MATLAB实践—QPSK系统的误码率和星座图仿真
- 格式:doc
- 大小:88.00 KB
- 文档页数:7
QPSK通信系统性能分析与MATLAB仿真讲解QPSK(Quadrature Phase Shift Keying)是一种调制方式,常用于数字通信中的短波通信和卫星通信等场景。
在QPSK通信系统中,将每个二进制位编码为相位不同的信号,通常使用正交载波来实现。
为了分析和评估QPSK通信系统的性能,可以使用MATLAB进行仿真。
下面将具体讲解如何进行QPSK通信系统性能分析和MATLAB仿真。
首先,我们需要定义一些基本参数。
QPSK调制是基于二进制编码的,因此将要发送的数据转换为二进制比特流。
可以使用MATLAB中的函数来生成二进制比特流,如`randi([0,1],1,N)`,其中N是比特流的长度。
在这里,可以自行选择比特流的长度。
接下来,需要将二进制比特流分组为2比特一组,以便编码为相位信息。
可以使用MATLAB中的函数来进行分组,如`reshape(bit_stream,2,length(bit_stream)/2)'`,其中bit_stream是二进制比特流。
这里的重点是要确保二进制比特流的长度为2的倍数。
然后,将每组2比特编码为相位信息。
QPSK调制使用4个相位点来表示4种可能的组合,通常用0、π/2、π和3π/2来表示这些相位点。
可以使用MATLAB中的函数生成这些相位信息,如`phase_data =[0,pi/2,pi,3*pi/2]`。
接下来,通过幅度和相位信息生成QPSK信号。
可以使用MATLAB中的函数来生成QPSK信号,如`qpsk_signal = cos(2*pi*f*t+phase)`,其中f是载波频率,t是时间,phase是相位信息。
然后,添加噪声到QPSK信号中以模拟实际通信环境。
可以使用MATLAB中的函数来添加噪声,如`noisy_signal =awgn(qpsk_signal,SNR)`,其中SNR是信噪比。
最后,解调接收到的信号以恢复原始数据。
可以使用MATLAB中的函数来解调信号,如`received_bits = reshape(received_signal,[],2) > 0`。
QPSK已调信号生成一、QPSK介绍QPSK是英文Quadrature Phase Shift Keying 的缩写,意为正交相移键控,是一种数字调制方式。
其有抗干扰性强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
二、实验平台和实验内容1、实验平台本实验是MATLAB环境中生成基本QPSK已调信号,只需要MATLAB12.0。
2、实验内容1.基带信号为周期127bits伪随机序列,信息比特速率:20kbps,载波频率:20kHz(速率及频率参数现场可调整);2.在MATLAB环境中编写M代码搭建QPSK调制系统模型;3.观测基带时域波形、已调信号时域波形;4.观测基带发射星座图;5.观测已调信号的功率谱(优先)或频谱;三、实现框图及其原理分析1、原理分析及其结构QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。
载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。
相应的E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。
每一个可能的相位值对应于一个特定的二位组。
例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。
Sin(t)=2E/tcos[2]4/+∏i]0<=t<=T)1-ft∏2(其中,i=1,2,3,4。
2、框图四、实验结果与分析图一基带信号为周期为127bits的伪随机序列。
图二:已调信号时域波形带宽为7104 HzB点信号的星座图映射,00、01、10、11组合分别映射成-1-j,-1+j,1-j,1+j。
五、实验源码clc;clear all;Num=127;data=randi([0 1],1,Num);figure(1)plot(data)title('基带时域波形');f=20000; %载波频率20kHzRb=20000; %码元速率20kHzTs=1/f;Ns=8000;sample=1*Ns; %每个码元采点数为8000,采样频率为8000*20kHz N=sample*length(data)/2; %总采样点数data1=2*data-1; %正/负极性变换,产生二进制不归零双极性码元%-------------------------将信息源分成两路,分别对信号进行抽样-------------data_1=zeros(1,N); %定义一个长度为N的空数据data_1for i1=1:Num/2data_1(sample*(i1-1)+1:sample*i1)=data1(2*i1-1); %对奇数码元进行采样enddata_2=zeros(1,N);for i2=1:Num/2data_2(sample*(i2-1)+1:sample*i2)=data1(2*i2); %对偶数码元进行采样enda=zeros(1,N);b=zeros(1,N);for j1=1:Na(j1)=cos(2*pi*f*(j1-1)*Ts/Ns); %对余弦载波抽样每个周期采N个点 b(j1)=-sin(2*pi*f*(j1-1)*Ts/Ns); %对正弦载波抽样每个周期采N个点end%---------------------------调制---------------------------data_a=data_1.*a; %a路用余弦调制data_b=data_2.*b; %b路用正弦调制data_c=data_a+data_b;figure(2)subplot(3,1,1)plot(data_a)title('QPSK已调实部时域信号');subplot(3,1,2)plot(data_b)title('QPSK已调虚部时域信号');subplot(3,1,3)plot(data_c);title('QPSK已调信号时域波形');%---------------------绘制调制后波形的频谱图-------------------data_modul1= data_1(1:502000)+1i*data_2(1:502000);data_modul=data_a+1i*data_b;%调制后总的信号figure(3)plot(data_modul1,'o');axis([-2 2 -2 2]);title('星座图');figure(4)QPSK=10*log10(abs(fftshift(fft(data_modul,2048))).^2); %信号的频率值SFreq=linspace(-Rb*sample/2,Rb*sample/2,length(QPSK)); %信号的频率谱范围plot(SFreq,QPSK);title('QPSK已调信号频谱图');xlabel('Frequency');ylabel('Amplitude');hold on;。
QPSK通信系统的性能分析与matlab仿真1 绪论在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。
1.1 研究背景与研究意义1.1.1 研究背景在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。
高新技术层出不穷。
