四年级下期奥数练习题(巧算周期二进制幻方数阵图平均数角度计数行船小数解应用题特殊思路)
- 格式:doc
- 大小:214.50 KB
- 文档页数:24
小学四年级下册奥数题100道及答案(完整版)1. 简便计算:25×125×4×8答案:(25×4)×(125×8)= 100×1000 = 1000002. 小明在计算加法时,把一个加数十位上的0 错写成8,把另一个加数个位上的6 错写成9,所得的和是532。
正确的和是多少?答案:把一个加数十位上的0 错写成8,所得的和就多了80;把另一个加数个位上的6 错写成9,所得的和就多了3。
所以正确的和是532 - 80 - 3 = 4493. 果园里有梨树、桃树和苹果树共1200 棵,其中梨树的棵数是苹果树的3 倍,桃树的棵数是苹果树的4 倍。
求梨树、桃树和苹果树各有多少棵?答案:苹果树:1200÷(1 + 3 + 4)= 150(棵);梨树:150×3 = 450(棵);桃树:150×4 = 600(棵)4. 某工厂一车间和二车间共有100 人,二车间和三车间共有97 人,一车间和三车间共有93 人。
三个车间各有多少人?答案:三个车间总人数:(100 + 97 + 93)÷2 = 145(人);一车间:145 - 97 = 48(人);二车间:145 - 93 = 52(人);三车间:145 - 100 = 45(人)5. 学校买了4 个足球和2 个排球,共用去162 元。
每个足球比每个排球贵3 元,每个足球和每个排球各多少元?答案:假设全买的足球,总价要多2×3 = 6 元,所以足球的单价:(162 + 6)÷(4 + 2)= 28(元);排球单价:28 - 3 = 25(元)6. 鸡兔同笼,共有头30 个,脚86 只。
求鸡、兔各有多少只?答案:假设全是鸡,兔:(86 - 30×2)÷(4 - 2)= 13(只);鸡:30 - 13 = 17(只)7. 一条公路长1200 米,在公路的两旁每隔20 米栽一棵树,两端都栽。
课 题 训练十二 周期问题【精品】教学内容把13名小朋友编成l 到13号,他们依次围成一个圆圈做游戏,现在从1号开始,每数到第3个人发一粒糖(每人只拿一次糖)那么,最后一个拿到糖的小朋友是 号. (提示:从1号开始,每数到第3个人发一粒糖,直到最后一人拿到糖,共数了3×13 = 39(次),一圈数13次,正好数了 39÷13 = 3(圈))答案:是13号紧接着1998后面写一串数字,写下的每个数字都足它前面两个数字的乘积的个位数字,例如,9×8 = 72,在8后面写2,8×2 = 16,在2后面写6……得到一串数字:199826…这串数字从1开始往右数,第1908个数字是(提示:根据题意,这串数字是1998 ︱262248 ︱262248︱…由此可知,在1098后面的数字是按262248循环出现的)答案:是6如果有2008个学生排成一列,从第一个学生开始,按l ,2,3,4,5,4,3,2,1,2,3,4,5,4,3,2,1,2,3……报数,则第2000个学生所报的数为多少? 答案:2一 点通1~1001各数按表中的格式排列,其中用一个正方形框出九个数,耍使这样框出的九个数之和等于(1) 1986;(2) 2529;(3) 1989,问是否能办得到?如果办不到,简单说明理由;如果办得到,请写出所框正方形里的最大的数和最小的数。
答案:(1)因为1986不能被9整除,所以无论怎样画方框,框中九个数之和都不可能等于1986;(2)易知2529÷9=281,注意能被9整除只是框中九数和等于2529的必要条件,因为被9整除的数未必都会成为框中九个数的和数,所以必须经过验证才熊确认。
