时间分辨荧光分析法 - 副本
- 格式:ppt
- 大小:525.00 KB
- 文档页数:45
时间分辨荧光技术时间分辨荧光免疫测定(TRFIA)是一种非同位素免疫分析技术,它用镧系元素标记抗原或抗体,根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。
(一)TRFIA分析原理在生物流体和血清中的许多复合物和蛋白本身就可以发荧光,因此使用传统的发色团进而进行荧光检测的灵敏度就会严重下降。
大部分背景荧光信号是短时存在的,因此将长衰减寿命的标记物与时间分辨荧光技术相结合,就可以使瞬时荧光干扰减到最小化。
时间分辨荧光分析法(TRFIA)实际上是在荧光分析(FIA)的基础上发展起来的,它是一种特殊的荧光分析。
荧光分析利用了荧光的波长与其激发波长的巨大差异克服了普通紫外-可见分光分析法中杂色光的影响,同时,荧光分析与普通分光不同,光电接受器与激发光不在同一直线上,激发光不能直接到达光电接受器,从而大幅度地提高了光学分析的灵敏度。
但是,当进行超微量分析的时候,激发光的杂散光的影响就显得严重了。
因此,解决激发光的杂散光的影响成了提高灵敏度的瓶颈。
解决杂散光影响的最好方法当然是测量时没有激发光的存在。
但普通的荧光标志物荧光寿命非常短,激发光消失,荧光也消失。
不过有非常少的稀土金属(Eu、Tb、Sm、Dy)的荧光寿命较长,可达1~2ms,能够满足测量要求,因此而产生了时间分辨荧光分析法,即使用长效荧光标记物,在关闭激发光后再测定荧光强度的分析方法医学教|育网搜集整理。
平时常用的稀土金属主要是Eu(铕)和Tb(铽),Eu荧光寿命1ms,在水中不稳定,但加入增强剂后可以克服;Tb荧光寿命1.6ms,水中稳定,但其荧光波长短、散射严重、能量大易使组分分解,因此从测量方法学上看Tb很好,但不适合用于生物分析,故Eu最为常用。
(二)时间分辨信号原理普通物质荧光光谱分为激发光谱和发射光谱,在选择荧光物质作为标记物时,必须考虑激发光谱和发射光谱之间的波长差,即Stakes位移的大小。
时间分辨荧光免疫分析法(Time-resolved fluoroimmunoassay)是在荧光分析的基础上发展起来的一种特殊的荧光分析。
它利用具有长效荧光的稀土金属(Eu、Tb、Sm、Dy)作标记物,充分利用激发光与发射光之间的降移与发射光较长的半寿期,在激发光后延时测量发射光的强度。
从而所测的荧光不受激发光和被检物中的非特异荧光干扰,提高了检测的特异性与灵敏度。
在激发光后延时400微秒,测量400微秒,间歇200微秒后进入下一个测量周期,每一个周期为1000微秒。
对每一个样品实施1秒钟的测量,意味着完成了1000个周期的测量,测量精确度极高。
(一)Auto DELFIA自动时间分辨荧光免疫分析仪开/关程序1 开机1.1 依次打开样品处理器电源,微孔板处理器电源,打印机电源。
1.2 打开计算机显示器。
1.3 启动计算机。
1.4 运行系统软件:Auto DELFIA与Multicalc系统软件在Windows启动后自动运行。
Auto DELFIA workstation软件用于控制Auto DELFIA的运行,MultiCalc的主要功能是与主机通讯,对测试结果进行评估和对质控及其他数据处理(可通过双击屏幕上图标不运行)。
在MultiCalc Auto DELFIA环境下,只有键盘有效,鼠标无效。
2 开机后准备1.1 清洗液准备1.1.1 微孔板处理器洗液(250ml浓缩液+600ml去离子水混合),每做一块板至少1升用量,洗液在密闭条件可保存2周时间。
1.1.2 准备样品处理器洗液(50ml浓缩液+5000ml去离子水混合),每做一块板至少需要800ml洗液,洗液在密闭条件下可保存1周时间。
1.2 样品处理器准备1.2.1 在Wash bottle(清洗液瓶)、Rinse bottle (冲洗液瓶)分别注入足够用量的清洗液和去离子水,倒空废液瓶。
拧紧各瓶盖,确保废液瓶管路向下。
1.2.2 如样品需要稀释,放入稀释杯和稀释液。
时间分辨荧光免疫分析时间分辨荧光免疫分析(time-reso1vedfIuoroimmunoassay,TRFIA)是80年代初问世的一种超灵敏度的标记免疫检测技术。
其主要特点是以锢系元素铺(Eu3υ等标记抗体或抗原为示踪剂,利用增强液的荧光放大作用和时间分辨荧光法排除样品或试剂中非特异性荧光物质的干扰,最大限度地提高了检测方法的灵敏度和特异性,还具有量程宽,操作简便,标记物容易制备,稳定性好,保存期长等诸多优点。
