高中数学常用逻辑用语知识点
- 格式:pdf
- 大小:272.89 KB
- 文档页数:11
第一章⎪⎪⎪集合与常用逻辑用语第一节集__合1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合:集合 自然数集正整数集 整数集 有理数集实数集 符号NN *或N +ZQR2.集合间的基本关系表示关系文字语言符号语言 记法基本关系子集集合A 的元素都是集合B 的元素x ∈A ⇒x ∈B A ⊆B 或B ⊇A真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不属于AA ⊆B ,且存在x 0∈B ,x 0∉A A B 或B A相等 集合A ,B 的元素完全相同 A ⊆B ,B ⊆A A =B 空集不含任何元素的集合.空集是任何集合A 的子集任意的x ,x ∉∅,∅⊆A∅3.集合的基本运算表示 运算 文字语言符号语言 图形语言 记法交集属于集合A 且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A 或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元{x |x ∈U ,且x ∉A }∁U A素组成的集合4.集合问题中的几个基本结论 (1)集合A 是其本身的子集,即A ⊆A ;(2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . (4)A ∩B =A ⇒A ⊆B ,A ∪B =B ⇒A ⊆B . [小题体验]1.已知集合A ={1,2},B ={x |0<x <5,x ∈N },则满足A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4答案:D2.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案:53.(2018·江苏高考)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 解析:A ∩B ={0,1,2,8}∩{-1,1,6,8}={1,8}. 答案:{1,8}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件. 2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. 4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.(2019·浙江名校联考)已知∁R M ={x |ln|x |>1},N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >0,则M ∪N =( ) A .(0,e] B .[-e ,+∞) C .(-∞,-e]∪(0,+∞)D .[-e ,e]解析:选B 由ln|x |>1得|x |>e ,∴M =[-e ,e].N =(0,+∞),∴M ∪N =[-e ,+∞).故选B. 2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可能取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,所以2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={0, x +1,x 2-5x },若-4∈A ,则实数x 的值为________. 解析:∵-4∈A ,∴x +1=-4或x 2-5x =-4. ∴x =-5或x =1或x =4.若x =1,则A ={0, 2,-4},满足条件; 若x =4,则A ={0, 5,-4},满足条件; 若x =-5,则A ={0,-4,50},满足条件. 所以x =1或x =4或-5. 答案:1或4或-5考点一 集合的基本概念(基础送分型考点——自主练透)[题组练透]1.下列命题正确的有( ) ①很小的实数可以构成集合;②(易错题)集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个D .3个解析:选A 由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二、四象限的点,还可表示原点,故错误.综上,没有正确命题,故选A.2.已知a >0,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,4,b a ={a -b,0,a 2},则a 2+b 2的值为( )A .2B .4C .6D .8解析:选B 由已知得a ≠0,则ba =0,所以b =0,于是a 2=4,即a =2或a =-2,因为a >0,所以a =2,故a 2+b 2=22+02=4.3.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.4.(易错题)(2019·江西重点中学协作体联考)设集合A ={1,2,3},B ={2,3,4} ,M ={x |x =ab ,a ∈A ,b ∈B },则M 中的元素个数为________.解析:结合题意列表计算M 中所有可能的值如下:观察可得:M ={2,3,4,6,8,9,12},据此可知M 中的元素个数为7. 答案:7[谨记通法]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性. 考点二 集合间的基本关系(重点保分型考点——师生共研)[典例引领]1.已知集合M ={1,2,3,4},则集合P ={x |x ∈M 且2x ∉M }的子集有( ) A .8个 B .4个 C .3个D .2个解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个. 2.已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若B ⊆A ,则a =( ) A .-12或1B .2或-1C .-2或1或0D .-12或1或0解析:选D 集合A ={x |x 2+x -2=0}={-2,1}.当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.[由题悟法]集合间基本关系的两种判定方法和一个关键[即时应用]1.集合{a ,b ,c ,d ,e }的真子集的个数为( ) A .32 B .31 C .30D .29解析:选B 因为集合有5个元素,所以其子集的个数为25=32个,其真子集的个数为25-1=31个. 2.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时, ∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. 答案:(-∞,1]考点三 集合的基本运算(题点多变型考点——多角探明) [锁定考向]集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有: (1)集合的运算;(2)利用集合运算求参数; (3)新定义集合问题.[题点全练]角度一:集合的运算1.(2018·北京高考)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2}D .{-1,0,1,2}解析:选A ∵A ={x ||x |<2}={x |-2<x <2},B={-2,0,1,2},∴A∩B={0,1}.故选A.2.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.则∁R A={x|-1≤x≤2}.故选B.角度二:利用集合运算求参数3.(2019·浙江联盟校联考)已知集合P={x|-1<x<1},Q={x|0<x<a},若P∪Q={x|-1<x<2},则实数a的值为()A.1 B.2C.12D.32解析:选B因为P={x|-1<x<1},Q={x|0<x<a},所以当a≤1时,P∪Q={x|-1<x<1},不符合题意;当a>1时,P∪Q={x|-1<x<a},结合P∪Q={x|-1<x<2},可得a=2.角度三:新定义集合问题4.如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)是指当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有()个()A.5个B.6个C.7个D.8个解析:选B因为A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},所以当A={1,2}时,B={1,3,4};当A={1,3}时,B={1,2,4};当A={1,4}时,B={1,2,3};当A={1,2,3}时,B={1,4};当A={1,2,4}时,B={1,3};当A={1,3,4}时,B={1,2}.所以满足条件的“好集对”一共有6个,故选B.[通法在握]解集合运算问题4个技巧[演练冲关]1.(2019·浙江十校联盟适考)已知集合A={x|1<x<4},B={x∈Z|x2-6x<0},则(∁R A)∩B=() A.{1,4} B.{4,5}C.{1,4,5} D.{2,3}解析:选C法一:由x2-6x<0可得0<x<6,所以B={1,2,3,4,5},又∁R A={x|x≤1或x≥4},所以(∁R A)∩B={1,4,5}.法二:因为求的是(∁R A)∩B,故排除D,又1,5∈∁R A,1,5∈B,故选C.2.(2019·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为() A.1 B.2C.3 D.1或2解析:选B当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,A∩B=∅.因此实数a=2.3.(2019·杭州高三四校联考)设集合A={x|(x-3)(x-a)=0,a∈R},B={x|(x-1)(x-4)=0},则A∪B 的子集个数最多为()A.2 B.4C.8 D.16解析:选D由题意可知,要使A∪B的子集个数最多,则需A∪B中的元素个数最多,此时a≠1,a≠3,且a≠4,即集合A={3,a},B={1,4},A∪B={1,3,4,a},故A∪B的子集最多有24=16个.4.