由于框中九个数和的平均数为281,即若框出这九个数,中间一个数必为281,而281必须在第2列至第6列,第2行至第142行之内才可能成为所画方框的中间数.由于281÷7=40余1,即281落在第41行的第1列,因此281不可能作为九个数方框的中间数,所以不存在这样的方框,使框中数之和为2529;(3)接(2)中的分析方法,由于1989÷9=221,这只是存在所画方框内九数之和为l989的可能性,关键在确定方框中间数221的位置,而221÷7=31余4,所以211是在第32行的第4个数,其中,最大数是229.最小数是213.有甲、乙、丙堆苹果,分别有4,5,6个苹果现在按如下规则重新分配:每次都取出三堆中个数能被3整除的那堆,将这堆等分成三份,取其两份平均分给其他两堆;这样进行了2008次,那么这时甲堆有多少个苹果?答案:6三天打鱼,两天晒网,按照这样的方式,在100天内打鱼的天数是多少?有红球、白球和黑球共2001只,按红球5只,白球4只,黑球3只,红球5只……的顺序排列问最后一只球是什么颜色的?学习好学习好学习好…在客观世界中,存在着一些数、图形和事物的变化是周而复始循环出现的,我们把具有这种规律的问题称为周期问题。
练习题(1)巧算姓名_______ 1、(1)450÷25 (2)525÷25 (3)3500÷125(4)10000÷625 (5)49500÷900 (6)9000÷2252、(1)125×15×8×4 (2)25×24 (3)125×16(4)75×16 (5)125×25×32 (6)25×5×64×1253、(1)125×64+125×36 (2)64×45+64×71-64×16 (3)21×73+26×21+214、(1)(720+96)÷24 (2)(4500-90)÷45(3)6342÷21 (4)8811÷89(5)73÷36+105÷36+146÷36 (6)(10000-1000-100-10)÷105、(1)238×36÷119×5 (2)138×27÷69×50(3)624×48÷312÷8 (4)406×312÷104÷2036、(1)612×366÷183 (2)1000÷(125÷4)(3)(13×8×5×6)÷(4×5×6)(4)241×345÷678÷345×(678÷241)7、(1)23×27 (2)46×44(3)55×55 (4)91×998、(1)53×11 (2)39×11(3)65×11 (4)98×119、(1)353×11 (2)654×11 (3)896×11练习题(2)巧算姓名_______ 1、加减法巧算练习42+71+24+29+58 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)389-497+234 698-154+269+787699999+69999+6999+699+69+6200-(15-16)-(14-15)-(13-14)-(12-13)2-3+4-5+6-7+…-99+1002、乘除法巧算180×25 1375÷25 (1040-324-528)÷41125÷125 4505÷17÷5 384×12÷82352÷(7×8) 1200×(4÷12) 1250÷(10÷8)2250÷75÷3 636×35÷7 (126×56)÷(7×18)99×45 280×36+360×72 1999+999×999 287÷13-101÷13-82÷13 999×778+333×66694×95-91×98 993×994-992×995练习(3)二进制姓名_____________ 二进制就是只用0和1两个数字,在计数与计算时必须“满二进一”。
小学四年级下册数学奥数题(有答案)1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?路分成100÷10=10段,共栽树10+1=11棵。
2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。
3.一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?20÷1×1=20盆6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。
从发电厂到闹市区有多远?30×(250-1)=7470米。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?1×2×2=4千米9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个。