随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中只要通过简单的鼠标操作,就可以构造出复杂的系统。
Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
1.1.2研究意义通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。
(完整)QPSK系统的误码率和星座图仿真编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)QPSK系统的误码率和星座图仿真)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)QPSK系统的误码率和星座图仿真的全部内容。
目录一、课题内容………………………………………..…。
……。
..1二、设计目的……………………………………….。
…。
…。
…。
1三、设计要求…………………………………………………。
.1四、实验条件................................................。
....。
(1)五、系统设计....................................................。
.。
.. (2)六、详细设计与编码……………………………。
……………。
.41. 设计方案………………………………。
…….…..……。
42。
编程工具的选择……………………………………。
…。
43。
程序代码…………………………………….。
.………。
54. 运行结果及分析 (8)七、设计心得………………………………………。
……….。
9八、参考文献……………………………….………。
………。
10一、课题内容基于MATLAB或C语言模拟仿真OFDM通信系统。
主要功能:1、搭建基带OFDM系统仿真平台,实现OFDM信号体制与解调;2、能够画出输入数据与输出数据的星座图;3、能在不同信噪比信道的情况下,对信号进行误码分析。
3、能够和理论误码率公式比较二、设计目的1、综合应用《Matlab原理及应用》、《信号与系统》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念;2、培养学生系统设计与系统开发的思想;3、培养学生利用软件进行通信仿真的能力。
说明1.课程设计任务书由指导教师填写,并经专业学科组审定,下达到学生。
2.学生根据指导教师下达的任务书独立完成课程设计。
3.本任务书在课程设计完成后,与论文一起交指导教师,作为论文评阅和课程设计答辩的主要档案资料。
一、课程设计的主要内容和基本要求⑴产生等概率且相互独立的二进制序列,画出时域和频域的波形;⑵产生均值为0,方差为1的加性高斯随机噪声;⑶进行OQPSK调制,画出波形;⑷进行误码率分析,并与理论值比较;⑸解调OQPSK,画出眼图。
⑹画出星座图二、课程设计图纸内容及张数本实验没有规定的图纸内容,在实验结果中附有本次实验的结果图三、课程设计应完成的软硬件的名称、内容及主要技术指标MATLAB四、主要参考资料通信原理基础(北京邮电大学出版社)通信原理(国防工业出版社)樊昌信曹丽娜编著信号与系统——MATLAB综合实验(高等教育出版社)MATLAB7辅助信号处理技术与应用(电子工业出版社)飞思科技产品研发中心编著OQPSK通信系统的matlab仿真分析㈠设计目的和意义1.对oqpsk进行调制和解调,通过MATLAB编程,掌握MATLAB的使用,熟练掌握OQPSK的调制原理,解调原理。
2.对OQPSK通信系统进行matlab仿真分析,分析起信噪比和差错率。
为现实中通信系统的调制,解调,及信道传输进行理论指导。
㈡设计原理1.OPSK的调制它和有着同样的相位关系,也是把输入码流分成两路,然后进行正交调制。
随着数字通信技术的发展和广泛应用,人们对系统的带宽、频谱利用率和抗干扰性能要求越来高。
而与普通的比较,交错正交相移键控的同相与正交两支路的数据流在时问上相互错开了半个码元周期,而不像那样I、Q两个数据流在时间上是一致的(即码元的沿是对齐的)。
由于O信号中的I(同相)和Q(正交)两个数据流,每次只有其中一个可能发生极性转换,所以,每当一个新的输入比特进入调制器的I或Q信道时,其输出的O信号中只有0°、+90°三个相位跳变值,而根本不可能出现180°相位跳变。
QPSK通信系统性能分析与MATLAB仿真QPSK是一种常见的调制方式,广泛应用于数字通信系统中。
在QPSK通信系统中,传输的数据被分为两个相互正交的子载波进行调制,每个子载波可以携带2位二进制数据。
本文将对QPSK通信系统的性能进行分析,并使用MATLAB进行仿真。
首先,我们需要了解QPSK调制的基本原理。
在QPSK中,发送端的数据被分为两个二进制数据流,分别称为I路和Q路。
通过调制器对I路和Q路进行调制生成正交的载波信号,然后进行并行传输。
接收端接收到信号后,通过对两路信号进行解调,并将解调后的数据进行重新组合,得到原始数据。
为了分析QPSK通信系统的性能,我们需要考虑到噪声的影响。
在传输过程中,信号会受到各种噪声的干扰,如加性高斯白噪声。
这些噪声会使得接收信号误码率增加。
我们可以使用误码率(Bit Error Rate)来评估系统的性能,误码率是指发送的比特和接收到的比特不一致的比率。
为了进行性能分析,我们可以进行理论分析和仿真两个步骤。
在理论分析中,我们可以通过理论计算得到系统的误码率曲线。
而在仿真过程中,我们可以通过编写一段MATLAB代码来模拟整个通信系统,然后进行模拟传输并统计误码率。
在仿真过程中,我们首先需要生成发送端的数据流。
这可以通过随机生成0和1的序列来实现。
然后,我们将数据流分为I路和Q路,并对每一路进行调制生成载波信号。
接下来,我们引入噪声,在信号上添加高斯白噪声。
然后,我们将接收到的信号进行解调,并将解调后的数据重新组合。
最后,我们统计误码率和信噪比(Signal-to-Noise Ratio)之间的关系,并绘制性能曲线。
通过MATLAB进行仿真,我们可以调整信噪比,并观察误码率的变化。
通过仿真实验,我们可以得到系统在不同信噪比下的性能表现。
通过比较理论结果和仿真结果,我们可以验证我们的分析是否准确。
总结起来,QPSK通信系统的性能分析是一个重要的研究课题。
通过理论分析和MATLAB仿真,我们可以得到系统在不同信噪比下的性能表现,并且验证我们的分析是否准确。
[键入文字]通信工程专业《通信原理》课程设计题目 QPSK的误码率仿真分析学生姓名谭夕林学号 **********所在院(系)陕西理工学院物理与电信工程学院专业班级通信工程专业 1102 班指导教师魏瑞完成地点陕西理工学院物理与电信工程学院实验室2014年 3 月 12 日通信工程专业课程设计任务书院(系) 物理与电信工程学院专业班级通信工程专业1102班学生姓名谭夕林一、课程设计题目 QPSK的误码率仿真分析二、课程设计工作自 2014 年 2 月 24 日起至 2014 年 3 月 16 日止三、课程设计进行地点: 物理与电信工程学院实验室四、课程设计的内容要求:利用仿真软件等工具,结合所学知识和各渠道资料,对QPSK在高斯通道下的误码率进行研究分析指导教师魏瑞系(教研室)通信工程系接受任务开始执行日期2014年2月24日学生签名谭夕林QPSK的误码率仿真分析谭夕林陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:魏瑞【摘要】为实现QPSK应用到无线通信中,该文对QPSK系统性能进行了理论研究。
介绍了QPSK调制解调原理,对高斯白噪声信道的系统性能进行了研究,分析对比了在高斯白噪声信道下的系统误码性能。