如图所示的Venn图中,A,B是非空集合,定义集合A B为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x>0},则A B为()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}解析:选D因为A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|1<x≤2},所以A B =∁A∪B(A∩B)={x|0≤x≤1或x>2},故选D.一抓基础,多练小题做到眼疾手快1.(2019·浙江考前热身联考)已知集合M={x|y=2x-x2},N={x|-1<x<1},则M∪N=() A.[0,1)B.(-1,2)C.(-1,2] D.(-∞,0]∪(1,+∞)解析:选C法一:易知M={x|0≤x≤2},又N={x|-1<x<1},所以M∪N=(-1,2].故选C.法二:取x=2,则2∈M,所以2∈M∪N,排除A、B;取x=3,则3∉M,3∉N,所以3∉M∪N,排除D,故选C.2.(2019·浙江三地联考)已知集合P={x|||x<2},Q={x|-1≤x≤3},则P∩Q=()A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3]解析:选A由|x|<2,可得-2<x<2,所以P={x|-2<x<2},所以P∩Q=[-1,2).3.(2018·嘉兴期末测试)已知集合P={x|x<1},Q={x|x>0},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.∁R P⊆Q解析:选D由已知可得∁R P=[1,+∞),所以∁R P⊆Q.故选D.4.(2018·浙江吴越联盟第二次联考)已知集合M={0,1,2,3,4},N={2,4,6},P=M∩N,则P的子集有________个.解析:集合M={0,1,2,3,4},N={2,4,6},P=M∩N={2,4},则P的子集有∅,{2},{4},{2,4},共4个.答案:45.已知集合A={x|x≥3},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:因为集合A={x|x≥3},B={x|x≥m},且A∪B=A,所以B⊆A,如图所示,所以m≥3.答案:[3,+∞)二保高考,全练题型做到高考达标1.(2019·杭州七校联考)已知集合A={x|x2>1},B={x|(x2-1)(x2-4)=0},则集合A∩B中的元素个数为()A.1 B.2C.3 D.4解析:选B A={x|x<-1或x>1},B={-2,-1,1,2},A∩B={-2,2},故选B.2.(2019·浙江六校联考)已知集合U={x|y=3x},A={x|y=log9x},B={y|y=-2x}则A∩(∁U B)=()A.∅B.RC.{x|x>0} D.{0}解析:选C由题意得,U=R,A={x|x>0},因为y=-2x<0,所以B={y|y<0},所以∁U B={x|x≥0},故A∩(∁U B)={x|x>0}.故选C.3.(2019·永康模拟)设集合M={x|x2-2x-3≥0},N={x|-3<x<3},则()A.M⊆N B.N⊆MC.M∪N=R D.M∩N=∅解析:选C由x2-2x-3≥0,解得x≥3或x≤-1,所以M={x|x≤-1或x≥3},所以M∪N=R.4.(2019·宁波六校联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)解析:选B∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a <3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.5.(2018·镇海中学期中)若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ,N ={x |x <1},则M ∪N =( ) A .(0,1) B .(0,2) C .(-∞,2)D .(0,+∞)解析:选C 集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ={x |0<x <2},N ={x |x <1}.M ∪N ={x |x <2}=(-∞,2).故选C.6.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0}. 答案:{-1,0}7.(2018·嘉兴二模)已知集合A ={x |-1≤x ≤2},B ={x |x 2-4x ≤0},则A ∪B =________,A ∩(∁R B )=________.解析:因为B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∪B ={x |-1≤x ≤4};因为∁R B ={x |x <0或x >4},所以A ∩(∁R B )={x |-1≤x <0}.答案:{x |-1≤x ≤4} {x |-1≤x <0}8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 解析:由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.答案:(1)[2,+∞) (2)929.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合A ={x |(x +2m )(x -m +4)<0},其中m ∈R ,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0. (1)若B ⊆A ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围. 解:(1)集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0={x |-2<x <1}.当A =∅时,m =43,不符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为B ⊆A ,所以⎩⎪⎨⎪⎧ m >43,-2m ≤-2,m -4≥1,即⎩⎪⎨⎪⎧m >43,m ≥1,m ≥5,所以m ≥5.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为B ⊆A ,所以⎩⎪⎨⎪⎧m <43,-2m ≥1,m -4≤-2,即⎩⎪⎨⎪⎧m <43,m ≤-12,m ≤2,所以m ≤-12.综上所述,实数m 的取值范围为⎝⎛⎦⎤-∞,-12∪[5,+∞). (2)由(1)知,B ={x |-2<x <1}. 当A =∅时,m =43,符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为A ∩B =∅,所以-2m ≥1或者m -4≤-2, 即m ≤-12或者m ≤2,所以43<m ≤2.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为A ∩B =∅,所以m -4≥1或者-2m ≤-2, 即m ≥5或者m ≥1,所以1≤m <43.综上所述,实数m 的取值范围为[1,2]. 三上台阶,自主选做志在冲刺名校1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b 时,b +c +d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1.2.对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R },则A ⊕B =( )A.⎝⎛⎭⎫-94,0B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析:选C 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎨⎧x ⎪⎪⎭⎬⎫x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎫-∞,-94∪[0,+∞).故选C.3.已知函数f (x )=x -3-17-x的定义域为集合A ,且B ={x ∈Z |2<x <10},C ={x ∈R |x <a 或x >a +1}.(1)求:A 和(∁R A )∩B ;(2)若A ∪C =R ,求实数a 的取值范围. 解:(1)要使函数f (x )=x -3-17-x, 应满足x -3≥0,且7-x >0,解得3≤x <7, 则A ={x |3≤x <7}, 得到∁R A ={x |x <3或x ≥7},而B ={x ∈Z |2<x <10}={3,4,5,6,7,8,9}, 所以(∁R A )∩B ={7,8,9}.(2)C ={x ∈R |x <a 或x >a +1},要使A ∪C =R , 则有a ≥3,且a +1<7,解得3≤a <6. 故实数a 的取值范围为[3,6).第二节命题及其关系、充分条件与必要条件1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句特点 (1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为B p 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件p ⇒/ q 且q ⇒pB 是A 的真子集p 是q 的充要条件 p ⇔q A =B p 是q 的既不充分也不必要条件 p ⇒/ q 且q ⇒/pA ,B 互不包含[小题体验]1.下列命题是真命题的是( )A .若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域上是减函数B .命题“若xy =0,则x =0”的否命题C .“m =3”是“直线(m +3)x +my -2=0与mx -6y +5=0垂直”的充要条件D .