分布式电源接入系统典型设计
- 格式:docx
- 大小:36.87 KB
- 文档页数:2
1.总的部分11.1.工程简介11.2.工程建设周期11.3.设计内容11.4.设计依据12.工程建设规模和电力系统简况1 1.1.工程建设规模11.2.工程所在电力系统简况13.接入系统技术方案23.1.接入系统原则23.2.接入系统技术方案34.电气计算及设备选择原则44.1.潮流计算44.2.最大工作电流44.3.短路电流计算54.4.无功补偿容量64.5.主要设备选择原则85.系统对光伏电站的技术要求10 5.1.电能质量要求105.2.电压异常时的相应特性135.3.频率异常时的相应特性136.一次设备清单157.系统继电保护及安全自动装置16 7.1.配置及选型168.调度自动化208.1.调度关系及调度经管208.2.配置及要求209.系统通信259.1.通信技术方案259.2.通信通道组织259.3.通信设备供电259.4.主要设备材料清单26附件1:周口火蓝科华新能源有限公司12兆瓦分布式光伏发电工程备案确认书27附件2:国网周口供电公司发展策划部关于周口火蓝科华新能源有限公司12兆瓦分布式光伏发电工程并网意见函28附图01:光伏电站区域10kV线路现状图29附图02:光伏发电子系统主接线图291.总的部分1.1.工程简介周口火蓝科华新能源有限公司12兆瓦分布式光伏发电工程场址位于周口市川汇产业集聚区河南省长城门业有限公司厂房屋顶及厂区附属场所,场址中心位于东经114.67°、北纬33.66°,海拔高度50m左右。
工程占用河南省长城门业有限公司厂房屋顶及厂区附属场所,设计年发电量约1300万千瓦时,全额上网方式并入国家电网。
主要建设内容:利用厂房屋顶及厂区附属场所建设12MWp分布式光伏发电设备及其他。
工艺流程:太阳能光伏发电技术。
主要设备:光伏组件、逆变器、变压器、汇流箱、配电柜及其他。
1.2.工程建设周期2016年12月至2017年12月。
1.3.设计内容根据国家规范及国家电网企业规范及河南省电力公司有关规定,进行周口火蓝科华新能源有限公司12兆瓦分布式光伏发电工程接入系统技术方案的编制。
分布式电源接入与能量管理系统设计随着电力需求的增加和可再生能源的快速发展,分布式电源的接入成为一种越来越常见的电力供应方式。
为了有效地接入和管理分布式电源,需要设计一个高效且可靠的分布式电源接入与能量管理系统。
本文将详细探讨该系统的设计。
第一部分:分布式电源接入系统设计1. 设备需求分析在设计分布式电源接入系统时,首先需要进行设备需求分析。
该系统需要考虑到不同类型的可再生能源发电设备,如太阳能、风能等。
确定所需的设备种类和数量,并确保能够有效地接入和管理这些设备。
2. 接口设计接下来,需要设计分布式电源接入系统的接口。
这些接口应该具有良好的兼容性,能够与不同类型的分布式电源设备进行通信。
此外,接口还应提供相应的保护措施,以确保电力系统的稳定运行。
3. 能量监测和测量分布式电源接入系统应提供能量监测和测量功能。
该系统应能够准确记录分布式电源的发电量,并可以实时监测电力系统的能耗情况。
这些数据对于系统的能量管理至关重要。
4. 安全措施在设计分布式电源接入系统时,安全是一个重要的考虑因素。
系统应考虑到电压、电流等参数的安全要求,并设计相应的保护机制。
此外,还应考虑到防止电网中的故障电流进入分布式电源系统,以确保系统的安全稳定运行。
第二部分:能量管理系统设计1. 能量需求预测能量管理系统应具备能量需求预测功能。
通过收集历史数据和当前环境信息,系统可以预测未来的能量需求。
这样可以帮助系统合理规划分布式电源的接入和能量的分配,以满足实际需求。
2. 能量分配与优化分布式电源接入与能量管理系统应提供能量分配和优化功能。
这意味着系统应具备良好的算法和策略,以合理地将电能分配给各个负荷。
通过优化能量分配,可以最大程度地利用可再生能源,实现能量的高效利用。
3. 能量储存和调度在能量管理系统中,能量储存和调度是非常重要的环节。
该系统应考虑到能量的储存需求,并具备相应的储能装置。
通过储存和合理调度能量,可以平衡供需关系,使能量分布更加稳定和高效。