为基于副载波QPSK无线激光通信系统的研究奠定了理论基础。
使用MATLAB中M语言完成QPSK的蒙特卡罗仿真,得出在加性高斯白噪声的信道下,传输比特错误率以及符号错误率。
并将比特错误率与理论值相比较,并得出关系曲线。
使用simulink搭建在加性高斯白噪声信道下的QPSK调制解调系统,其中解调器使用相关器接收机。
并计算传输序列的比特错误率。
通过多次运行仿真得到比特错误率与信噪比之间的关系。
【关键词】: QPSK,误码率,仿真,星座图【中图分类号】 TN702 [文献标志码] AQPSK BER simulation analysisTan Xilin(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:Wei Rui[Abstract]For the application of the QPSK (Phase-Shift-Keying) to the wireless laser communication, this paper emphasizes the system of QPSK's performance, theoretically. In the paper, the principle of the QPSK's modulation and demodulation were introduced in brief and the performance of the system at white Gaussian noise (AWGN) channel was also analyzed carefully. The above results provide the theoretical foundation for the wireless laser communication system based on the QPSK with e the MATLAB language to complete Monte Carlo simulation of QPSK, and to obtain the transmission sequence bit error rate and symbol error rate in the additive white Gaussian noise channel, comparing it with the theoretical value, then get curve. The second aspect is to learn how to use Simulink and the functions and principles of various modules. Then we use Simulink to create the model of QPSK through additive white Gaussian noise channel. And take the advantage of the Correlator receiver to complete the operation of demodulation. Then calculate the transmission sequence bit error rate. By running the simulation repeatedly, we can get the relationship between the bit error rate and SNR.Keywords: QPSK, BER, simulation, constellation目录摘要 (3)Abstract (4)一绪论 (6)1.1 课题背景及仿真 (6)1.1.1QPSK系统的应用背景简介 (6)1.1.2QPSK实验仿真的意义 (6)1.1.3仿真平台和仿真内容 (6)二系统实现框图和分析 (7)2.1QPSK调制部分 (7)2.2QPSK解调部分 (8)三QPSK特点及应用领域 (9)3.1QPSK特点 (9)3.2误码率 (10)3.3QPSK时域信号 (10)3.4扩充认知QPSK-OQPSK (10)3.5QPSK的应用领域 (11)四使用simulink搭建QPSK调制解调系统 (12)4.1信源产生 (12)4.2QPSK系统理论搭建 (13)五仿真模型参数设置及结果 (15)5.1仿真附图及参数设置 (15)5.2仿真结果 (16)5.3误码率曲线程序及其仿真结果 (17)六仿真结果分析 (19)七总结与展望 (20)致谢 (21)参考文献 (21)一.绪论1.1课题背景及仿真:1.1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
PSK理论误码率与实际误码率MATLAB仿真程序%%pskclc;clear all;close all;nsymbol = 1e6;%%每种信噪比下符号数的发送符号数data = randint(1,nsymbol,[0,1]);%%产生1行,nsymbol列均匀分布的随机数0,1bpsk_mod = 2*data-1;%%调制,0转化为-1;1转化为1spow = norm(bpsk_mod).^2/nsymbol;%%求每个符号的平均值,其中norm是求向量2范数函数SNR_dB = 1:10;%%%信噪比dB形式SNR = 10.^(SNR_dB/10);%%信噪比转化为线性值for loop= 1:length(SNR)sigma = sqrt(spow/(2*SNR(loop)));%%%根据符号功率求噪声功率s_receive = bpsk_mod+sigma*(randn(1,length(bpsk_mod))+j*randn(1,lengt h(bpsk_mod)));%%添加复高斯白噪声bpsk_demod = (real(s_receive)>0);%%%解调data_receive=double(bpsk_demod);%%接收数据,转化为[err,ser(loop)] = symerr(data,data_receive);%误码率endser_theory = qfunc(sqrt(2*SNR));%理论误码率,注意Q函数和误差函数的对应关系semilogy(SNR_dB,ser,'-k*',SNR_dB,ser_theory,'-bo');title('BPSK信号在AWGN信道下的性能');xlabel('信噪比/dB');ylabel('误码率');legend('误码率','理论误码率');grid on;。
QPSK(Quadrature Phase Shift Keying)调制是一种常见的数字调制方式,它可以使信号在传输时能够更有效地利用频谱资源。
在数字通信系统中,QPSK调制被广泛应用于各种应用场景中,因其具有高效利用频谱和抗干扰能力强等特点而备受青睐。
在QPSK调制中,误码率是一个非常重要的性能指标,它直接影响到系统的可靠性和稳定性。
对QPSK调制的误码率曲线进行分析和绘制是十分重要的。
1. QPSK调制原理QPSK调制是一种采用正交载波的调制方式,它将两路独立的数字信号分别调制到正交的载波上,然后再将两路调制信号叠加在一起进行传输。
在QPSK调制中,每个符号携带两个比特信息,分别代表实部和虚部,因此可以实现在单位频谱带宽内传输两倍的数据量。
QPSK 调制的信号点图形式如下图所示:(此处插入QPSK调制信号点图)2. QPSK调制误码率QPSK调制的误码率是指在传输过程中由于信道噪声或其他干扰因素引起的信号错误率。
误码率通常用比特错误率(BER)来表示,即单位时间内传输的比特中出现错误的比例。