命题“若cos x =cos y ,则x =y ”的逆否命题 答案:B2.(2019·温州高考适应性测试)已知α,β∈R ,则“α>β”是“cos α>cos β ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选D α>β ⇒/ cos α>cos β,如α=π3,β=π6,π3>π6,而cos π3<cos π6;cos α>cos β ⇒/ α>β,如α=π6,β=π3,cos π6>cos π3,而π6<π3.故选D.3.设a ,b 是向量,则命题“若a =-b ,则|a |=| b |”的逆否命题为:________. 答案:若|a |≠|b |,则a ≠-b1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.(2019·杭州模拟)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角考点一四种命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2-3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②(易错题)“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.(2019·杭州高三四校联考)“a>-1”是“x2+ax+14>0(x∈R)”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A若x2+ax+14>0(x∈R),则a2-1<0,即-1<a<1,所以“a>-1”是“x2+ax+14>0(x∈R)”的必要不充分条件.故选A.2.(2019·杭州高三质检)设数列{a n}的通项公式为a n=kn+2(n∈N*),则“k>2”是“数列{a n}为单调递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A法一:因为a n=kn+2(n∈N*),所以当k>2时,a n+1-a n=k>2,则数列{a n}为单调递增数列.若数列{a n}为单调递增数列,则a n+1-a n=k>0即可,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.法二:根据一次函数y=kx+b的单调性知,“数列{a n}为单调递增数列”的充要条件是“k>0”,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 因为a >0,b >0,所以a +b >0,ab +1>0,故不等式a +b ≥ab +1成立的充要条件是(ab +1)2≤(a +b )2,即a 2+b 2≥a 2b 2+1.显然,若a 2+b 2≥a 2b 2+1,则必有a 2+b 2≥1,反之则不成立,所以a 2+b 2≥1是a 2+b 2≥a 2b 2+1成立的必要不充分条件,即a 2+b 2≥1是a +b ≥ab +1成立的必要不充分条件.2.(2019·浙江期初联考)若a ,b ∈R ,使|a |+|b |>4成立的一个充分不必要条件是( ) A .|a +b |≥4 B .|a |≥4 C .|a |≥2且|b |≥2D .b <-4解析:选D 对选项A ,若a =b =2,则|a |+|b |=2+2≥4,不能推出|a |+|b |>4;对选项B ,若a =4≥4,b =0,此时不能推出|a |+|b |>4;对选项C ,若a =2≥2,b =2≥2,此时不能推出|a |+|b |>4;对选项D ,由b <-4可得|a |+|b |>4,但由|a |+|b |>4得不到b <-4.故选D.3.(2019·宁波模拟)已知四边形ABCD 为梯形,AB ∥CD ,l 为空间一直线,则“l 垂直于两腰AD ,BC ”是“l 垂直于两底AB ,DC ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为四边形ABCD 是梯形,且AB ∥CD ,所以腰AD ,BC 是交线,由直线与平面垂直的判定定理可知,当l 垂直于两腰AD ,BC 时,l 垂直于ABCD 所在平面,所以l 垂直于两底AB ,CD ,所以是充分条件;当l 垂直于两底AB ,CD ,由于AB ∥CD ,所以l 不一定垂直于ABCD 所在平面,所以l 不一定垂直于两腰AD ,BC ,所以不是必要条件.所以是充分不必要条件.考点三 充分必要条件的应用(重点保分型考点——师生共研)[典例引领]若不等式x -m +1x -2m<0成立的一个充分不必要条件是13<x <12,则实数m 的取值范围是______________.解析:令A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -m +1x -2m <0,B =⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. 因为不等式x -m +1x -2m <0成立的充分不必要条件是13<x <12,所以B ⊆A .①当m -1<2m ,即m >-1时,A ={x |m -1<x <2m }.由B ⊆A 得⎩⎪⎨⎪⎧ m -1≤13,2m ≥12,m >-1,解得14≤m ≤43;②当m -1=2m ,即m =-1时,A =∅,不满足B ⊆A ; ③当m -1>2m ,即m <-1时,A ={x |2m <x <m -1}. 由B ⊆A 得⎩⎪⎨⎪⎧2m ≤13,m -1≥12,m <-1,此时m 无解.综上,m 的取值范围为⎣⎡⎦⎤14,43. 答案:⎣⎡⎦⎤14,43[由题悟法]根据充要条件求参数的值或取值范围的关键点(1)先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2019·杭州名校大联考)已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:选A 由|x +1|>2,可得x >1或x <-3,所以綈p :-3≤x ≤1;又綈q :x ≤a .因为綈p 是綈q 的充分不必要条件,所以a ≥1.2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.设a ,b ∈R ,则“a 3>b 3且ab <0”是“1a >1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a 3>b 3,知a >b ,由ab <0,知a >0>b ,所以此时有1a >1b ,故充分性成立;当1a >1b 时,若a ,b 同号,则a <b ,若a ,b 异号,则a >b ,所以必要性不成立.故选A. 3.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若φ=0,则f (x )=cos x 为偶函数;若f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π(k ∈Z ).故“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.4.命题p :“若x 2<1,则x <1”的逆命题为q ,则p 与q 的真假性为( ) A .p 真q 真 B .p 真q 假 C .p 假q 真D .p 假q 假解析:选B q :若x <1,则x 2<1. ∵p :x 2<1,则-1<x <1.∴p 真,当x <1时,x 2<1不一定成立,∴q 假,故选B.5.若x >5是x >a 的充分条件,则实数a 的取值范围为( ) A .(5,+∞) B .[5,+∞) C .(-∞,5)D .(-∞,5] 解析:选D 由x >5是x >a 的充分条件知,{x |x >5}⊆{x |x >a },∴a ≤5,故选D. 二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.2.命题“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥4B .a ≤4C .a ≥3D .a ≤3解析:选C 即由“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”可推出选项,但由选项推不出“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”.因为x ∈[1,2],所以x 2∈[1,4],x 2-a ≤0恒成立,即x 2≤a ,因此a ≥4;反之亦然.故选C.3.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.4.(2019·浙江名校联考信息卷)已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件,故选A.5.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.6.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”,否命题的真假性为________.解析:命题的否命题为“若a ≤b ,则ac 2≤bc 2”. 若c =0,结论成立.若c ≠0,不等式ac 2≤bc 2也成立. 故否命题为真命题. 答案:真 7.下列命题:①“a >b ”是“a 2>b 2”的必要条件;②“|a |>|b |”是“a 2>b 2”的充要条件;③“a >b ”是“a +c >b +c ”的充要条件.其中是真命题的是________(填序号).解析:①a >b ⇒/ a 2>b 2,且a 2>b 2⇒/ a >b ,故①不正确; ②a 2>b 2⇔|a |>|b |,故②正确;③a >b ⇒a +c >b +c ,且a +c >b +c ⇒a >b ,故③正确. 答案:②③8.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的________条件.解析:因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.答案:充分不必要 9.