(2016版)分布式电源接入系统典型设计【征求意见稿】国家电网公司2016年1月前言为配合《国家电网公司关于做好分布式电源并网服务工作的意见》及《国家电网公司关于促进分布式电源并网管理工作的意见》和《分布式电源接入配电网相关技术规定》的发布,国家电网公司发展部会同有关部门,组织国网北京经济技术研究院和江苏省电力设计院有限公司、上海电力设计院、南瑞电力设计有限公司、浙江浙电经济技术研究院、国网北京电力经济技术研究院、国网山东电力经济技术研究院、国网河北电力经济技术研究院、国网河南电力经济技术研究院、国网安徽电力经济技术研究院、国网山西电力经济技术研究院、国网宁夏电力经济技术研究院等12家设计、科研单位,吸收分布式电源并网的科研及设计实践成果,对接入10kV及以下配电网的分布式发电并网工程设计进行了统一的规范,形成了《分布式电源接入系统典型设计(2016版)》。
本典型设计是在2013年发布的《分布式电源接入系统典型设计》基础上,结合分布式电源的国家政策、标准,行业标准、企业标准及接入系统工程的具体情况,修订完成统一的分布式电源接入系统典型设计方案,包括8个光伏发电接入系统典型设计方案、6个风电接入系统典型设计方案、6个燃机接入系统典型设计方案和5个光伏扶贫项目接入系统典型案例。
全书共分六篇,第一篇为总论;第二篇为技术原则及方案划分;第三篇为光伏发电(逆变器型)接入系统典型方案及典型案例;第四篇为风电(异步电机型)接入系统典型方案;第五篇为燃机发电(同步电机型)接入系统典型方案;第六篇为光伏扶贫项目接入系统典型案例。
此外,考虑加强设计指导性,本典设补充编制了分布式电源接入配电台区参考容量表。
本典型设计自发布之日起可应用于分布式电源接入系统实际工程设计。
随着分布式电源发展和接入系统技术、设备水平的不断提升,典型设计将开展修编完善,满足后续应用需求。
典型设计编写组2016年1月目录第一篇总论 (1)第1章概述 (1)1.1 工作目的和意义 (2)1.2 设计原则 (3)1.3 工作方式 (3)1.4 设计范围及方案划分 (4)1.5 应用说明 (14)第2章工作过程 (17)第3章典型设计依据 (18)3.1 设计依据性文件 (18)3.2 主要设计标准、规程规范 (18)3.3 主要电气设备技术标准 (21)第二篇接入系统典型方案及技术原则 (22)第4章概述 (22)第5章系统一次设计及方案划分 (23)5.1 内容和深度要求 (23)5.2 主要原则及接入系统方案 (24)第6章系统继电保护及安全自动装臵 (46)6.1 内容与深度要求 (46)6.2 技术原则 (46)第7章系统调度自动化 (50)7.1 内容与深度要求 (50)7.2 技术原则 (50)第8章系统通信 (54)8.1 内容及深度要求 (54)8.2 技术原则 (54)第9章计量 (58)9.1 内容与深度要求 (58)9.2 技术原则 (58)第三篇光伏发电(逆变器型)接入系统典型设计方案 (61)第10章10K V接入公共电网变电站方案典型设计(XGF10-T-1) (61)10.1 方案概述 (61)10.2 接入系统一次 (61)10.3 接入系统二次 (66)第11章10K V接入公共电网开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-T-2) 8511.1 方案概述 (85)11.2 接入系统一次 (85)11.3 接入系统二次 (90)第12章10K V T接公共电网线路方案典型设计(XGF10-T-3) (113)12.1 方案概述 (113)12.2 接入系统一次 (113)12.3 接入系统二次 (118)第13章10K V接入用户开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-Z-1) . 13613.1 方案概述 (136)13.2 接入系统一次 (136)13.3 接入系统二次 (142)第14章380V接入公共电网配电箱/线路方案典型设计(XGF380-T-1) (165)14.1 方案概述 (165)14.2 接入系统一次 (165)14.3 接入系统二次 (169)第15章380V接入公共电网配电室、箱变或柱上变压器低压母线方案典型设计(XGF380-T-2)17315.1 方案概述 (173)15.2 接入系统一次 (173)15.3 接入系统二次 (179)第16章380V接入用户配电箱/线路方案典型设计(XGF380-Z-1) (182)16.1 方案概述 (182)16.2 接入系统一次 (182)16.3 接入系统二次 (189)第17章380V接入用户配电室、箱变或柱上变压器低压母线方案典型设计(XGF380-Z-2). 