以下公式来描述:V_H = B * I * R_H其中,V_H为霍尔电压,B为磁场强度,I为电流强度,R_H为霍尔系数。
二、实验步骤1. 搭建实验电路:将霍尔元件与恒流源、数字万用表等连接起来,确保电路连接正确。
2. 施加磁场:将磁场源靠近霍尔元件,调节磁场强度,使其在一定范围内变化。
同时,保持电流强度恒定。
3. 测量电压:使用数字万用表测量霍尔电压,并记录下相应的磁场强度和电流强度。
4. 数据处理:根据所测得的电压、磁场强度和电流强度数据,计算出霍尔系数R_H。
三、实验结果在实验过程中,我们测量了不同磁场强度下的霍尔电压,并记录下了相应的电流强度。
根据实验数据,我们绘制了霍尔电压与磁场强度的曲线图,并通过拟合得到了霍尔系数R_H的数值。
四、实验讨论通过实验数据的分析,我们可以得出以下结论:1. 霍尔电压与磁场强度成正比关系。
当磁场强度增大时,霍尔电压也随之增大。
2. 霍尔电压与电流强度成正比关系。
当电流强度增大时,霍尔电压也随之增大。
3. 霍尔系数R_H是一个常量,与导体的材料和几何形状有关。
不同材料和形状的导体具有不同的R_H值。
五、实验应用霍尔测速实验在工程和科学研究中有广泛的应用。
一些常见的应用包括:1. 速度测量:通过测量霍尔电压,可以确定导体中电子的速度,从而实现对物体速度的测量。
2. 磁场测量:利用霍尔效应,可以测量磁场的强度和方向,广泛应用于磁场传感器和磁力计等设备中。
测量转速,使用霍尔传感器,被测轴安装有12只磁钢,即转轴每转一周,产生12个脉冲,要求将转速值(转/分)显示在数码管上。
程序如下:DISPBUF EQU 5AH ;显示缓冲区从5AH开始SeCCoun EQU 59HSpCoun EQU 57H ;速度计时器单元57H和58H,高位在前(57H单元中)Count EQU 56H ;显示时的计数器SpCalc bit 00h ;要求计算速度的标志Hidden EQU 16 ;消隐码ORG 0000HAJMP STARTORG 1BHJMP TIMER1 ;定时中断1入口ORG 30HSTART: MOV SP,#5FH ;设置堆栈MOV P1,#0FFHMOV P0,#0FFHMOV P2,#0FFH ;初始化,所有显示器、LED灭MOV TMOD,#00010101B ;定时器T1工作于方式1,定时器0工作方式1 MOVTH1,#HIGH(65536-4000)MOV TL1,#LOW(65536-4000)SETB TR1SETB ET1 ;开定时器1中断SETB EALOOP: JNB SpCalc,LOOP ;如果未要求计算,转本身循环;标号:MULD功能:双字节二进制无符号数乘法;入口条件:被乘数在R2、R3中,乘数在R6、R7中。
;出口信息:乘积在R2、R3、R4、R5中。
;影响资源:PSW、A、B、R2~R7 堆栈需求:2字节MOV R2,SpCounMOV R3,SpCoun+1MOV R6,#0MOV R7,#5 ;测得的数值是每秒计数值,转为每分转速(每一转测12次,故乘5而非60)CALL MULD;标号:HB2功能:双字节十六进制整数转换成双字节BCD码整数;入口条件:待转换的双字节十六进制整数在R6、R7中。
;出口信息:转换后的三字节BCD码整数在R3、R4、R5中。
;影响资源:PSW、A、R2~R7 堆栈需求:2字节MOV A,R4MOV R6,AMOV A,R5MOV R7,A ;将乘得的结果送R6R准备转换,这里结果不可能超过2字节CALL HB2CBCD:MOV DISPBUF,R3 ;最高位MOV A,R4 ;ANL A,#0F0H ;去掉低4位SWAP A ;将高4位切换到低4位MOV DISPBUF+1,AMOV A,R4ANL A,#0FHMOV DISPBUF+2,AMOV A,R5ANL A,#0F0HSWAP AMOV DISPBUF+3,AMOV A,R5ANL A,#0FHMOV DISPBUF+4,ACLR SpCalc ;清计算标志JMP LOOP;主程序到此结束TIMER1: PUSH ACC;ACC入栈PUSH PSW ;PSW入栈SETB RS0 ;工作区1JNB TR0,SETTR0 ;如果T0未运行,则开启T0 JMP GO1SETTR0:SETB TR0GO1:INC SecCoun ;秒计数器加1MOV A,SecCounCJNE