一、基本原理与放免分析相似,总体上分为竞争法和非竞争法两类,前者多用于小分子半抗原,后者用于大分子化合物。
铺系元素第(Eu).彭(Sn1)、轼(Tb)和钛(Nd)通过双功能螯合剂,在水溶液中很容易与抗原或抗体分子以共价双键结合。
经抗原、抗体间特异性的免疫结合反应,测定免疫复合物的荧光强度,就可推算待测物质的浓度。
辆系离子的荧光信号极弱,需要在酸性条件下,解离出铺系离子,然后与荧光增强液中的B-二酮体生成新的螯合物,经紫外光激发可产生强而持久的荧光信号,其增强效力可达100万倍,故又称解离增强铺系荧光免疫分析(dissociation-enhanced-1anthanidefIuoroimmunoassay,DE1FIA)o锢系元素的发光时间延长,如Eu*和Snr的荧光衰变时间分别达到 4.3×IOns和4.1×10,ns,而样品和试剂中的自然本底荧光的衰变时间仅为4-10ns,通过延迟测量时间,使信号不受本底荧光影响。
此外,锢系元素螯合物的激发光波长范围宽,发射光波长范围窄,StOkeS位移大,有利于排除非特异性散射光的干扰,进一步提高荧光信号的特异性。
二、试剂组成(一)EuS标记物:可分为标记抗体、标记抗原,要求有较高的纯度、比活性和免疫活性。
密封后4。
C或-20。
C保存,但应避免反复冻融。
若发现蛋白质聚合,非特异性结合升高,则应停止使用。
(二)固相抗体或抗原:固相载体多用聚苯乙烯微孔条,要求透明度高,吸附性能好,材质均匀,孔间差异小,不同品牌甚至不同批号的微孔条间都会有明显的性能差异,应引起注意。
免疫荧光技术的几种实验方法及其分类免疫荧光技术的几种实验方法及其分类免疫荧光技术的几种实验方法及其分类1、免疫标记法及其分类1)荧光免疫法:原理是应用一对单克隆抗体的夹心法。
底物用磷酸-4-甲基伞形酮,检测产物发出的荧光,荧光强度与Mb浓度呈正比,可在8min内得出结果。
结果以Mb每小时释放的速率表示(△Mb)表示。
该法重复性好,线性范围宽,具有快速、敏感、准确的特点。
以双抗夹心法为例,首先将特异性抗体与固相载体连接,形成固相抗体。
除去未结合抗体,然后加受检标本,使其中的蛋白抗原与固相抗体形成抗原抗体复合物。
洗涤除去未结合物,接着加入荧光标记的抗体,使之与抗原特异性结合,形成抗体—抗原—抗体复合物。
最后根据荧光强度,即可对蛋白抗原进行定量。
传统的荧光免疫法受本底荧光的干扰较大,时间分辨荧光免疫测定法是以具有特长寿命的稀土金属如铕,作为标记物,加入正常液后激发测定,能有效去除短寿命本底荧光的干扰。
2)放射免疫法放射免疫法是以过量的未标记抗原与放射性物质标记的抗原,竞争性地与抗体结合,形成有放射性的抗原—抗体复合物与无放射性的抗原—抗体复合物,并有过剩的标记抗原与未标记的抗原。
然后通过离心沉淀等方法,将抗原—抗体复合物与游离抗原分离,分别测定其放射性强度与标准曲线比较,即可对未标记的待测抗原进行定量。
RIA法测定血清蛋白灵敏度高、特异性强,可准确定量到ng/ml水平。
但早期的方法操作麻烦,耗时长,且有放射性污染。
近年来,随着单克隆抗体的应用,RIA的灵敏度又有了较大提高,且操作大为简化,并已有商品试剂盒供应,使用方便。
3)酶联免疫法(ELISA)ELISA法有竞争法和夹心法两种。
竞争法是基于标准或血清Mb和微孑L 板上包被的Mb竞争性地与单克隆抗体相结合的原理而建立,该法的最低检测限为10μg/L,线性范围达1 000ug/L。
夹心ELISA法与EIA具有良好的相关性(r=0.92)。
ELISA法具有灵敏度高,特异性强,精密度好,操作简单,适用于多份标本的检测,不需特殊仪器设备等优点,易于推广普及。
细胞介导细胞毒作用检测法4:时间分辩荧光分析法1)铕荧光检测法标记靶细胞1.EuCl3的制备:称取58.08mg Eu2O3,用少量1N HCl搅拌至溶解,再用1N NaOH 调节pH至4.0。
加双蒸水配成33~100mmol/L的保存液,4℃保存备用。
2.用预冷的标记液将靶细胞浓度调整到5×106/ml,加50μl 10mg/ml硫酸葡聚糖,置冰浴中20分钟,其间摇晃数次。
3.加入30μl 100mmol/L CaCl2溶液终止反应5分钟。
4.用含2mmol/L CaCl2的RPMI-1640培养液洗涤细胞5次。
用含10%小牛血清的RPMI-1640培养液将靶细胞配成5×104/ml。
检测方法1.在96孔圆底细胞培养板中加入靶细胞悬液,每孔加100μl。
2.向各孔加100μl效应细胞,效应细胞与靶细胞的比例根据要求而定,通常为5:1~20:1。
自然释放孔不加效应细胞只加100μl培养液,最大释放孔中加100μl 0.5%Triton X-100。