QPSK调制的误码率曲线是描述在不同信噪比条件下系统性能的重要指标,它反映了系统在不同信噪比条件下的可靠性和稳定性。
通常情况下,我们可以通过理论分析或仿真实验来得到QPSK调制的误码率曲线。
3. Matlab绘制QPSK调制误码率曲线Matlab是一款功能强大的科学计算软件,它提供了丰富的绘图函数和工具,可以方便地进行误码率曲线的绘制。
在Matlab中,我们可以利用通信工具箱中的相关函数和工具来实现QPSK调制误码率曲线的分析和绘制。
下面我们将结合实际代码示例来演示如何使用Matlab 进行QPSK调制误码率曲线的绘制。
```matlab设置信号点数目M = 4;设置信噪比范围EbN0dB = 0:10;EbN0 = 10.^(EbN0dB/10);计算误码率ber = berawgn(EbN0,'qam',M);绘制误码率曲线semilogy(EbN0dB,ber,'linewidth',2);grid on;xlabel('Eb/N0 (dB)');ylabel('Bit Error Rate');title('QPSK Modulation BER Curve');```4. 结论通过Matlab的仿真分析和绘图,我们可以得到QPSK调制的误码率曲线。
通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现学生学号:学生姓名:所在班级:任课教师:2016年10月25日目录1.1QPSK系统的应用背景简介 (3)1.2 QPSK实验仿真的意义 (3)1.3 实验平台和实验内容 (3)1.3.1实验平台 (3)1.3.2实验内容 (3)二、系统实现框图和分析 (4)2.1、QPSK调制部分, (4)2.2、QPSK解调部分 (5)三、实验结果及分析 (6)3.1、理想信道下的仿真 (6)3.2、高斯信道下的仿真 (7)3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8)总结: (10)参考文献: (11)附录 (12)1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
在19世纪80年代初期,人们选用恒定包络数字调制。
这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。
19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
1.2 QPSK实验仿真的意义通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。
了解QPSK的实现方法及数学原理。
并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。
同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。
理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。
QPSK 在AWGN 信道下的仿真实验一、基本原理1.1QPSK 简介在数字相位调制中,M 个信号波形可表示为()()()()22(1)/Re 2()cos 2122()cos 1cos 2()sin (1)sin 2c j f tj m M m c c c s t g t e e g t f t m M g t m f t g t m f tM Mππππππππ-⎡⎤=⎣⎦⎡⎤=+-⎢⎥⎣⎦=--- (m=1,2,…,M ,0t T ≤≤)式中,g(t)是信号脉冲形状,2(1)/m m M θπ=- (m=1,2,…,M )是载波的M 个可能的相位,用于传送发送信息。
这些信号波形具有相等的能量,即 220011()()22TT m g s t dt g t dt εε===⎰⎰ 而且这些信号波形可以表示为两个标准正交信号波形1()f t 和2()f t 的线性星座图合,即1122()()()m m m s t s f t s f t =+,式中1()()cos 2c f t t f t π=2()()sin 2c f t t f t π=且二维向量1,2m m m s s s ⎡⎤=⎣⎦为22((1)m s m m M M ππ⎤=--⎥⎥⎦(m=1,2,…,M ) 其中当M=4时就是本文要讨论的4PSK (QPSK ),QPSK 的载波相位有四种取值,每种取值代表两比特的信号。
随着信号的改变,幅度恒定的载波信号的相位在四种取值间跳变。
这四个相位的取值为间隔相等的值,比如,0,/2,,3/2πππ,每一个相位值对应于唯一的一对消息比特。
有一种变形,称为/4QPSK π-是通过在每一个符号间隔的载波相位中引入附加的/4π相移来使符号同步变得容易些。
QPSK 信号可以表示为:2()cos (1)2s QPSK c s E S t t i T πω⎡⎤=+-⎢⎥⎣⎦ 0S t T ≤≤,i=1,2,3,4 式中S E 为单位符号的信号能量,即0S t T ≤≤时间内的信号能量;c ω为载波角频率,s T 为符号持续时间。
QPSK通信系统的Monte Carlo仿真实验报告2012级通信二班贾师师201200121052 一.【实验目的】1.1提高独立学习的能力1.2培养发现问题,解决问题,分析问题的能力1.3学习Matlab的使用1.4掌握4PSK通信系统的Monte Carlo仿真方法1.5掌握4PSK通信系统的组成原理1.6比较编码信号与未编码信号在随机信道中的传输,加深对纠错编码原理的理解。
二.【实验内容】完成对QPSK通信系统的差错概率的Monte Carlo仿真。
三.【实验原理】1.调制解调原理一组M载波相位调制信号波形的一般表示为:是发送滤波器的脉冲形状,A为信号的幅度。
将式中的余弦函数的相角看成两个相角的和,可以将上表示为将归一化,则函数能量、A可归一化到1。
这样一个相位调制信号可以看做两个正交载波,起始幅度取决于在每个信号区间内的相位,因此,数字相位调制信号在几何上可以用和的二维向量来表示,即同样,将加性噪声分解成两路,加入噪声后的二维向量为判决方法:1)最大投影法:最佳检测器将接收到的信号向量r投射到M个可能的传输信号向量之一上去,并选取对应于最大投影的向量。
我们在试验中用的是将r向量与作为标准的s向量作向量积后选取最大者的方法。
2)最小距离法:我们在实验中实现最小距离法判决的方法是求出r向量的终点与作为标准的s向量的终点后选取最小者的方法。
由于二相相位调制与二进制PAM 是相同的,所以差错概率为式中是每比特能量。
4PSK 可以看作是两个在正交载波上的二相相位调制系统,所以1个比特的差错概率与二相相位调制是一致的。
2.信道纠错编码在随机信道中,错码的出现是随机的,且错码之间是统计独立的。
由高斯白噪声引起的错码就具有这种性质。
当信道中加性干扰主要是这种噪声时,就称这种信道为随机信道。
由于信息码元序列是一种随机序列,接收端是无法预知的,也无法识别其中有无错码。
为了解决这个问题,可以由发送端的信道编码器在信息码元序列中增加一些监督码元。
摘要:本文根据当今现代通信技术的发展,对QPSK信号的工作原理进行了分析。
利用Simulink 仿真工具设计出一个QPSK仿真模型,以衡量QPSK在高斯白噪声信道中的性能,并对仿真结果进行了分析。
关键词:QPSK 信噪比误码率1 引言近年来,软件无线电作为解决通信体制兼容性问题的重要方法受到各方面的注意。
它的中心思想是在通用的硬件平台上,用软件来实现各种功能,包括调制解调类型、数据格式、通信协议等。
通过软件的增加、修改或升级就可以实现新的功能,充分体现了体制的灵活性、可扩展性等。