综合算式:【(25+10)×2+10】×2=160个10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。
问它几天可以长到4厘米?16÷2÷2=4(厘米),16-1-1=14(天)11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。
人教版小学数学四年级下册奥数题(定稿)第一篇:人教版小学数学四年级下册奥数题(定稿)四年级数学下期尖子生、奥数题(一)1、小明在计算一道三位数乘两位数的计算题时,把一个乘数个位上的数8错写成3,乘得的结果是2323,实际结果应该是2828,这两个乘数分别是多少?2、甲、乙、丙、丁四个朋友结伴春游,中午凑钱买了5袋蛋糕平均分着吃,甲拿出3袋蛋糕的钱,乙拿出2袋蛋糕的钱,丙、丁都没有拿钱,丁想了想,自己和丙应该每人出5元钱。
问:甲和乙各应收回多少钱?3、分装一批糖果,计划每只盒子装40块,要装15盒,现在只有12只盒子,要把这些糖装完,平均每只盒子比计划多装多少块糖?4、甲、乙、丙、丁四个人的平均年龄是28岁,四人中没有大于30岁的,那么年龄最小的可能是多少?5、两袋玻璃球,一袋有68 粒,另一袋有20粒,每次从多的一袋拿出6粒放入少的一袋,请问拿几次才能使两袋的玻璃球一样多?6、水果店有9箱一样重的橙子,如果从每个箱子里取出20千克,9箱里剩下的橙子正好等于原来4箱的重量,原来每箱橙子重多少千克?7、甲、乙两个车站共停了195辆汽车,如果从乙站开往甲站36辆,又从甲站开走45辆汽车,这时甲站停的汽车辆数是乙站的2倍,原来甲、乙两站各停放了多少辆汽车?8、两个数的和是126,小明在计算时误将其中一个加数个位上的0漏掉了,结果算出的和是45,求这两个数分别是多少?9、一列快车和一列慢车同时从相距468千米的甲、乙两地相对开出,快车每小时行驶65千米,经过4小时相遇,慢车每小时行驶多少千米?10、四年级一班的学雷锋小组到花园里栽花。
如果每人栽16棵,还有24棵没栽;如果每人栽19棵,还有6棵没栽。
一共有多少名同学?共需要栽多少棵花?第二篇:四年级数学上册奥数题四年级数学上册奥数题1、某五个数的平均值为60,如果将其中一数改为80,这五个数的平均值为70,改的这个数应是多少?2、30个同学平分一些练习本,后来又来了6人,大家重新分配,每人分得的练习本比原来少2本,这些练习本共有多少?3、甲乙两位同学带着同样多的钱去买日记本,乙买了8本,剩下的钱全部借给了甲,刚好使甲买到了12本。
四年级下册奥数题练习题
四年级下册奥数题练习题涵盖了多种数学概念和技巧,以下是一些适合四年级学生的奥数练习题:
1. 数字规律题:
- 观察下列数列:2, 4, 8, 16, ...,找出下一个数是什么?
2. 逻辑推理题:
- 如果所有的猫都怕水,而小明家的宠物是一只猫,那么小明家的宠物怕水吗?
3. 几何图形题:
- 一个正方形的边长是5厘米,求它的周长和面积。
4. 分数应用题:
- 一个班级有40名学生,其中3/5的学生喜欢数学,那么喜欢数学的学生有多少人?
5. 整数运算题:
- 计算:1234 + 5678 - 2346。
6. 组合问题:
- 有5个不同的球和3个不同的盒子,要将这些球放入盒子中,有多少种不同的放法?
7. 速度和时间问题:
- 一辆汽车以每小时60公里的速度行驶,如果它行驶了2小时,那么它行驶了多少公里?
8. 平均数问题:
- 一个班级有5名学生,他们的数学成绩分别是85, 90, 95, 88, 92,这个班级的平均数学成绩是多少?
9. 图形变换题:
- 一个长方形的长是10厘米,宽是5厘米,如果将这个长方形旋转90度,它的长和宽会有什么变化?
10. 概率问题:
- 一个袋子里有5个红球和3个蓝球,随机取出一个球,取出红球的概率是多少?
11. 数列求和题:
- 求等差数列1, 3, 5, 7, ..., 19的和。
12. 图形分割题:
- 一个圆形被分割成8个相等的部分,每部分的面积是多少?