A,#251,Go2 ;如果未到1s则转CLR TR0 ;1s到了,则停止T0的运行MOV SpCoun,TH0MOV SpCoun+1,TL0 ;读取计数值CLR AMOV TH0,AMOV TL0,A ;清计数器SETB SpCalc ;要求主程序计算速度MOV SecCoun,#0 ;清秒计数器Go2:INC COUNT ;用于显示的计数器MOV A,COUNTCLR CSUBB A,#6JZ N1JMP N2N1: MOV COUNT,#0N2: MOV A,#DISPBUFADD A,COUNTMOV R0,A ;指向当前要显示的显示缓冲区MOV A,@R0 ;取第一个待显示数MOV DPTR,#DISPTAB ;字形表首地址MOVC A,@A+DPTR ;取字形码MOV P0,A ;将字形码送P0位(段口)MOV A,COUNTMOV DPTR,#BitTab ;字位表首地址MOVC A,@A+DPTRORL P2,#11111100BANL P2,AMOV TH1,#HIGH(65536-4000)MOV TL1,#LOW(65536-4000)POP PSWPOP ACCRETIBitTab: DB 7Fh,0BFH,0DFH,0EFH,0F7H,0FBHDISPTAB:DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,88H,83H,0C6H,0A1H,86H,8EH,0F FH……其他数学运算程序(略)主程序在对定时器、计数器、堆栈等进行初始化后即判断标志SpCalc是否为1,如果为1,说明要求对数据进行计算处理,首先将SpCalc标志清零,以保证下次能正常判断,然后进入数据处理程序,由于这里的闸门时间为1s,而显示要求为转/分,因此,要将测到的数据进行转换,转换的方法是将测得的数据乘以60,但由于转轴上安装有12只磁钢,每旋转一周可以得到12个脉冲,因此,要将测得的数据除以12,所以综合起来,将测得的数据乘以5即可得到每分钟的转速。
霍尔元件测速课程设计一、教学目标本课程旨在让学生了解和掌握霍尔元件的工作原理及其在测速领域的应用。
通过本课程的学习,学生将能够:1.描述霍尔元件的结构和原理。
2.分析霍尔元件在不同磁场下的输出电压。
3.解释霍尔元件如何应用于测速系统。
4.设计和实现基于霍尔元件的简易测速电路。
5.评估霍尔元件在实际应用中的优缺点。
二、教学内容本课程的教学内容主要包括以下几个部分:1.霍尔元件的基本原理:介绍霍尔元件的结构、工作原理和特性。
2.霍尔元件的应用:讲解霍尔元件在测速领域的应用,如电动汽车、轨道交通等。
3.霍尔元件的测量原理:阐述霍尔元件如何测量速度,包括信号处理和显示。
4.实验操作:指导学生进行霍尔元件测速实验,熟悉实验设备和数据处理。
三、教学方法为了提高教学效果,本课程将采用多种教学方法:1.讲授法:讲解霍尔元件的基本原理、应用和测量原理。
2.实验法:让学生动手进行霍尔元件测速实验,加深对理论知识的理解。
3.讨论法:学生讨论霍尔元件在实际应用中的优势和局限性。
4.案例分析法:分析实际案例,让学生了解霍尔元件测速系统的设计和应用。
四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:《霍尔元件及其应用》等相关教材。
2.参考书:提供有关霍尔元件测速技术的国内外论文和资料。
3.多媒体资料:制作PPT、视频等多媒体教学资料,直观展示霍尔元件的工作原理和应用场景。
4.实验设备:购置霍尔元件测速实验套件,供学生动手实践使用。
五、教学评估本课程的评估方式将包括以下几个方面:1.平时表现:评估学生的课堂参与度、提问回答和小组讨论表现。
2.作业:布置相关的实验报告和论文,评估学生的理解和应用能力。
3.实验操作:评估学生在实验过程中的操作技能和问题解决能力。
4.考试成绩:包括期末考试和期中考试,评估学生的知识掌握和应用能力。
六、教学安排本课程的教学安排如下:1.教学进度:按照教材和大纲进行,确保每个知识点得到充分的讲解和讨论。
霍尔传感器测量电路及应用霍尔传感器是一种基于霍尔效应工作原理的传感器,常用于测量磁场强度。
其测量电路是由霍尔传感器、电源电路、信号处理电路以及输出电路组成的。
首先,电源电路为霍尔传感器提供工作所需的电源电压。
在电源电路中,一般会使用电源滤波电路来稳定和过滤电源电压,以减少电源中的噪声和干扰。