19217.1 方案概述 (192)17.2 接入系统一次 (192)17.3 接入系统二次 (197)第四篇风力发电(异步电机型)接入系统典型设计方案 (201)第18章10K V接入公共电网变电站方案典型设计(XFD10-T-1) (201)18.1 方案概述 (201)18.2 接入系统一次 (201)18.3 接入系统二次 (206)第19章10K V接入公共电网开关站、环网室(箱)、配电室或箱变方案典型设计(XFD10-T-2)22619.1 方案概述 (226)19.2 接入系统一次 (226)19.3 接入系统二次 (231)第20章10K V T接公共电网线路方案典型设计(XFD10-T-3) (256)20.1 方案概述 (256)20.2 接入系统一次 (256)20.3 接入系统二次 (261)第21章10K V接入用户开关站、环网室(箱)、配电室或箱变方案典型设计(XFD10-Z-1) . 28021.1 方案概述 (280)21.2 接入系统一次 (280)21.3 接入系统二次 (286)第22章380V接入公共电网配电室、箱变或柱上变压器低压母线方案典型设计(XFD380-T-1)30822.1 方案概述 (308)22.2 接入系统一次 (308)22.3 接入系统二次 (314)第23章380V接入用户配电室、箱变或柱上变压器低压母线方案典型设计(XFD380-Z-1). 31723.1 方案概述 (317)23.2 接入系统一次 (317)23.3 接入系统二次 (323)第五篇燃机(同步电机型)接入系统典型设计方案 (326)第24章10K V接入公共电网变电站方案典型设计(XRJ10-T-1) (326)24.1 方案概述 (326)24.2 接入系统一次 (326)24.3 接入系统二次 (330)第25章10K V接入公共电网开关站、环网室(室)、配电室或箱变方案典型设计(XRJ10-T-2)34725.1 方案概述 (347)25.2 接入系统一次 (347)25.3 接入系统二次 (350)第26章接入用户10K V开关站、环网室(箱)、配电室或箱变方案典型设计(XRJ10-Z-1). 37326.1 方案概述 (373)26.2 接入系统一次 (373)26.3 接入系统二次 (378)第27章380V接入公共电网配电室、箱变或柱上变压器方案典型设计(XRJ380-T-1) (400)27.1 方案概述 (400)27.2 接入系统一次 (400)27.3 接入系统二次 (404)第28章380V接入用户配电室、箱变或柱上变压器方案典型设计(XRJ380-Z-1) (408)28.1 方案概述 (408)28.2 接入系统一次 (408)28.3 接入系统二次 (412)第六篇光伏扶贫项目接入系统典型设计 (416)第29章概述 (416)第30章分布式光伏10K V集中接入典型设计案例(一) (419)30.1 案例概述 (419)30.2 当地配电网现状 (419)30.3 一次部分 (420)30.3 一次设备清单 (428)30.4 二次部分 (428)30.5 投资估算 (433)第31章分布式光伏10K V集中接入典型设计案例(二) (434)31.1 案例概述 (434)31.2 当地配电网现状 (434)31.3 一次部分 (435)31.4 二次部分 (441)31.5 投资估算 (446)第32章分布式光伏380V集中接入典型设计案例 (447)32.1 案例概述 (447)32.2 当地配电网现状 (447)32.3 一次部分 (448)32.4 二次部分 (457)32.5 投资估算 (460)第33章分布式光伏380V分散接入典型设计案例 (461)33.1 案例概述 (461)33.2 当地配电网现状 (461)33.3 一次部分 (463)33.4 二次部分 (469)33.5 投资估算 (472)第34章分布式光伏220V分散接入典型设计案例 (473)34.1 案例概述 (473)34.2 当地配电网现状 (473)34.3 一次部分 (474)34.4 二次部分 (481)34.5 投资估算 (483)附录A短路电流计算公式 (484)附录B送出线路导线截面 (486)附录C谐波电压与电流 (490)附录D电压异常时的响应特性 (491)附录E频率响应特性 (492)附录F变压器性能参数 (493)附录G分布式电源接入配电台区参考容量表 (498)第一篇总论第1章概述能源是国民经济发展的基础。
分布式电源接入系统典型设计1.接口设计:分布式电源接入系统需要与电力系统中的主网进行连接。
为了确保安全可靠地将分布式电源接入到主网中,需要设计合适的接口。
接口设计应考虑主网电压、频率等参数,确保分布式电源能够稳定地接入主网。
2.保护设计:分布式电源接入系统需要具备保护功能,以确保电力系统的稳定运行。