每个实验置三个复孔。
3.置37℃5%CO2的二氧化碳培养箱中培养3小时。
4.从每孔吸出20μl上清液,对应加入另一块96孔酶标板中,向第二块板每孔加200μl增强液。
室温中混合5分钟。
在时间分辩荧光分析仪上测定各孔的荧光强度。
同时做EuCl3的标准曲线:用0.05mol/L pH7.0柠檬酸缓冲液配制10倍梯度5.特异性杀伤活性计算:杀伤活性(%)=[(实验组荧光强度-自然释放组荧光强度)/(最大释放组荧光强度-自然释放组荧光强度)]×100%2)用时间分辩荧光检测法同时检测NK细胞对三种靶细胞的细胞毒性标记靶细胞1.取107靶细胞,用洗涤液(含93mmol/L NaCl, 5mmol/L KCl和2mmol/L MgCl2的50mmol/L pH7.4 Hepes,双蒸水配制)洗涤一次。
小心吸去上清液,用1ml 标记液(洗涤液中加0.5mg/ml磷酸葡聚糖和0.06mmol/L Eu3+或2mmol/L Sm3+或0.2mol/L Tb3+,以及比镧系离子浓度高5倍的DTPA)悬浮细胞。
时间分辨荧光分析技术的应用研究时间分辨荧光分析技术是一种基于表面增强荧光技术,结合时间分辨检测和分析的新型荧光分析方法。
其应用涉及化学、生物学、环境监测等多个领域,具有快速、灵敏、高通量等优点。
本文将从时间分辨荧光分析技术的原理和应用角度,探究其在不同领域的应用及前景。
一、技术原理时间分辨荧光分析技术通过对荧光信号的时间分辨和分析,可以得到更全面、准确的研究结果。
其基本原理为:通过引入表面增强荧光剂和金属纳米颗粒等材料,使样品在激发光作用下,发出强烈的荧光信号。
荧光信号在不同的材料表面上,会受到扩散、共振能量转移等影响,产生不同的荧光寿命和谱型。
利用时间分辨荧光分析仪,可以通过研究荧光信号的寿命和谱型,快速有效地分析样品中目标物质的数量、分子结构、反应速率等参数。
二、应用领域2.1 生物学在细胞研究领域,时间分辨荧光分析技术是一种重要的荧光探针和成像工具。
例如,可以通过合成表面增强荧光生物传感器,对等离子体膜上的酶活性、蛋白质结构、细胞内钙离子转运等生物过程进行实时监测和成像。
此外,时间分辨荧光分析技术还可以用于研究荧光标记的生物分子在细胞内部的传递、吸附、反应等过程,为研究基因组学、蛋白质组学等提供了有力的工具。
2.2 化学领域在化学反应动力学研究领域,时间分辨荧光分析技术主要应用于研究化学反应过程中的荧光衰减动力学和反应速率等参数。
例如,利用荧光探针技术,可以对物质分子之间的共振能量转移、酸碱中性化反应、阳离子络合反应等化学反应进行实时监测和定量分析。
此外,时间分辨荧光分析技术还可以用于生化传感器、化学传感器等相关领域的研究。
2.3 环境监测和安全领域在环境监测领域,时间分辨荧光分析技术常用于检测水质中的重金属、污染物等有害成分。
例如,利用荧光标记技术,可以对水中的难降解有机物、重金属等污染物进行定量检测和分析,并快速地监测水质的污染程度。
在安全领域中,时间分辨荧光分析技术还可以用于爆炸物质检测、生化武器检测等方面,具有很强的应用前景。
1.1 时间分辨荧光分析技术时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。
本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。
1.1.1 稀土荧光配合物的发光机理及荧光性质稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。
其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。
图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。
1020152530355E N E R G Y ,103c m -16H 5/2G 5/26H 15/27F 0F 2D 05D17F 6F 545D313/249/2Sm 3+Eu 3+Tb 3+Dy 3+H 9/2图1.1 部分三价稀土离子的电子能级图Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。
当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物由配位体到中心稀土离子的能量转移所产生的[3-8]。
以铕(III)配合物为例,其荧光发光机理如图1.2所示[9],包括三线态发光机理和单线态发光机理。