然后是霍尔传感器部分,其主要由霍尔元件和调零电路组成。
霍尔元件是测量磁场强度的核心部分,它根据磁场的变化产生一个与磁场强度成正比的电压信号。
调零电路用于将测量信号交流分量滤除,以保证测量的准确性。
接下来是信号处理电路,它主要用于放大、滤波和处理霍尔传感器输出的电压信号。
首先,通过放大电路将霍尔传感器的微弱信号放大到适合后续处理的幅度范围。
然后,通过滤波电路去除高频噪声和干扰信号,以保证测量结果的稳定性和准确性。
最后,通过处理电路对信号进行线性化或者非线性化处理,以满足不同的应用需求。
最后是输出电路,它将信号处理电路输出的电压信号转换为可用的形式。
输出电路的形式可以是电压输出、电流输出或者数字信号输出,这取决于具体的应用场景。
例如,在磁场测量中,可以将输出电压信号转换为磁场强度值,并通过显示屏或者计算机进行显示和记录。
应用方面,霍尔传感器具有广泛的应用领域。
首先,它可以用于测量磁场强度,例如在工业环境中测量电机磁场、电磁炉磁场等。
其次,它还可以用于位置和速度测量,例如在汽车行业中测量车辆转速、车速等。
此外,霍尔传感器还可以用于电流测量、流量测量等方面。
总结起来,霍尔传感器测量电路由电源电路、霍尔传感器、信号处理电路和输出电路组成。
电源电路提供电源电压,霍尔传感器测量磁场强度,信号处理电路对信号进行放大、滤波和处理,输出电路将信号转换为可用的方式。
霍尔传感器广泛应用于磁场测量、位置和速度测量、电流测量等领域。
1前言霍尔传感器是基于霍尔效应的一种磁敏式传感器。
霍尔效应1897年首次被美国物理学家霍尔在金属材料中发现,但由于霍尔效应在金属材料中太微弱而没有得到人们的重视及较好的应用。
直到20世纪50年代,随着半导体技术的发展,利用半导体材料做成的霍尔元件的霍尔效应比较显著,从而霍尔效应被人们所重视和充分利用,霍尔式传感器得到了快速的应用和发展。
目前霍尔传感器已经广泛的应用于电磁、电流、水位、速度、振动等的测量领域。
由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。
霍尔传感器也称为霍尔集成电路,其外形较小,如图1所示,是其中一种型号的外形图。
2霍尔元件2.1霍尔元件及霍尔元件的命名方法霍尔元件是根据霍尔效应进行磁电转换的磁敏元件,其典型的工作原理图如图所示。
在金属或半导体薄片相对两侧面通以控制电流I ,在薄片垂直方向上施加电场B ,则在垂直于电流和磁场的方向上,即另两侧面会产生一个大小与控制控制电流I 和磁场B 乘积成正比的电压U H ,这一现象称为霍尔效应。
所产生的电压U H 叫霍尔电压。
即IB K U H H式中 K H ------霍尔元件的灵敏度。
dRK HH =式中 R H ------霍尔系数,它反映元件霍尔效应的强弱,有材料性质决定。
单位体积内导电粒子数越少,霍尔效应越强,半导体比金属导体霍尔 效应强,所以常采用半导体材料做霍尔元件;d------霍尔元件的厚度;图2霍尔效应原理由上式可知对于材料和尺寸确定的元件,K H 保持常数,霍尔电压U H 仅与IB 的乘积成正比。
利用这一特性,在恒定电流之下可用来测量磁感应强度B ;反之,在恒定的磁场之下,也可以用来测量电流I 。
当 K H 和B 恒定时,I 越大,UH越大。
同样,当 K H 和I 恒定时 ,B 越大, U H 也越大。
当所加磁场方向改变时,霍尔电压U H 的符号也随之改变。
霍尔式车速表工作原理
一、车速表概述
车速表是汽车仪表中重要的测速仪器之一,能实时测量车辆行驶速度,并将速度值转化为物理量输出至仪表盘上,使车辆驾驶员能够了解车
速情况,保证安全驾驶。
霍尔式车速表又称磁敏式车速表,是一种常
用的测速仪器。
霍尔式车速表的工作原理如下:
二、霍尔效应
霍尔效应是指将材料置于磁场中时,通过材料内部的电荷载流子受到
洛仑兹力的影响,从而在材料厚度的方向上产生电势差,进而产生电
流的现象。
霍尔效应是磁敏式车速表测速的基础。
三、霍尔式车速表工作原理
1. 总体构造
霍尔式车速表分为传感器和车速表两部分。
传感器一侧为磁铁,安装
在车轮或传动轴上,车速表内部则有霍尔元件、电路测量系统和显示
系统组成。
2. 测量原理
车轮或传动轴上的磁铁在旋转时,会产生不断变化的磁场,磁场穿过
传感器内部的霍尔元件。
磁场的变化会引起霍尔元件输出电信号的变