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38. 答案:⎣⎡⎦⎤13,3810.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,∵x ∈⎣⎡⎦⎤34,2, ∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:选B 由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q的充分不必要条件知,k >2,故选B.2.在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[k ]={4n +k |n ∈Z },k =0,1,2,3,则下列结论正确的为________(填序号).①2 018∈[2];②-1∈[3];③Z =[0]∪[1]∪[2]∪[3];④命题“整数a ,b 满足a ∈[1],b ∈[2],则a +b ∈[3]”的原命题与逆命题都正确;⑤“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”.解析:由“类”的定义[k ]={4n +k |n ∈Z },k =0,1,2,3,可知,只要整数m =4n +k ,n ∈Z ,k =0,1,2,3,则m ∈[k ],对于①中,2 018=4×504+2,所以2 018∈[2],所以符合题意;对于②中,-1=4×(-1)+3,所以符合题意;对于③中,所有的整数按被4除所得的余数分为四类,即余数分别为0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z =[0]∪[1]∪[2]∪[3],所以符合题意;对于④中,原命题成立,但逆命题不成立,因为若a +b ∈[3],不妨设a =0,b =3,则此时a ∉[1]且b ∉[2],所以逆命题不成立,所以不符合题意;对于⑤中,因为“整数a ,b 属于同一类”,不妨设a =4m +k ,b =4n +k ,m ,n ∈Z ,且k =0,1,2,3,则a -b =4(m -n )+0,所以a -b ∈[0];反之,不妨设a =4m +k 1,b =4n +k 2,m ,n ∈Z ,k 1=0,1,2,3,k 2=0,1,2,3,则a -b =4(m -n )+(k 1-k 2),若a -b ∈[0],则k 1-k 2=0,即k 1=k 2,所以整数a ,b 属于同一类,故“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”,所以符合题意.答案:①②③⑤3.已知全集U =R ,非空集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -2x -(3a +1)<0,B ={x |(x -a )(x -a 2-2)<0,命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,若p 真q 假,求x 的取值范围; (2)若q 是p 的必要条件,求实数a 的取值范围.解:(1)当a =12时,A ={x |2<x <37},B ={x |12<x <146},因为p 真q 假. 所以(∁U B )∩A ={x |2<x ≤12}, 所以x 的取值范围为(2,12].(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B . 因为a 2+2>a ,所以B ={x |a <x <a 2+2}. 当3a +1>2,即a >13时,A ={x |2<x <3a +1},应满足条件⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,不符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2},应满足条件⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2解得-12≤a <13;综上所述,实数a 的取值范围为⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.命题点一 集合及其运算1.(2018·浙江高考)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( ) A .∅ B .{1,3} C .{2,4,5}D .{1,2,3,4,5}解析:选C ∵U ={1,2,3,4,5},A ={1,3}, ∴∁U A ={2,4,5}.2.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1}, ∴∁R B ={x |x <1}. ∵集合A ={x |0<x <2}, ∴A ∩(∁R B )={x |0<x <1}.3.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2).4.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:选C ∵A ={x |x -1≥0}={x |x ≥1},B ={0,1,2},∴A ∩B ={1,2}.5.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5D .4解析:选A 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.6.(2017·江苏高考)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________. 解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1. 答案:1命题点二 充要条件1.(2016·浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.2.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.3.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0⇒/ ab >0; 当a =-2,b =-1时,ab >0,但a +b <0, 所以ab >0⇒/ a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.4.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由⎪⎪⎪⎪x -12<12,得0<x <1, 则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1”⇒ / “⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. 5.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 6.(2018·北京高考)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2, 即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 又a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b ,得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 命题点三 四种命题及其关系1.(2015·山东高考)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.(2018·北京高考)能说明“若a >b ,则1a <1b ”为假命题的一组a ,b 的值依次为________. 解析:只要保证a 为正b 为负即可满足要求. 当a >0>b 时,1a >0>1b .答案:1,-1(答案不唯一)3.(2017·北京高考)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.解析:因为“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题, 则它的否定“设存在实数a ,b ,c .若a >b >c ,则a +b ≤c ”是真命题. 由于a >b >c ,所以a +b >2c ,又a +b ≤c ,所以c <0. 因此a ,b ,c 依次可取整数-1,-2,-3,满足a +b ≤c . 答案:-1,-2,-3(答案不唯一)。
高中数学常用逻辑用语知识点一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成.命题通常用小写英文字母表示,如P. q, r, m, n 等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题FT广的真假判定方式:(D若要判断命题广是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:P-定推出J②若要判断命题"Tq”是一个假命题,只需要找到一个反例即可.注意:“P不一定等于3”不能判定真假,它不是命题.2.逻辑联结词:“或”且”非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题•(2)复合命题的构成形式:①P或q;②P且q;③非P (即命题P的否定)・(3)复合命题的真假判断(利用真值表):①当p、q同时为假时,k或q”为假,其它情况时为真,可简称为J 真必真”;②当p、q同时为真时,L且Cr为真,其它情况时为假,可简称为U- 假必假” O③“非P W与P的真假相反.注意:(D逻辑连结词“或”的理解是难点,“或”有三层含义,以L或q” 为例:一是P成立且q不成立,二是P不成立但q成立,三是P成立且q也成立。
可以类比于集合中叭"或"・(2)“或”、“且”联结的命题的否定形式:U P或q”的否定是F且7” ;U P且q M的否定是IP或詔'・(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