这些练习题旨在帮助学生提升逻辑思维能力、数学运算技巧以及解决实际问题的能力。
通过这些练习,学生可以更好地理解数学概念,并在日常生活中应用数学知识。
苏教版小学四年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.三个连续自然数的乘积是120,它们的和是.3.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.4.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.5.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.6.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.7.在□中填上适当的数,使竖式成立.8.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.9.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.10.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?11.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.12.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.13.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.14.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.15.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.3.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.4.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.5.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.6.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.7.解:根据题干分析可得:8.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.9.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.10.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..11.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.12.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.13.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.14.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.15.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.。
四年级奥数题目30道一、四则运算类1. 计算:1 + 2 + 3+…+100解析:这是一个等差数列求和的问题。
等差数列求和公式为公式,其中公式是项数,公式是首项,公式是末项。
在公式中,公式,公式,公式。
则公式。
2. 25×32×125解析:把32拆分成公式,原式变为公式。
3. 999×999+1999解析:将1999拆分为公式,原式变为公式。
二、数字规律类4. 找规律填数:1,1,2,3,5,8,(),21解析:这是斐波那契数列,从第三项起,每一项都等于前两项之和。
所以括号里的数为公式。
5. 观察数列:1,4,9,16,25,()解析:这个数列是平方数数列,公式,公式,公式,公式,公式,括号里的数为公式。
三、植树问题类6. 在一条长200米的路的一侧种树,每隔5米种一棵,两端都种,一共要种多少棵树?解析:根据公式公式,间隔数公式总长公式间隔长度。
这里总长公式米,间隔长度公式米,间隔数为公式,则棵数为公式棵。
7. 一个圆形池塘周长是180米,每隔6米种一棵柳树,一共要种多少棵柳树?解析:圆形是封闭线路,棵数公式间隔数。
所以公式棵柳树。
四、年龄问题类8. 父亲今年40岁,儿子今年12岁,几年后父亲的年龄是儿子年龄的2倍?解析:设公式年后父亲年龄是儿子年龄的2倍。
可列方程公式,公式,移项得公式,公式。
9. 哥哥5年前的年龄和妹妹3年后的年龄相等,哥哥今年18岁,妹妹今年多少岁?解析:哥哥5年前的年龄为公式岁,因为哥哥5年前的年龄和妹妹3年后的年龄相等,所以妹妹3年后是13岁,妹妹今年公式岁。
五、鸡兔同笼问题类10. 鸡兔同笼,共有头30个,脚84只,问鸡兔各有多少只?解析:假设全是鸡,则脚有公式只,比实际少公式只。
每把一只兔当成鸡就少算公式只脚,所以兔有公式只,鸡有公式只。
11. 有蛐蛐和蜘蛛共10只,共有68条腿,蛐蛐有6条腿,蜘蛛有8条腿,问蛐蛐和蜘蛛各有多少只?解析:假设全是蛐蛐,则腿有公式条,比实际少公式条。
四年级奥数速算与巧算练习及答案奥数题中经常消失一些数量关系特别特别的题目,用一般的方法很难列式解答,有时根本列不出相应的算式来,所以就需要用到速算与巧算了。
下面就是我给大家带来的四班级奥数速算与巧算练习及答案,盼望能关心到大家!四班级奥数速算与巧算练习及答案一、(1+2+3+……+2021+2021+……+2+1)÷2021【分析】1+2+3+……+2021+2021+……+2+1)÷2021=2021×2021÷2021=2021二、123×9+82×8+41×7-2021【分析】40123×9+82×8+41×7-2021=41×3×9+41×2×8+41×7-2021=41×(27+16+7)-2021=2050-2021=40三、(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)解答:分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,假如根据常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观看两个扩号内的对应项,可以发觉2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500。
四、6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+ 6839-(4843-2847)解答:原式==6472-1996+5319-1996+9354-1996+6839-1996=6472+5319+9354+6839-1996 4=6472+5319+9354+6839-7984=(6472+5319+6839)+(9200+154)-(7900+84)=(6472+5319+6839)+(9200-7900)+(154-84)=(6472+5319+6839)+1300+70=18630+1370=20000四班级奥数速算与巧算练习及答案【例题1】计算9+99+999+9999【思路导航】这四个加数分别接近10、100、1000、10000。