保护设计包括过电压、过电流、短路等情况的保护措施,以防止分布式电源对电力系统造成损害。
3.网络通信设计:为了实现对分布式电源的管理和调度,分布式电源接入系统需要具备网络通信功能。
通信设计应考虑与电力系统中的监测设备、控制中心等进行数据交互,以实现对分布式电源的远程监控和调度。
4.电量计量设计:分布式电源接入系统需要对接入的分布式电源进行电量计量。
电量计量设计应具备精确的计量能力,以确保对分布式电源的电量进行准确统计。
5.控制与调度设计:分布式电源接入系统需要具备对分布式电源的控制和调度能力。
通过对接入分布式电源的输出功率进行控制和调度,可实现对电力系统的功率平衡和负荷调节。
6.数据管理设计:分布式电源接入系统需要对接入分布式电源的数据进行管理。
数据管理设计应包括数据采集、存储、分析和应用等功能,以提供对分布式电源接入情况的综合管理和分析。
7.安全性设计:分布式电源接入系统需要具备安全性设计,以保障系统运行的安全。
安全性设计包括系统防护、安全监测、数据加密等措施,以防止系统遭受恶意攻击或数据泄露。
8.故障检测与处理设计:分布式电源接入系统需要能够进行故障检测和处理。
通过对接入分布式电源的运行状态进行监测和诊断,及时发现故障并进行相应处理,以保证分布式电源接入系统的稳定运行。
综上所述,典型的分布式电源接入系统设计应包括接口设计、保护设计、网络通信设计、电量计量设计、控制与调度设计、数据管理设计、安全性设计以及故障检测与处理设计等方面。
这些设计可以提高分布式电源接入系统的安全性、可靠性和运行效率,实现对分布式电源的管理和调度。
目录第一篇 总 论第1章 概 述 (1)1.1 工作目的 (1)1.2 设计原则 (2)1.3 工作方式 (3)1.4 设计范围 (4)1.5 设计内容 (4)第2章 工作过程 (6)第3章 典型设计依据 (6)3.1 设计依据性文件 (6)3.2 主要设计标准、规程规范 (7)3.3 主要电气设备技术标准 (8)第二篇 接入系统典型方案及技术原则第4章 概述 (9)第5章 系统一次设计及方案划分 (10)5.1 内容和深度要求 (10)5.1.1主要设计内容 (10)5.1.2设计深度 (10)5.2 主要原则及接入系统方案 (10)5.2.1 接入方案划分原则 (10)5.2.2 接入电压等级 (10)5.2.3 接入点选择原则 (11)5.2.4 典型设计方案 (11)5.2.5主要设备选择原则 (26)第6章 系统继电保护及安全自动装置 (29)6.1内容与深度要求 (29)6.1.1主要设计内容 (29)6.1.2设计深度 (29)6.2技术原则 (29)6.2.1一般性要求 (29)6.2.2线路保护 (30)6.2.2.1 380/220V电压等级接入 (30)6.2.2.2 10KV电压等级接入 (30)6.2.3母线保护 (31)6.2.4安全自动装置 (31)6.2.5 孤岛检测与防孤岛保护 (31)6.2.6 其他 (31)7章 系统调度自动化 (33)7.1内容与深度要求 (33)7.1.1主要设计内容 (33)7.1.2设计深度 (33)7.2技术原则 (34)7.2.1 调度管理 (34)7.2.2 远动系统 (34)7.2.3 远动信息内容 (34)7.2.4 功率控制要求 (35)7.2.5 同期装置 (35)7.2.6 信息传输 (35)7.2.7 安全防护 (35)7.2.8 对时方式 (35)7.2.9 电能质量在线监测 (36)第8章 系统通信 (37)8.1 内容及深度要求 (37)8.1.1主要设计内容 (37)8.1.2设计深度 (37)8.2 技术原则 (37)8.2.1 总体要求 (38)8.2.2 通信通道要求 (38)8.2.3 通信方式 (38)8.2.4 通信设备供电 (39)8.2.5 通信设备布置 (39)第9章 计量与结算 (40)9.1 内容与深度要求 (40)9.1.1 设计内容 (40)9.1.2 设计深度要求 (40)9.2 技术原则 (40)第三篇 光伏发电单点接入系统典型设计方案第10章 10KV接入公共电网变电站方案典型设计(XGF10-T-1) 4310.1 方案概述 (43)10.2 接入系统一次 (43)10.2.1 送出方案 (43)10.2.2 电气计算 (44)10.2.3 主要设备选择原则 (45)10.2.4 电气主接线 (46)10.2.5 系统对光伏电站的技术要求 (47)10.2.5.2 电压异常时的响应特性 (48)10.2.6 设备清单 (49)10.3接入系统二次 (49)10.3.1 