其中高性能、高频谱效率的调制解调模块是移动通信系统的关键技术,它的软件化也是实现软件无线电的重要环节。
四相移键控(QPSK) 调制技术广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入与移动通信及有线电视的上行传输。
在卫星数字电视传输中普遍采用的QPSK调谐器,可以说是当今卫星数字电视传输中对卫星功率、传输效率、抗干扰性以及天线尺寸等多种因素综合考虑的最佳选择。
与二进制数字调相比,多进制调相有以下两个特点 :(1) 在相同码元传输速率下,多进制调相的信息传输速率显然比二进制调相的高,比如,四进制调相的信息传输的速率是二进制调相的两倍。
(2) 在相同的信息速率下,由于多进制码元的速率比二进制的低,因而多进制信号码元的持续时间要比二进制的长。
显然增大码元宽度,就会增加码元的能量,并能减小由于信道特性引起的码间干扰的影响等,正是基于这些特点,使多进制移相键控方式获得了广泛的应用。
2 QPSK工作原理数字相位调制PSK是角度调制、恒定幅度数字调制的一种方式,通过改变发送波的相位来实现,除了其输入信号是数字信号以及输出的相位受限制以外,PSK与传统的相位调制相似。
QPSK信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号,其信号表示式为 : 为四进制符号间隔,{ }为正弦载波的相位,有4种可能的状态。
若,则为0、、、,此初始相位为0的QPSK信号的矢量图如图1(a)。
QPSK通信系统在Matlab上的仿真实现系部名称: 电子工程系专业班级:学生姓名:指导教师:职称: 讲师XXX 工程学院二?一?年六月The Graduation Thesis for Bachelor's DegreeQPSK Communication System inthe Matlab SimulationXXX学校摘要QPSK调制全称Quadrature Phase Shift Keying,意为正交相移键控,是一种数字调制方式。
随着社会的进步和人类的发展,通信在生活中的地位越来越重要,目前QPSK通信系统已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。
论文介绍了通信系统中各种调制方式的原理。
QPSK通信系统首先是对基带信号QPSK调制,然后让调制好的信号经过高斯信道进行信息传输,最后进行QPSK信号的解调。
在本论文中用Matlab仿真通信系统的四进制相移键控(QPSK)调制及解调,本文利用Matlab编写的脚本程序和Matlab的Simulink两种方法对QPSK通信系统进行仿真并验证QPSK的误码率随信噪比的增加而减小。
具体解决了二进制信息在QPSK调制过程中的串-并变换、电平变换、加噪、以及解调过程中对已调信号的滤波、抽样判决、并-串变换等一系列问题。
最终得出结论QPSK的误码率随信噪比的增加而减小,所得出结果与理论基本相符,对于理解QPSK系统的性能并在系统的实际应用上进一步的设计,提供了有效的参考依据。
关键字:Matlab仿真; Simulink仿真;QPSK调制;QPSK解调;误码率;信噪比IXXX学校ABSTRACTQPSK’s full name is Quadrature Ph ase Shift Keying( It is a kind of digital modulationmethods(With the development of the society,the place of communication system isbecoming more and more important(Now the QPSK communication system which is one of the communication systems has been widely used in wireless communications and has become a very important one in the modern communication(This thesis initially introduced diversified communication system’s modulation andDemodulation(The QPSK communication system includes three part(First the Basebandsignal is modulated by QPSK communication system modulation(Second the modulatedsignal passes the AWGN channel(At last the signal is received and demodulated by QPSK communication system demodulation(In this paper,using the simulation of QPSKcommunication system is built by using Simulink in Matlab and a script which was written by using Matlab program simulate QPSK communication system modulation and QPSK communication system demodulation(Specific,the thesis has solved the QPSKserial-collateral transform,electricity commutation,adding yawp,and low-pass filter,encoding and collateral-serial transform in the process of demodulation(At last of the paperError Rate of QPSK communication system is decreased when the Signal to Noise Ratio is increased(The results obtained with theoretical results in the main,which provides aneffective frame of reference for under studying the performance of QPSK systems, and the practical application in the system to the make father designed(Key Words:Matlab Simulate;Simulink Simulate;QPSK Modulation; QPSK Demodulation;Error Rate;Signal to Noise RatioIIXXX学校目录摘要 ..................................................................... .. (I)Abstract ........................................................... . (II)第1章绪论 ..................................................................... ..............................................1 