化大小,其大小与车速成正比。
电路将信号经过放大、处理和滤波,
最终输出电压信号。
电路放大的幅度和调节信号的频率以便与车速成
比例。
输出信号转化后,可在车速表的显示区域,将车速以数字形式
显示于仪表盘上。
3. 应用效果
霍尔式车速表的应用效果在于,靠磁铁计数来确定车轮转速,可避免因经过路面不平且超速。
从而实现精确测速,增加了驾驶员对车辆的控制能力。
综上所述,霍尔式车速表是汽车仪表中重要的一种测速仪器,其工作原理基于霍尔效应原理,通过传感器、电路测量系统和显示系统的组合,将车速以数字形式显示于仪表盘上,有利于驾驶员的安全驾驶。
用霍尔检测速度和用霍尔检测转速的方法
我们常见的用用来检测转速或者速度的霍尔是A3144,霍尔44e,YS282 ,YS43F等单极霍尔或者双极霍尔,霍尔的封装形式有贴片封装和直插封装。
可应用于常见产品比方汽车里程表,计数机,等产品或者仪表上。
霍尔元件测速的方法
如上图将磁铁固定在一个转盘上,转盘与电机轴相连同步转动〔此处只是原理,可根据自己的需要设置转动或者滑动都可以〕,磁铁通过霍尔传感器A3144或者霍尔44E的时候,霍尔会记录产生一个相应的脉冲,我们通过计算两个连续脉冲的间隔时间,就可以计算出被测转速。
是不是很简单。
越尔兴科技为您提供的测速霍尔是A3144,霍尔44E,YS282 ,YS43F等单极霍尔。
或者EW-510 EW-432,YS188等双极霍尔.,详细霍尔的选型可咨询天津越尔兴。
霍尔传感器的接口设置和输出控制。
霍尔测速
测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
要测速,首先要解决是采样的问题。
在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。
使用单片机进行测速,可以使用简单的脉冲计数法。
只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。
下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。
这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。
1 脉冲信号的获得
霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。
如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。
图1 CS3020外形图
使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
这种传感器不怕灰尘、油污,在工业现场应用广泛。
2 硬件电路设计
测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。
通常可以用计数法、测脉宽法和等精度法来进行测试。
所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。
由于闸门与被测信号不能同步,因此,这两种方法都存在±1误差的问题,第一种方法适用于信号频率高时使用,第二种方法则在信号频率低时使用。
等精度法则对高、低频信号都有很好的适应性。
图2是测速电路的信号获取部分,在电源输入端并联电容C2用来滤去电源尖啸,使霍尔元件稳定工作。
HG表示霍尔元件,采用CS3020,在霍尔元件输出端(引脚3)与地并联电容C3滤去波形尖峰,再接一个上拉电阻R2,然后将其接入LM324的引脚3。
用LM324构成一个电压比较器,将霍尔元件输出电压与电位器R P1比较得出高低电平信号给单片机读取。
C4用于波形整形,以保证获得良好数字信号。
LED便于观察,当比较器输出高电平时不亮,低电平时亮。
微型电机M可采用型,通过电位器R P1分压,实现提高或降低电机转速的目的。
C1电容使电机的速度不会产生突变,因为电容能存储电荷。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当“+”输入端电压高于“-”输入端时,电压比较器输出为高电平;
当“+”输入端电压低于“-”输入端时,电压比较器输出为低电平;
比较器还有整形的作用,利用这一特点可使单片机获得良好稳定的输出信号,不至于丢失信号,能提高测速的精确性和稳定性。