知识点二:种命题1.种命题的形式:用P和q分别表示原命题的条件和结论,用¥和7分别表示P和q的否定,则四种命题的形式为:原命题:若P则q;逆命题:若q则P;否命题:若「P则7;逆否命题:若7则∙Ψ∙2.种命题的关系① 原命题Q 逆否命题•它们具有相同的真假性,是命题转化的依据和途径 之—.② 逆命题=否命题,它们之间互为逆否关系,具有相同的真假性,是 命题转化的另一依据和途径•除①、②之外,四种命题中其它两个命题的真伪无必然联系.命题与集合之间可以建立对应关系,在这样的对应下,逻辑联结词和集合 的运算具有一致性,命题的“且"「或”「非”恰好分别对应集合的“交”、 “并”「'补因此,我们就可以从集合的角度进一步认识有关这些逻辑 联结词的规定。
第一章 集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合2.3.集合的基本运算集合的并集 集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合表示{x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅; ②空集是任何集合的子集(即∅⊆A ); 空集是任何非空集合的真子集(若A ≠∅,则∅A ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为( ) A .3 B .4 C .7 D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B =, 所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N230A x x x =∈--≤∣,则集合A 的真子集的个数为( ) A .32 B .31 C .16 D .15【答案】D【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣, 其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) . 6.充分条件、必要条件与充要条件的概念若p ⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p ⇒q且q ⇏pp是q的必要不充分条件p ⇏q且q ⇒pp是q的充要条件p ⇔qp是q的既不充分也不必要条件p ⇏q且q ⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔A B;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔B A;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
高中数学知识点大纲一、集合与常用逻辑用语1. 集合的概念、表示方法及集合间的关系集合的定义:具有某种特定性质的对象的总体。
表示方法:列举法、描述法、图示法(Venn 图)。
集合间的关系:包含(子集、真子集)、相等。
2. 集合的运算交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A ∩ B。
并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作A ∪ B。
补集:设 U 为全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合,记作∁UA 。
3. 常用逻辑用语命题:能够判断真假的陈述句。
四种命题:原命题、逆命题、否命题、逆否命题,它们之间的真假关系。
充分条件与必要条件:若 p ⇒ q,则 p 是 q 的充分条件,q 是 p 的必要条件。
逻辑连接词:“且”“或”“非”。
全称量词与存在量词:全称命题与特称命题的否定。
二、函数1. 函数的概念定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
函数的三要素:定义域、值域、对应法则。
2. 函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 x2 时,都有f(x1) f(x2)(或 f(x1) > f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 f(−x) = −f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 f(−x) = f(x),那么函数f(x)就叫做偶函数。
3. 常见函数一次函数:y = kx + b(k ≠ 0)。
二次函数:y = ax² + bx + c(a ≠ 0),其图象是抛物线,对称轴为 x = b / (2a) ,顶点坐标为(b / (2a), (4ac b²) / (4a)) 。
常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
§1.3简单的逻辑联结词知识点一由简单命题写出复合命题分别写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题:(1)p:2是无理数,q:2大于1;(2)p:N⊆Z,q:0∈N;(3)p:x2+1>x-4,q:x2+1<x-4.解(1)p∨q:2是无理数或大于1;p∧q:2是无理数且大于1;綈p:2不是无理数.(2)p∨q:N⊆Z或0∈N;p∧q:N⊆Z且0∈N;綈p:N⃘Z.(3)p∨q:x2+1≠x-4;p∧q:x2+1>x-4且x2+1<x-4;綈p:x2+1≤x-4.知识点二从复合命题中找出简单命题指出下列复合命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)方程x2-3=0没有有理数解;(3)不等式x2-x-2>0的解集是{x|x<-1或x>2};(4)他是运动员兼教练员.解(1)“p且q”形式,其中p:96是48的倍数,q:96是16的倍数.(2)“非p”形式,其中p:方程x2-3=0有有理数解.(3)“p或q”形式,其中p:不等式x2-x-2>0的解集是{x|x<-1},q:不等式x2-x-2>0的解集是{x|x>2}.(4)“p且q”形式,其中p:他是运动员,q:他是教练员.知识点三判断含有逻辑联结词的命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:∅{0},q:0∈∅;(3)p:A⊆A,q:A∩A=A;(4)p:函数y=x2+3x+4的图象与x轴有交点,q:方程x2+3x-4=0没有实根.解(1)因为p假q真,所以“p∨q”为真,“p∧q”为假,“綈p”为真.(2)因为p真q假,所以“p∨q”为真,“p∧q”为假,“綈p”为假.(3)因为p真q真,所以“p∨q”为真,“p∧q”为真,“綈p”为假.(4)因为p假q假,所以“p∨q”为假,“p∧q”为假,“綈p”为真.知识点四非命题与否命题写出下列命题的否定及命题的否命题:(1)菱形的对角线互相垂直;(2)面积相等的三角形是全等三角形.解(1)命题的否定:存在一个菱形,其对角线不互相垂直.否命题:不是菱形的四边形,其对角线不互相垂直.(2)命题的否定:存在面积相等的三角形不是全等三角形.否命题:面积不相等的三角形不是全等三角形.考题赏析1.(广东高考)已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有(綈p)∨(綈q)为真命题.答案 D2.(如皋联考)已知命题:p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则1a<1b.给出下列四个复合命题:①p且q;②p或q;③綈p;④綈q.上述命题中为真命题的是________.解析p为真,q为假,故p或q,綈q为真命题.答案②④1.如果命题“非p或非q”是假命题,则在下列各结论中,正确的为()①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.A.②③B.②④C.①③D.①④答案 C解析因“p且q”的否定为“綈p或綈q”,即綈(p且q)等价于綈p或綈q,所以“綈p或綈q”是假命题等价于“綈(p且q)”是假命题,即p且q为真命题.故选C.2.条件p:x∈A∪B,则綈p是()A.x∉A或x∉B B.x∉A且x∉BC .x ∈A ∩BD .x ∉A 或x ∈B 答案 B解析 因x ∈A ∪B ⇔x ∈A 或x ∈B ,所以綈p 为x ∉A 且x ∉B ,故选B.3.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ①p 或綈q 是真命题; ②p 或綈q 是假命题; ③綈p 且綈q 是假命题; ④綈p 或q 是假命题, 其中真命题是( )A .①②B .③④C .①③D .②④ 答案 C解析 因为p 且q 为真,所以p 与q 都为真,所以綈p 且綈q 为假.所以只有①③是真命题,所以选C. 4.若命题“p ∧q ”为假,且“綈p ”为假,则( ) A .p ∨q 为假 B .q 假C .q 真D .不能判断q 的真假 答案 B解析 綈p 为假,则p 为真,又p ∧q 为假,所以q 为假.所以选B. 5.“a ≥5且b ≥2”的否定是________. 答案 a <5或b <2解析 本题考查命题的否定,“p 或q ”的否定是“綈p 且綈q ”,“p 且q ”的否定是“綈p 或綈q ”. 6.命题p :{2}∈{2,3},q :{2}⊆{2,3},则下列对复合命题的判断,正确的是________.(填上所有正确的序号)①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假. 答案 ①④⑤⑥解析 由题可知p 为假,q 为真,所以p 或q 为真,p 且q 为假,非p 为真,非q 为假.答案为①④⑤⑥.7.已知p :3-x ≤0或3-x >4,q :5x +2<1,求p ∧q .解 由3-x ≤0或3-x >4,解得p :x ≥3或x <-1; 由5x +2-1<0,即3-x x +2<0, 解得q :x <-2或x >3.