1.1 课题来源及研究背景 ..................................................................... .. (1)1.1.1 QPSK简介 ..................................................................... (1)1.1.2 QPSK原理 ..................................................................... (1)1.1.3 QPSK特点 ..................................................................... (2)1.1.4 QPSK与OQPSK .................................................................. (2)1.1.5 QPSK应用 ..................................................................... ..............................3 1.2 数字通信系统的研究现状 ..................................................................... ...............4 1.3 Matlab在通信系统仿真中的应用 ..................................................................... ....5 1.4 论文的主要内容及结构安排 ..................................................................... ...........6 第2章通信系统的概述 ..................................................................... ........................7 2.1 通信系统的一般模型 ..................................................................... .......................7 2.2 数字调制系统的简介 ..................................................................... .......................7 2.3 数字通信系统的研究意义 ..................................................................... ...............9 2.4 本章小结 ..................................................................... ..........................................9 第3章正弦载波数字调制系统...................................................................... ........ 10 3.1 二进制数字调制技术 ..................................................................... (10)3.1.1 二进制振幅键控 ..................................................................... . (10)3.1.2 二进制频移键控 ..................................................................... . (11)3.1.3 二进制相移键控 ........................................................................................ 13 3.2 多进制数字调制系统 ..................................................................... (17)3.2.1 多进制数字调制系统的特点 .....................................................................173.2.2 多进制数字幅度调制 ..................................................................... .. (17)3.2.3 多进制数字频率调制 ..................................................................... .. (19)3.2.4 多进制数字相位调制 ..................................................................... ........... 19 3.3 QPSK调制 ..................................................................... .. (21)XXX学校3.3.1 QPSK调制原理 ..................................................................... (21)3.3.2 QPSK解调原理 ..................................................................... ..................... 23 3.4 本章小结 ..................................................................... ........................................ 24 第4章 QPSK在Matlab上的仿真实现 ...............................................................254.1 Matlab简介 ..................................................................... ..................................... 25 4.2 QPSK调制的实现...................................................................... .. (26)4.2.1 2-L电平变换的实现...................................................................... . (26)4.2.2 串-并变换的实现 ..................................................................... (26)4.2.3 信号通过平衡调制器的实现 .....................................................................274.2.4 信号通过相加器的实现...................................................................... ....... 