人教版四年级下册数学奥数题带答案一、拓展提优试题1.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.2.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.3.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?4.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.5.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.6.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.7.如图是长方形,将它分成7部分,至少要画条直线.8.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.9.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.10.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.11.如果,那么=.12.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.15.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.16.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.17.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.18.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.20.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.21.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.22.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.23.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.24.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.25.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.26.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.27.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.28.如果今天是星期五,那么从今天算起,57天后的第一天是星期.29.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?30.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.31.是三位数,若a是奇数,且是3的倍数,则最小是.32.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.33.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.34.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.35.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.36.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.37.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.38.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.39.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.40.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.【参考答案】一、拓展提优试题1.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x 岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.2.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天3.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.4.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.5.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.6.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.7.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.8.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.9.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.10.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.11.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.12.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.15.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.16.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.17.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.18.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.19.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.20.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.21.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.22.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).23.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.24.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.25.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.26.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.27.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.28.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.29.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.30.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.31.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.32.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.33.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.34.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.35.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.36.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.37.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.38.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).39.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.40.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.。
四年级下册的奥数题一、四则运算类。
1. 计算:123×9 + 82×8 + 41×7 - 2009。
解析:- 先分别计算乘法部分:- 123×9 = 1107- 82×8 = 656- 41×7 = 287- 然后将它们的结果相加再减去2009:- 1107+656 + 287-2009=(1107+656+287)-2009- 1107+656+287 = 2050- 2050 - 2009=412. 计算:(2 + 4+6+...+2000)-(1 + 3+5+ (1999)解析:- 第一个括号里是首项为2,末项为2000,公差为2的等差数列。
- 项数n=(2000 - 2)÷2+1 = 1000。
- 根据等差数列求和公式S=(a_1 + a_n)n÷2,其和为(2 +2000)×1000÷2=1001000。
- 第二个括号里是首项为1,末项为1999,公差为2的等差数列,项数n=(1999 - 1)÷2+1 = 1000,其和为(1+1999)×1000÷2 = 1000000。
- 所以原式=1001000 - 1000000 = 1000二、数字规律类。
3. 找规律填数:1,1,2,3,5,8,(),21,34。
解析:- 这是斐波那契数列,从第三项起,每一项都等于前两项之和。
- 5+8 = 13,所以括号里应填13。
4. 有一列数:3,6,8,8,4,2,…从第三个数起,每个数都是它前面两个数乘积的个位数字,那么这列数的第2006个数是多少?解析:- 按照规则依次计算后面的数:- 3×6 = 18,个位数字是8;- 6×8 = 48,个位数字是8;- 8×8 = 64,个位数字是4;- 8×4 = 32,个位数字是2;- 4×2 = 8;- 2×8 = 16,个位数字是6;- 8×6 = 48,个位数字是8;- 6×8 = 48,个位数字是8;- 8×8 = 64,个位数字是4;- 8×4 = 32,个位数字是2;- 4×2 = 8……- 可以发现除去前两个数3、6,后面是以“8,8,4,2,8,6”这6个数为一个周期循环的。
课题有趣的数阵图【精品】教学内容在前面已经向同学们介绍了一些有趣的填数游戏,如:填算式数字谜等.下面再向大家介绍一类奇妙的填数游戏——数阵图,就是把一些数按照一定的规则,填在某一特定图形的规定位置上.这种图形,我们称它为数阵图.数阵图的种类繁多、绚丽多彩,这里我们将主要介绍两种数阵图,即封闭型数阵图和开放型数阵图,解答这类问题时,常用到以下知识:1.等差数列的求和公式:总和=(首项十末项)×项数÷22.计算中的奇偶问题:奇数±奇数=偶数偶数士偶数=偶数奇数±偶数=奇数3. 10以内数字有如下关系:(1) 1+9= 2+8= 3-7= 4+6(2) 1+8= 2+7= 3+6=4+5(3) 2+9=3+8= 4+7=5+6在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字;要会对基本解中的数进行适当调整,得到其他的解从而培养自己的观察能力、思维的灵活性和严密性..把1,2,3,4,5,6这六个数填在如图7-1的6个○中.使每条边上的三个数之和都等于9因为要求每条边上的三个数之和都等于9.这样三条边总和是9×3=27.而1+2+3+4+5+6=21,与总和差为27- 21=6,从图7-1不难看出;:计算三边总和时,甲、乙、丙三数重复累加了一次,即可知甲+乙+丙=6,故在1~6中只能选1,2,3 三数填人三顶点(甲、乙、丙)圆圈内,再将4,5,6按要求填入另外三个圆圈内,因而得出图7-2所示的基本解,若再将图7-2的基本解中的甲、乙、丙三个圆圈内的数字交换位置,又可得到5种不同填法,如图7-3所示,下面我们继续讨论例1问题的一般情况将1,2,3,4,5,6填在例l图7-1中○里,使每条边上的三个数之和相等,有几个基本解?共有多少种填法?通过对例l的解析,我们想到:每条边三数之和在相等的前提下,和的大小取决于三个顶点○内填什么数,如三顶点○内填入最小l,2,3三数,则每条边之和为[(1+2+3+4+5+6)+(1+2+3)]÷3 = 9;若三个顶点○内填人最大的数字4,5,6三个数,则每条边三数之和[(1+2+3+4+5+6)+(4+5+6)]÷3=12因此可得出:每条边三数之和在9~12之间。