所以p ∧q :x <-2或x >3.8.已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p 与q 有且只有一个正确,求a 的取值范围.解 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52.若p真q 假,则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫⎣⎡⎭⎫12,1∪⎝⎛⎦⎤1,52=⎣⎡⎭⎫12,1. 若p 假q 真,注意到已知a >0,a ≠1,所以有 a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫0,12∪⎝⎛⎭⎫52,+∞=⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.讲练学案部分知识点一 含逻辑联结词的命题的构成将下列命题写成“p ∧q ”“p ∨q ”和“綈p ”的形式: (1)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(2)p :能被5整除的整数的个位数一定为5,q :能被5整除的整数的个位数一定为0. 解 (1)p ∧q :菱形的对角线互相垂直且平分. p ∨q :菱形的对角线互相垂直或平分. 綈p :菱形的对角线不互相垂直.(2)p ∧q :能被5整除的整数的个位数一定为5且一定为0; p ∨q :能被5整除的整数的个位数一定为5或一定为0;綈p :能被5整除的整数的个位数一定不为5.【反思感悟】 简单命题用联结词“或”、“且”、“非”联结得到的新命题是复合命题,联结后可以综合起来叙述,但综合叙述不能叙述成条件复合的简单命题或叙述成结论复合的简单命题.如(2)中的p ∨q 不能叙述成:能被5整除的整数的个位数一定为5或0,因为p 、q 都是假命题,则p ∨q 也为假命题.判断下列命题是否是复合命题并说明理由.(1)2是4和6的约数;(2)不等式x 2-5x +6>0的解为x >3或x <2.解 (1)是“p 且q ”形式的复合命题,其中p :2是4的约数;q :2是6的约数.(2)是简单命题,而不是用“或”联结的复合命题,因不等式x 2-5x +6>0的解为x >3是假命题,不等式x 2-5x +6>0的解为x <2也是假命题,而命题(2)是真命题,这与p 、q 都假,则p ∨q 一定假矛盾.命题“不等式x 2-5x +6>0的解为x >3或解为x <2”是p ∨q 的形式.知识点二 含逻辑联结词的命题的真假判断分别指出下列命题的形式及构成它的命题,并判断真假:(1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3;(3)垂直于弦的直径平分这条弦,并且平分弦所对的两段弧.解 (1)这个命题是p ∨q 的形式,其中p :相似三角形周长相等,q :相似三角形对应角相等,因为p 假q 真,所以p ∨q 为真.(2)这个命题是綈p 的形式,其中p :9的算术平方根是-3,因为p 假,所以綈p 为真.(3)这个命题是p ∧q 的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,因为p 真q 真,所以p ∧q 为真.【反思感悟】 判断含逻辑联结词的命题的真假,关键是对应p 、q 的真假及“p ∧q ”“p ∨q ”为真时的判定依据,至于“綈p ”的真假,可就p 的真假判断,也可就“綈p ”直接判断.判断下列命题的真假:(1)-1是偶数或奇数;(2)2属于集合Q ,也属于集合R ; (3)A ⃘(A ∪B ).解 (1)此命题为“p ∨q ”的形式,其中p :-1是偶数,q :-1是奇数,因为p 为假命题,q 为真命题,所以“p ∨q ”为真命题,故原命题为真命题.(2)此命题为“p ∧q ”的形式,其中p :2属于Q ,q :2属于R ,因为p 为假命题,q 为真命题,所以“p ∧q ”为假命题,故原命题为假命题.(3)此命题为“綈p ”的形式,其中p :A ⊆(A ∪B ).因为p 为真命题,所以“綈p ”为假命题,故原命题为假命题.知识点三 简单的逻辑联结词的综合应用已知p :函数y =x 2+mx +1在(-1,+∞)上单调递增,q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真,p 且q 为假,求m 的取值范围.解 若函数y =x 2+mx +1在(-1,+∞)上单调递增,则-m2≤-1,∴m ≥2,即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3,即q :1<m <3.因为p 或q 为真,p 且q 为假,所以p 、q 一真一假,当p 真q 假时,由⎩⎨⎧m ≥2m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎨⎧m <21<m <3,得1<m <2.综上,m 的取值范围是{m |m ≥3或1<m <2}.【反思感悟】 由p 、q 的真假,可以判断“p ∨q ”“p ∧q ”“綈p ”的真假.反之,由“p ∧q ”“p ∨q ”“綈p ”的真假,也能推断p 、q 的真假,如“p ∧q ”为假,则包括“p 真q 假”“p 假q 真”“p 假q 假”三种情况.已知p :方程x 2+mx +1=0有两个不等负根.q :方程4x 2+4(m -2)x +1=0无实根.(1)当m 为何值时,p 或q 为真? (2)当m 为何值时,p 且q 为真?解 由已知可知:p 真时m >2,q 真时1<m <3, (1)若p 或q 为真,只需m ∈{m |m >2}∪{m |1<m <3} ={m |m >1}.(2)若p 且q 为真,只需m ∈{m |m >2}∩{m |1<m <3} ={m |2<m <3}.课堂小结:1. 从集合的角度理解“且”“或”“非”. 设命题p :x ∈A.命题q :x ∈B. 则p ∧qx ∈A 且x ∈Bx ∈A ∩B ;p ∨q x ∈A 或x ∈B x ∈A ∪B ;2.对有逻辑联结词的命题真假性的判断 当p 、q 都为真,p ∧q 才为真;⌝p 与p 的真假性相反且一定有一个为真.当p 、q 有一个为真,p ∨q 即为真; 3.含有逻辑联结词的命题否定(1)“x=0或x=1”的否定是“x ≠0且x ≠1”而不是“x ≠0或x ≠1”; (2)“x 、y 全为0”的否定是“x 、y 不全为0”,而不是“x 、y 全不为0”;(3)“全等三角形一定是相似三角形”的否定是“全等三角形一定不是相似三角形”而不是“全等三角形不一定是相似三角形”.一、选择题1.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p ∧q ”为真命题的一个点P (x ,y )是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1) 答案 C解析 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中,只有C 正确.2.如果原命题的结论是“p 且q ”的形式,那么否命题的结论形式为( ) A .綈p 且綈q B .綈p 或綈q C .綈p 或q D .綈q 或p 答案 B解析 注意逻辑联结词的否定,“或”的否定是“且”,“且”的否定为“或”,所以p 且q 的否定为綈p 或綈q .所以选B.3.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真 答案 C解析 由于将点(-1,1)代入y =log a (ax +2a )成立,故p 真;由y =f (x )的图象关于(3,0)对称,知y =f (x -3)的图象关于(6,0)对称,故q 假.4.若p 、q 是两个简单命题,p 或q 的否定是真命题,则必有( ) A .p 真q 真 B .p 假q 假 C .p 真q 假 D .p 假q 真答案 B解析 因为p 或q 的否定綈p 且綈q 为真命题,所以綈p 与綈q 都是真命题,所以p 与q 都为假命题.所以选B.5.下列命题中既是p ∧q 形式的命题,又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是-4和1C .方程x 2+1=0没有实数根D .有两个角为45°的三角形是等腰直角三角形 答案 D解析 A 中的命题是条件复合的简单命题,B 中的命题是结论复合的简单命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型. 二、填空题6.由命题p :6是12的约数,命题q :6是24的约数.构成的“p ∨q ”形式的命题是______________________________,“p ∧q ”形式的命题是______________________________,“綈p ”形式的命题是________________________________.答案 6是12或24的约数 6是12和24的约数 6不是12的约数7.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的范围是________. 答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞), 即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).8.已知a 、b ∈R ,设p :|a |+|b |>|a +b |,q :函数y =x 2-x +1在(0,+∞)上是增函数,那么命题:p ∨q 、p ∧q 、綈p 中的真命题是________.答案 綈p 解析 对于p 当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.三、解答题9.判断下列复合命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边; (2)x =±1是方程x 2+3x +2=0的根; (3)A ⃘(A ∪B ).解 (1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ),因为p 真,则“非p ”假,所以该命题是假命题. 10.已知p :x 2+4mx +1=0有两个不等的负数根,q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.解 p :x 2+4mx +1=0有两个不等的负根⇔⎩⎪⎨⎪⎧Δ=16m 2-4>0-4m <0⇔m >12.q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数 ⇔0<m 2-m +1<1⇔0<m <1.(1)若p 真,q 假,则⎩⎪⎨⎪⎧m >12,m ≤0或m ≥1.⇒m ≥1.(2)若p 假,q 真,则⎩⎪⎨⎪⎧m ≤120<m <1⇒0<m ≤12综上,得m ≥1或0<m ≤12.。