图.2 测速电路原理图
3 测速程序
测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。
用C语言编制的程序如下:
12C1 M1 M 测速电路原理图
3 测速程序
测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。
用C语言编制的程序如下:
12C1 M1 M 测速电路原理图
3 测速程序
测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。
用C语言编制的程序如下:
12C1 M1 M 测速电路原理图
3 测速程序
测量转速,使用霍尔传感器,被测轴安装有1只磁钢,即转轴每转一周,产生1个脉冲,要求将转速值(转/分)显示在数码管上。
用C语言编制的程序如下:
//硬件:老版STC实验版
//P3-5口接转速脉冲
#include <12C> // 单片机内部专用寄存器定义
#define uchar unsigned char
#define uint unsigned int //数据类型的宏定义
uchar code LK[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,} ;//数码管0~9的字型码
uchar LK1[4]={0xfe,0xfd,0xfb,0xf7}; //位选码
uint data z,counter; //定义无符号整型全局变量lk
//====================================================
void init(void) //定义名为init的初始化子函数
{ //init子函数开始,分别赋值
TMOD=0X51; //GATE C/T M1 M0 GATE C/T M1 M0 计数器T1 定时器T0 // 0 1 0 1 0 0 0 1
TH1=0; //计数器初始值
TL1=0;
TH0=-(50000/256); //定时器t0 定时50ms
TL0=-(50000%256);
EA=1; // IE=0X00; //EA - ET1 ES ET1 EX1 ET0 EX0 ET0=1; // 1 0 0 0 0 0 1 0 TR1=1;
TR0=1;
TF0=1;
}
//=============================================
void delay(uint k) //延时程序
{
uint data i,j;
for(i=0;i<k;i++)
{
for(;j<121;j++) {;}
}
}
//================================================
void display(void) //数码管显示
{
P1=LK[z/1000];P2=LK1[0];delay(10);
P1=LK[(z/100)%10];P2=LK1[1];delay(10);
P1=LK[(z%100)/10];P2=LK1[2];delay(10);
P1=LK[z%10];P2=LK1[3];delay(10);
}
//=========================================
void main(void) //主程序开始
{
uint temp1,temp2;
init(); //调用init初始化子函数
for(;;)
{
temp1=TL1;temp2=TH1;
counter=(temp2<<8)+temp1; //读出计数器值并转化为十进制
//z=counter;
display();
} //无限循环语句结束
} //主程序结束
//===================================================
// uint chushi=60;
void timer0(void) interrupt 1 using 1
{
TH0=-(50000/256); //定时器t0 定时50ms TL0=-(50000%256);
// chushi--;
// if(chushi<=0){
z=counter / ; //读出速度
//}
TH0=0; //每50MS清一次定时器
TL1=0;
}。