28 4.3 QPSK信号通过高斯白噪声 ..................................................................... ........... 29 4.4 QPSK解调的实现...................................................................... .. (29)4.4.1 调制信号经过不同的相乘器 .....................................................................294.4.2 低通滤波器的实现 ..................................................................... (30)4.4.3 抽样判决 ..................................................................... . (31)4.4.4 并/串变换...................................................................... .. (32)4.4.5 求在不同信噪比状态下的误码率 (33)4.5 QPSK在Simulink上的仿真 ..................................................................... . (33)4.5.1 Simulink简介 ..................................................................... (33)4.5.2 Simulink中仿真模型 ..................................................................... . (34)4.5.3 信号源参数设置 ..................................................................... . (35)4.5.4 调制与解调模块参数设置 ..................................................................... . (36)4.5.5 信道参数设置 ..................................................................... .. (36)4.5.6 误码计算仪参数设置 ..................................................................... ........... 37 4.6 本章小结 ..................................................................... ........................................ 38 结论 ..................................................................... (39)参考文献 ..................................................................... ................................................... 40 致谢 ..................................................................... (42)附录 ..................................................................... (43)XXX学校第1章绪论1.1 课题来源及研究背景通信技术融入计算机和数字信号处理技术以后发生了革命性的变化,它和计算机技术、数字信号处理技术结合是现代通信技术的标志。
专业课程设计报告题目:基于MATLAB的QPSK调制系统的误码性能研究姓名:专业:通信工程班级学号:同组人:指导教师:南昌航空大学信息工程学院20 16 年 6 月 27 日专业 课程设计任务书20 15-20 16 学年 第 2 学期 第 15 周- 18 周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。
摘要QPSK正交相移键控,是一种数字调制方式,四相相移键控信号。
在现代通信系统中,调制与解调是必不可少的重要手段。
调制就是把信号转换成适合在信道中传输的形式的一种过程。
解调则是调制的相反过程,而从已调制信号中恢复出原信号。
QPSK技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。
本设计主要介绍了BPSK、QPSK的调制与解调原理,在Matlab\simulink 中对比了BPSK和QPSK系统的符号错误率,并研究了仿真试验次数与结果精度的关系。
关键词:正交相移键控调制解调 Matlab\simulink 误码性能目录第一章课程设计内容介绍 (1)1.1 设计目的 (1)1.2 MATLAB\Simulink简介 (1)1.3 通信系统基本模型 (1)第二章 MPSK调制解调原理 (2)2.1 QPSK、BPSK基本原理介绍 (2)2.2 BPSK调制原理 (2)2.3 BPSK调制原理 (4)2.4 QPSK调制原理 (5)2.5 QPSK解调原理 (6)第三章 MPSK系统误码性能研究 (7)3.1 BPSK系统及其模块参数配置 (7)3.2 QPSK系统及其模块参数配置 (10)3.3 QPSK&BPSK系统误码率对比 (11)3.4 仿真实验次数与结果精确度的关系 (12)第四章课程设计总结 (15)参考文献 (15)附录 BPSK&QPSK误码率曲线对比代码 (16)第一章课程设计内容介绍1.1 设计目的1、掌握MATLAB的编程方法和学会使用simulink仿真。
《MATLAB实践》报告——QPSK系统的误码率和星座图仿真一、引言数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
基本的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。
在接收端可以采用想干解调或非相干解调还原数字基带信号。
数字信号的传输方式分为基带传输和带通传输.然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
通信系统的抗噪声性能是指系统克服加性噪声影响的能力。
在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量.因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。
误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。
误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。
如果有误码就有误码率。