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
高中数学常用逻辑用语目标认知考试大纲要求:1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2. 了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理。
知识要点梳理知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。
③“非p”与p的真假相反.注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。
可以类比于集合中“或”. (2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
知识点二:四种命题1. 四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.2. 四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.命题与集合之间可以建立对应关系,在这样的对应下,逻辑联结词和集合的运算具有一致性,命题的“且”、“或”、“非”恰好分别对应集合的“交”、“并”、“补”,因此,我们就可以从集合的角度进一步认识有关这些逻辑联结词的规定。
知识点三:充分条件与必要条件1. 定义:对于“若p则q”形式的命题:从逻辑观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于区分命题的条件p与结论q之间的关系.①若p q,则p是q的充分条件,q是p的必要条件;②若p q,但q p,则p是q的充分不必要条件,q是p的必要不充分条件;③若q p且p q,则p是q成立的必要不充分条件;④若既有p q,又有q p,记作p q,则p 是q的充分必要条件(充要条件).⑤若p q且q p,则p是q成立的既不充分也不必要条件.从集合的观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于判断p、q相应的集合关系.建立与p、q相应的集合,即:p A x p x成立,:q B x q x成立.若A B,则p是q的充分条件,若A B,则p是q成立的充分不必要条件;若B A,则p是q的必要条件,若B A,则p是q成立的必要不充分条件;若A B,则p是q成立的充要条件;若A B且B A,则p是q成立的既不充分也不必要条件.2. 理解认知:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.3. 判断命题充要条件的三种方法(1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用与;与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3) 利用集合间的包含关系判断,比如A B可判断为A B;A=B可判断为A B,且B A,即A B.如图:“”“,且”是的充分不必要条件.“”“”是的充分必要条件.知识点四:全称量词与存在量词1. 全称量词与存在量词全称量词及表示:表示全体的量词称为全称量词。
表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。
含有全称量词的命题,叫做全称命题。
全称命题“对M中任意一个x,有p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.(II)存在量词及表示:表示部分的量称为存在量词。
表示形式为“有一个”,“存在一个”, “至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。
含有存在量词的命题,叫做特称命题特称命题“存在M中的一个x,使p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.2. 对含有一个量词的命题进行否定(I)对含有一个量词的全称命题的否定全称命题p:,他的否定:全称命题的否定是特称命题。
(II)对含有一个量词的特称命题的否定特称命题p:,他的否定:特称命题的否定是全称命题。
注意:(1)命题的否定与命题的否命题是不同的.命题的否定只对命题的结论进行否定(否定一次),而命题的否命题则需要对命题的条件和结论同时进行否定(否定二次)。
(2)一些常见的词的否定:正面词等于大于小于是都是一定是至少一个至多一个否定词不等于不大于不小于不是不都是一定不是一个也没有至少两个规律方法指导1. 解答命题及其真假判断问题时,首先要理解命题及相关概念,特别是互为逆否命题的真假性一致.2. 要注意区分命题的否定与否命题.3. 要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,将二者相互对照可加深认识和理解.4. 处理充要条件问题时,首先必须分清条件和结论。
对于充要条件的证明,必须证明充分性,又要证明必要性;判断充要条件一般有三种方法:用集合的观点、用定义和利用命题的等价性;求充要条件的思路是:先求必要条件,再证明这个必要条件是充分条件.5. 特别重视数形结合思想与分类讨论思想的运用。
总结升华:1. 判断复合命题的真假的步骤:①确定复合命题的构成形式;②判断其中简单命题p和q的真假;③根据规定(或真假表)判断复合命题的真假.2. 条件“或”是“或”的关系,否定时要注意.类型二:四种命题及其关系2. 写出命题“已知是实数,若ab=0,则a=0或b=0”的逆命题,否命题,逆否命题,并判断其真假。
解析:逆命题:已知是实数,若a=0或b=0, 则ab=0, 真命题;否命题:已知是实数,若ab≠0,则a≠0且b≠0,真命题;逆否命题:已知是实数,若a≠0且b≠0,则ab≠0,真命题。
总结升华:1.“已知是实数”为命题的大前提,写命题时不应该忽略;2. 互为逆否命题的两个命题同真假;3. 注意区分命题的否定和否命题.类型三:全称命题与特称命题真假的判断总结升华:1. 要判断一个全称命题是真命题,必须对限定的集合M中每一个元素,验证成立;要判断全称命题是假命题,只要能举出集合M中的一个,使不成立可;2. 要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个,使成立,则这个特称命题就是真命题,否则就是假命题.类型四:充要条件的判断总结升华:1. 处理充分、必要条件问题时,首先要分清条件与结论;2. 正确使用判定充要条件的三种方法,要重视等价关系转换,特别是与关系.类型五:求参数的取值范围总结升华:由p 或q 为真,知p 、q 必有其一为真,由p 且q 为假,知p 、q 必有一个为假,所以,“p 假且q真”或“p 真且q 假”.可先求出命题p 及命题q 为真的条件,再分类讨论.总结升华:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的基本策略。
类型六:证明总结升华:1.利用反证法证明时,首先正确地作出反设(否定结论).从这个假设出发,经过推理论证,得出矛盾,从而假设不正确,原命题成立,反证法一般适宜结论本身以否定形式出现,或以“至多…”、“至少…”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.2. 反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.总结升华:1. 对于充要条件的证明,既要证明充分性,又要证明必要性,所以必须分清条件是什么,结论是什么。
2. 充分性:由条件结论;必要性:由结论条件.3.叙述方式的变化(比如是的充分不必要条件”等价于“的充分不必要要条件是”).三、典型例题选讲例1 写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)已知a ,b ,c 为实数,若0ac ,则20axbx c 有两个不相等的实数根;(2)两条平行线不相交;(3)若220xy,则x ,y 全为零.分析:写出一个命题的四种命题形式,关键是分清命题的条件与结论,把命题写成“如果…那么…”的形式,再根据四种命题的定义写出其他三种命题即可.解:(1)原命题是真命题;逆命题:若20ax bx c 有两个不相等的实数根,则0ac ,(假);否命题:若0ac ,则20axbx c 没有两个不相等的实数根,(假);逆否命题:若20axbx c 没有两个不相等的实数根,则0ac ,(真).(2)原命题形式可写成:若两条直线平行,则它们不相交,(真);逆命题:若两条直线不相交,则它们平行,(假);否命题:若两条直线不平行,则它们相交,(假);逆否命题:若两条直线相交,则它们不平行,(真).(3)原命题是真命题;逆命题:若x ,y 全为零,则220xy,(真);否命题:若220x y,则x ,y 不全为零,(真);逆否命题:若x ,y 不全为零,则220xy,(真).归纳小结:(1)本题考查了命题的四种形式,并能进行真假判断,强化对知识运用的灵活性.(2)要注意四种命题之间的等价关系,即原命题与逆否命题等价,否命题与逆命题等价.在判断一个命题是真命题时,要严格按照数学逻辑进行推理证明,而要说明它是假命题时,只需要举出一个反例即可.(3)在否定条件或结论时,要注意否定词语的使用.常见否定词语有:正面词语等于大于小于是都是至多有一个否定词语不等于不大于不小于不是不都是至少有两个例2 说明下列命题形式,指出构成它们的简单命题:⑴矩形的对角线垂直平分;⑵不等式220x x 的解集是2x x 或1x ;⑶43;⑷方程没有实数根.