练习题(1)巧算姓名_______ 1、(1)450÷25 (2)525÷25 (3)3500÷125(4)10000÷625 (5)49500÷900 (6)9000÷2252、(1)125×15×8×4 (2)25×24 (3)125×16(4)75×16 (5)125×25×32 (6)25×5×64×1253、(1)125×64+125×36 (2)64×45+64×71-64×16 (3)21×73+26×21+214、(1)(720+96)÷24 (2)(4500-90)÷45(3)6342÷21 (4)8811÷89(5)73÷36+105÷36+146÷36 (6)(10000-1000-100-10)÷105、(1)238×36÷119×5 (2)138×27÷69×50(3)624×48÷312÷8 (4)406×312÷104÷2036、(1)612×366÷183 (2)1000÷(125÷4)(3)(13×8×5×6)÷(4×5×6)(4)241×345÷678÷345×(678÷241)7、(1)23×27 (2)46×44(3)55×55 (4)91×998、(1)53×11 (2)39×11(3)65×11 (4)98×119、(1)353×11 (2)654×11 (3)896×11练习题(2)巧算姓名_______ 1、加减法巧算练习42+71+24+29+58 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)389-497+234 698-154+269+787699999+69999+6999+699+69+6200-(15-16)-(14-15)-(13-14)-(12-13)2-3+4-5+6-7+…-99+1002、乘除法巧算180×25 1375÷25 (1040-324-528)÷41125÷125 4505÷17÷5 384×12÷82352÷(7×8) 1200×(4÷12) 1250÷(10÷8)2250÷75÷3 636×35÷7 (126×56)÷(7×18)99×45 280×36+360×72 1999+999×999 287÷13-101÷13-82÷13 999×778+333×66694×95-91×98 993×994-992×995练习(3)二进制姓名_____________ 二进制就是只用0和1两个数字,在计数与计算时必须“满二进一”。
即每两个相同的单位组成一个和它相邻的较高的单位。
二进制的最大特点是:每个数的各个数位上只有0或1两种状态。
二进制与十进制数之间可以互相转化。
1、将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。
将十进制数改写成二进制数的过程,正好相反。
2、十进制数改写成二进制数的常用方法是:二除取余,顺次倒写。
3、二进制数的计算法则:(1)加法法则:0+0=0 0+1=1 1+0=1 1+1=10(2)乘法法法则:0×0=0 0×1=0 1×0=0 1×1=11、把下列二进制数分别改写成十进制数。
(1)11(2)(2)101(2)2、把二进制数改写成十进制数。
(1)100(2) (2)1001(2)(3)3110(2)3、把十进制数改写成二进制数。
(1)12(10)(2)15(10)(3)384、把二进制数改成十进制数,把十进制数改成二进制数。
(1)1000(2) (2)78(10)(3)1110(2) 5、计算:10(2)+100(2)110(2)+11(2)100(2)-11(2)1011(2)+11(2)101(2) +10(2)1110(2)+11(2)1101(2)×11(2)110(2)×10(2)1011(2)×11(2)1111(2)÷101(2)11100(2) ÷100(2)10010(2)÷11(2)111(2)-110(2)11010(2)-1111(2)101(2)×110(2)1000011(2)÷11(2)练习题(4)周期问题姓名_______ 周期问题:1、节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯…这样排下去。
问:(1)第100盏灯是什么颜色?(2)前150盏彩灯中有多少盏蓝灯?2、今天是星期五,从今天算起,第300天是星期几?3、今天是星期二,再过100天是生星期几?4、如果今年的3月1日是星期一,那个今年的10月1日是星期几?5、66666…6÷7的余数是多少?6、7×7×7×…×7 相乘的个位数字是多少?7、一些同学按一定的规律排成一行:第一个是男生,接着是三个女生,然后是两个男生,一个女生。
按照这个规律,排在第90位的同学是男生还是女生?前90个同学生中共有多少个女生?8、下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。
问:这串数中第88个数是几?628088640448…综合练习1、找规律填数。
(1)4,7,10,13,(),…(5)84,72,60,(),(),…(2)2,6,18,(),(),…(6)625,125,25,(),(),…(3)1,4,9,16,(),…(7)2,6,12,20,(),()…(4)3,7,10,17,27,()(8)11,12,14,18,26,()(9)2,5,11,23,47,(),()(10)12,15,17,30,22,45,(),()(11)2,8,5,6,8,4,(),( )2、在等差数列2,5,8,11,14,…中,101是第()项。
3、计算下面各题。
(1)2+4+6+…+200 (2)17+19+21+…+39(3)5+8+11+14+…+50 (4)3+10+17+24+…+1014、甲队有45人,乙队有75人。
甲队要调入乙队多少人,乙队人数才是甲队的3倍?5、把下面的十进制的数化成二进制的数(1)23=(2)76=(3)111=6、把下面的二进制的数化成十进制的数(1)11112 =(2)1010102 =(3)11001112=7、巧算(1)237+456+344+163 (2)976-23-373(3)600÷7×7 (4)35×98练习题(5)幻方 姓名_______幻方专项练习1、用9到17这9个数编排一个三阶2、在图中6个空格内分别填入不同幻方,它的幻和是( )。
的数,使它成为一个三阶幻方。
第1题第2题3、在方格内填入适当的数,使它成为4、在一个三阶幻方中,已填入的两个数是一个三阶幻方,幻和是30。
21和27,那么?所在空格内,应该填的数是( )。
第3题第4题5、填入适当的数,使下面两个三阶幻方成立。
幻和 = 306、用9个连续的自然数,编排一个三阶幻方,使它的幻和是42。
第6题综合练习1、有一列数,1、4、2、8、5、7、1、4、2、8、5、7、、、、、、、(1)第2009个数是多少?(2)这列数字中,“2”会出现多少次(3)这2009个数相加的和是多少?2、求2×2×…×2(2008个2相乘)+ 3×3×…×3(2009个3相乘)的个位数字3、把从2开始的自然数按下列方法编号排成五列:一二三四五2 3 4 59 8 7 610 11 12 1317 16 15 14………………………………问2013应该在第几列?4、20XX年9月8日是星期二,20XX年9月27日是星期几?5、鸡兔同笼,一共有头35个,有足共130只,问:鸡兔各有多少只?6、46名同学去划船,一共乘坐10只船,其中大船坐6人,小船坐4人,问大船和小船各几只?7、猴王分桃子。
如果每只猴分5个,就还差2个;如果每只猴分4个,就还剩12个。
一共有多少个桃?8、某车间工人每天上班时间相同,第一天生产A种零件,每小时平均做32个;第二天生产B种零件,每小时平均做20个;A种零件比B种零件多生产96个,问两种零件各做了多少个?练习题(6)数阵图姓名_______ 专项练习1、将1~7这七个数分别填入左下图中的圆圈里,使每条直线上的三个数之和都等于12。
如果每条直线上的三个数之和等于10,那么又该如何填?第1题第2题2.将1~9这九个数分别填入右上图中的圆圈里(其中9已填好),使每条直线上的三个数之和都相等。
如果中心数是5,那么又该如何填?3.将1~9这九个数分别填入右图的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)4.将3~9这七个数分别填入左下图的圆圈里,使每条直线上的三个数之和等于20。
5.将1~11这十一个数分别填入右上图的圆圈里,使每条直线上的三个数之和相等,并且尽可能大。
6.将1~9这九个数分别填入下图的圆圈里,使得每条直线上四个数之和都相等。
综合练习1、木材厂运一批木头,第一次运出总数的一半多3吨,第二次运出剩下的一半又7吨,还剩下4吨。