误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码.噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。
误码率是最常用的数据通信传输质量指标.它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。
误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。
在数字通信系统中,可靠性用误码率和误比特率表示。
数字调制用“星座图"来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。
星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义.二、QPSK系统的原理四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。
QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。
每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。
QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。
解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特.在QPSK体制中,由其矢量图(图1)可以看出,错误判决是由于信号矢量的相位因噪声而发生偏离造成的。
例如,设发送矢量的相位为45°,它代表基带信号码元“11”,若因噪声的影响使接收矢量的相位变成135°,则将错判为“01”。
当不同发送矢量以等概率出现时,合理的判决门限应该设定在和相邻矢量等距离的位置.在图中对于矢量“11”来说,判决门限应该设在0°和90°。
当发送“11”时,接收信号矢量的相位若超出这一范围(图中阴影区),则将发生错判。
图1 QPSK 的噪声容限QPSK 信号的误码率: QPSK 信号的误比特率:图2 QPSK 系统原理方框图三、仿真实验0111001090︒︒22/2111⎥⎦⎤⎢⎣⎡--=r erfc P e 2/21r erfc P e =图3 仿真实验框图实验结果(即误码率曲线和星座图)图4 B 点信号的星座图产生二进制数据星座图映射加法运算判决根据信噪比产生高斯噪声数据星座图逆映射误码率统计误比特率统计ABCDEF图5 C点信号的星座图图6 误码率和误比特率的理论和仿真曲线对实验结果的简单分析和说明 图4是B 点信号的星座图映射,00、01、10、11组合分别映射成—1-j ,—1+j ,1-j ,1+j 。
图5是C 点信号的星座图映射,它是加入噪声后的映射结果,由图中可以看出加入噪声后大致以—1-j ,-1+j,1-j,1+j 为中心形成了近似圆的图像,少部分点偏离比较严重,产生了误差。
由图6,可见QPSK 仿真误码率曲线和理论误码率曲线重合在一起,QPSK 仿真误比特率曲线和理论误比特率曲线也重合在一起,误码率约是误比特率的两倍,说明实验方法是正确可行的. 四、结论本次实验研究了数字调制方式QPSK ,对其误码率进行了考察.通过理论误码率和仿真误码的比较,了解了误码率的性能。
本次实验还通过运用星座图来对实验结果进行仿真.本次实验得出结论如下:QPSK 信号的误码率:QPSK 信号的误比特率:误码率是误比特率的两倍。
附录:1、 心得体会:本次实验我收获很多,学会了应用MA TLAB 来处理问题,加深了对通信原理中部分公式和概念的理解。
实验过程中也遇到了不少问题,在星座图映射上,一开始将00,01,10,11看成一个整体,这样对整体编程存在很大困难,因此后来尝试将其分开看,并成功映射;在计算噪声的过程中,由于通信原理的知识未能牢固掌握,在分析和计算的过程中花了很多时间;实验过程中,学会了使用find 函数来代替for 循环的功能,从而使程序运行更加快,大大加快了实验的进度。
通过本次MA TLAB 的实践,应该加强MATLAB 在各个学科的应用,学会用MA TLAB 来处理实际问题. 2、 程序: close all clcclear allSNR_DB=[0:1:12]; sum=1000000;data= randsrc(sum,2,[0 1]); [a1,b1]=find(data(:,1)==0&data (:,2)==0); message(a1)=—1—j ;[a2,b2]=find(data(:,1)==0&data (:,2)==1); message (a2)=-1+j ;[a3,b3]=find(data (:,1)==1&data (:,2)==0); message (a3)=1—j ;[a4,b4]=find (data(:,1)==1&data (:,2)==1); message (a4)=1+j ; scatterplot(message)22/2111⎥⎦⎤⎢⎣⎡--=r erfc P e 2/21r erfc P e =title(’B点信号的星座图')A=1;Tb=1;Eb=A*A*Tb;P_signal=Eb/Tb;NO=Eb./(10.^(SNR_DB/10));P_noise=P_signal*NO;sigma=sqrt(P_noise);for Eb_NO_id=1:length(sigma)noise1=sigma(Eb_NO_id)*randn(1,sum);noise2=sigma(Eb_NO_id)*randn(1,sum);receive=message+noise1+noise2*j;resum=0;total=0;m1=find(angle(receive)<=pi/2&angle(receive)>0);remessage(1,m1)=1+j;redata(m1,1)=1;redata(m1,2)=1;m2= find( angle(receive)〉pi/2&angle(receive)〈=pi);remessage(1,m2)=—1+j;redata(m2,1)=0;redata(m2,2)=1;m3=find(angle(receive)〉—pi&angle(receive)<=-pi/2);remessage(1,m3)=—1-j;redata(m3,1)=0;redata(m3,2)=0;m4=find(angle(receive)〉-pi/2&angle(receive)〈=0);remessage(1,m4)=1-j;redata(m4,1)=1;redata(m4,2)=0;[resum,ratio1]=symerr(data,redata);pbit(Eb_NO_id)=resum/(sum*2);[total,ratio2]=symerr(message,remessage);pe(Eb_NO_id)=total/sum;endscatterplot(receive)title(’C点信号的星座图')Pe=1—(1-1/2*erfc(sqrt(10。
^(SNR_DB/10)/2))).^2;Pbit=1/2*erfc(sqrt(10.^(SNR_DB/10)/2));figure(3)semilogy(SNR_DB,pe,':s’,SNR_DB,Pe,'—*’,SNR_DB,pbit,’-o’,SNR_DB,Pbit,’:+’)legend('QPSK仿真误码率',’QPSK理论误码率','QPSK仿真误比特率’,’QPSK理论误比特率',1)xlabel(’信噪比/dB’)ylabel(’概率P’) gird on。