分析:根据命题中出现的逻辑联结词或隐含的逻辑联结词,进行命题结构的判断,其中解题的关键是正确理解逻辑联结词“且”、“或”、“非”的含义.解:⑴这个命题是“p q ”的形式,其中p :矩形的对角线互相垂直,q :矩形的对角线互相平分.⑵这个命题是“p q ”的形式,其中p :不等式220x x 的解集是2x x,q :不等式220xx 的解集是或1x x .⑶这个命题是“p q ”的形式,其中p :43,q :43.⑷这个命题是“¬p ”的形式,其中p :方程有实数根.归纳小结:⑴本题考查了含有逻辑联结词的命题结构,要求能正确理解逻辑联结词,并找出隐含的逻辑联结词,能根据命题形式分析问题、解决问题.⑵把简单命题合成为复合命题或把复合命题分解为两个简单命题并判断其真假是本节的重点之一,关键在于理解逻辑联结词的含义.熟悉真值表可以加快对含有逻辑联结词的命题的真假判断.⑶逻辑联结词中的“或”、“且”、“非”与日常用语中的“或”、“且”、“非”的意义是不完全相同的.如逻辑词中的“或”含有可以兼有之意,而生活中的“或”一般不可兼有的意思.例3(2008广东)已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是()正面词语至少有一个任意的所有的一定否定词语一个也没有某个某些一定不A .()p qB .p qC .()()p qD .()()p q 分析:本题只需要判断出命题p 和命题q 的真假,根据真值表进行判断即可.解:由题意可以判断命题p 是真命题,命题q 是假命题,所以命题p 是假命题,命题q 是真命题.只有()()p q 是真命题,故选D .归纳小结:(1)本题考查了命题的真假判断和真值表的使用,考查了逻辑判断的思辩能力和推理能力;(2)命题p q 的真假判断是“一真就真,全假为假”;命题p q 的真假判断是“一假就假,全真为真”;命题p 与p 的真假相反. 例4(2009年北京)“2()6k kZ ”是“1cos22”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:简易逻辑中充要条件的判断前提是先明确条件与结论,即弄清楚哪个是条件,哪个是结论,再根据条件分析出推式的关系,从而利用定义和推式得到结论.解:当2()6k k Z 时,1cos2cos 4cos332k,w 即p q .反之,当1cos22时,有2236k k k Z ,或2236kkkZ ,即qp .综上所述,“2()6k k Z ”是“1cos22”的充分不必要条件,故选A .例5(2008福建)设集合01x A xx ,03Bx x ,那么“m A ”是“m B ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题条件与结论的形式都是集合形式,只要理清集合之间的关系,按照充要条件与集合的对应关系即可作出判断.解:∵01A x x ,∴AB .故选A .归纳小结:(1)本题考查了充要条件的定义,这是高考试题题型的常见形式之一,可与其他考查内容综合.同时还考查了数学转化思想、合情推理能力.(2)充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,要注意以下几点:①确定问题的条件和结论;②尝试从条件推结论,结论推条件;③确定条件是结论的什么条件.也可以从命题体现的集合运算关系,判断出命题间的条件.在从条件推结论,结论推条件时,可以利用学过的定理、定义和公式直接做逻辑判断,或利用数轴或Venn图分析两个集合的关系判断出“p q ”和“qp ”的真假.例6(2007湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p 是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是()A.①④⑤B.①②④C.②③⑤ D.②④⑤分析:本题命题及其关系较多,如果直接解决则比较麻烦,可以用符号“”、“”等符号表示,简化题意,解决方便.解:由题意可知:pr ,且r p ,q r s q .所以sq ,①正确;p r q ,且q p ,②正确;r q ,③不正确;prs ,且s p ,④正确;r s ,⑤不正确.故选B .归纳小结:(1)本题考查了充分条件、必要条件、充要条件的概念及命题之间关系的转化,逆否命题的等价性,考查了逻辑思辩能力和转化思想.(2)在命题之间的充分条件、必要条件、充要条件的推导过程中,使用符号语言可以简化过程,降低思维量.例7 已知命题p :1123x ,命题q :222100xx mm ,若¬p 是¬q 的充分不必要条件,求实数m 的取值范围.分析:¬p 是¬q 的充分不必要条件转化为等价命题形式:q 是p 的充分不必要条件,利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,从而求出m 的取值范围.解:记1122103x Ax x x ,222100110Bx x x mmx mx m m∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件,即BA .∴012110mmm ,解得03m .所以实数m 的取值范围是03m.归纳小结:(1)本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,考查了转化思想的运用,强调了知识点运用的灵活性.(2)对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,在判断或利用两个命题的充要条件时,可以利用它们的等价式,即将命题转化为另一个等价形式的命题,一般可以利用逆否命题的等价形式:①若¬p ¬q ,即q p ,则p 是q 的必要条件,q 是p 的充分条件;②若¬p ¬q ,且¬q ¬p ,即q p ,且p q ,则p 是q 的必要不充分条件;③若¬q ¬p ,且¬p ¬q ,即p q ,且q p ,则p 是q 的充分不必要条件;④若¬p ¬q ,则p q ,即p 、q 互为充要条件;⑤若¬p ¬q ,且¬q ¬p ,即q p ,且p q ,则p 是q 的既不充分也不必要条件.例8(2009年海南、宁夏)有四个关于三角函数的命题:1p :x R ,221sin cos 222x x2p :x 、y R ,sin sin sin x y x y3p :0,x ,1cos2sin 2xx 4p :sin cos 2x y x y其中是假命题的有()A .1p ,4p B.2p ,4p C .1p ,3p D.2p ,4p 分析:若全称命题为真命题,必须对限定范围内的元素中的全体都成立;若特称命题是真命题,只需在限定范围中有一个元素满足条件即可.解:1p 是假命题,因为xR ,22sin cos122x x;2p 是真命题,如0x y 时成立;3p 是真命题,0,x ,sin 0x .∴21cos2sin sin sin 2xx x x ;4p 是假命题,如2x,2y时,sin cos x y ,但2xy.故选A .归纳小结:(1)本题考查了全称命题与特称命题的真假判断,同时也考查了对概念的转化能力和推理能力.(2)一般地说,全称命题与特称命题的真假判断方法是:①判定一个全称命题是真命题时,必须对限定的集合M 中的每一个元素x ,验证p x 成立即可;②判定一个全称命题是假命题时,只要能列举出集合M 中的一个元素0x ,使0p x 不成立即可;③判定一个特称命题是真命题时,只要在限定的集合M 中,至少能找到一个元素0x ,使0p x 成立即可,否则,这个特称命题就是假命题.例9(2007宁夏)已知命题p :1sin ,x R x ,则()A.1sin ,:x R x pB.1sin ,:x R x pC.1sin ,:xR xp D.1sin ,:xR xp 分析:对全称(特称)命题的否定是将其全称(存在)量词改为存在(全称)量词,再将结论否定.解:将变为,同时否定sin 1x ,可以得到1sin ,:x R x p .故选C .归纳小结:(1)本题考查了含有一个量词的命题的否定及否定词的运用,对学生的逻辑判断能力进行考查.(2)一般地,对于含有一个量词的全称命题的否定,有下面的结论:全称命题p :,xM p x ,它的否定¬p :0x M ,¬0p x .特称命题p :00,x M p x ,它的否定¬p :x M ,¬p x .要注意否定词的运用.例10 已知命题p :210xmx 有两个不等的负根,命题q :2442xm x 10无实数根.若命数学题p 与命题q 有且只有一个为真,求实数m 的取值范围.分析:对命题p 和命题q 的条件进行化简可得m 的范围,再对p 、q 的真假进行讨论,得到参数成立的条件,利用交集求出m 的取值范围.解:∵方程210x mx 有两个不等的负根,∴2400m m ,解得2m . ∵方程2442x m x 10无实数根,∴2162160m ,解得13m. 若命题p 为真,命题q 为假,则213m m m 或,得3m . 若命题p 为假,命题q 为真,则213m m,得12m . 综上所述,实数m 的取值范围为12m 或3m.归纳小结:(1)本题考查了方程求解的条件、命题真假的讨论、集合运算等知识,突出考查了分类讨论思想,和把命题真假转化为集合运算的能力.(2)根据问题条件求出命题所对应的集合范围,将命题的真假条件转化为集合的运算,即当命题为真时,则条件所对集合为原集合,当命题为假时,则条件所对应的集合为补集.两个命题的真假同时成立,则条件所对应的集合为两个集合的交集.在命题的真假性不能确定的前提下,应作分类讨论.四、本专题总结本专题内容主要是常用逻辑用语,包括命题与量词,逻辑联结词以及充分条件、必要条件与命题的四种形式.1.要理解命题的四种形式,并会运用逻辑推理判断真命题,利用举反例判断假命题.原命题与其逆否命题为等价命题,逆命题与否命题为等价命题,当一个命题的真假不易判断时,可考虑判断其等价命题的真假.2.理解逻辑联结词的含义,能正确分析命题形式,指出构成它们的简单命题,并会依据真值表判断命题的真假.3.注意一个命题的否定与命题的否命题是不同的,原命题的否定只否定结论,原命题的否命题既否定条件,又否定结论.4.判断充要条件的三种方法是:定义法、等价法、利用集合间的包含关系作判断.。