系统继电保护及安全自动装置 (49)10.3.2 系统调度自动化 (54)10.3.3 系统通信 (60)第11章 10KV接入公共电网开关站、配电室或箱变方案典型设计(XGF10-T-2) (67)11.1 方案概述 (67)11.2 接入系统一次 (67)11.2.1送出线路 (67)11.2.2 电气计算 (68)11.2.3主要设备选择原则 (69)11.2.4 电气主接线 (70)11.2.5系统对光伏电站的技术要求 (71)11.2.6设备清单 (72)11.3接入系统二次 (72)11.3.1 系统继电保护及安全自动装置 (72)11.3.2 系统调度自动化 (78)11.3.3 系统通信 (84)第12章 10KV T接公共电网线路方案典型设计(XGF10-T-3) . 9512.1 方案概述 (95)12.2接入系统一次 (95)12.2.1 送出方案 (95)12.2.2 电气计算 (96)12.2.3 主要设备选择原则 (97)12.2.4 电气主接线 (98)12.2.5 系统对光伏电站的技术要求 (99)12.2.6 设备清单 (100)12.3 接入系统二次 (100)12.3.1 系统继电保护及安全自动装置 (101)12.3.2 系统调度自动化 (105)12.3.3 系统通信 (111)第13章 10KV接入用户开关站、配电室或箱变方案典型设计(XGF10-Z-1) (118)13.1 方案概述 (118)13.2 接入系统一次 (118)13.2.1 送出方案 (118)13.2.2 电气计算 (119)13.2.3 主要设备选择原则 (120)13.2.4 电气主接线 (121)13.2.5 系统对光伏电站的技术要求 (122)13.2.6 设备清单 (124)13.3接入系统二次 (124)13.3.1 系统继电保护及安全自动装置 (124)13.3.2 系统调度自动化 (130)13.3.3 系统通信 (137)第14章 380V接入公共电网配电箱方案典型设计(XGF380-T-1) (146)14.1 方案概述 (146)14.2 接入系统一次 (146)14.2.1 送出方案 (146)14.2.2 电气计算 (147)14.2.3 主要设备选择原则 (148)14.2.4 电气主接线 (148)14.2.5 系统对光伏电站的技术要求 (149)14.2.6 设备清单 (150)14.3 接入系统二次 (150)14.3.1 系统继电保护及安全自动装置 (151)14.3.2 系统调度自动化 (151)14.3.3 系统通信 (153)第15章 380V接入公共电网配电室或箱变方案典型设计(XGF380-T-2) (154)15.1方案概述 (154)15.2 接入系统一次 (154)15.2.1 送出方案 (154)15.2.2 电气计算 (155)15.2.3 主要设备选择原则 (156)15.2.4 电气主接线 (156)15.2.5 系统对光伏电站的技术要求 (157)15.2.6 设备清单 (159)15.3 接入系统二次 (159)15.3.1 系统继电保护及安全自动装置 (159)15.3.2 系统调度自动化 (160)15.3.3 系统通信 (161)第16章 380V接入用户配电箱方案典型设计(XGF380-Z-1) . 16316.1方案概述 (163)16.2接入系统一次 (163)16.2.1 送出方案 (163)16.2.2 电气计算 (164)16.2.3 主要设备选择原则 (165)16.2.4 电气主接线 (165)16.2.5 系统对光伏电站的技术要求 (166)16.2.6 设备清单 (168)16.3接入系统二次 (169)16.3.1 系统继电保护及安全自动装置 (169)16.3.2 系统调度自动化 (169)16.3.3 系统通信 (171)第17章 380V接入用户配电室或箱变方案典型设计(XGF380-Z-2) (172)17.1方案概述 (172)17.2接入系统一次 (172)17.2.1 送出方案 (172)17.2.2 电气计算 (173)17.2.3 主要设备选择原则 (174)17.2.4 电气主接线 (174)17.2.5 系统对光伏电站的技术要求 (175)17.2.6 设备清单 (176)17.3接入系统二次 (176)17.3.1 系统继电保护及安全自动装置 (176)17.3.2 系统调度自动化 (177)17.3.3 系统通信 (179)第四篇 光伏发电组合接入系统典型设计方案第18章 380V多点接入用户电网方案典型设计(XGF380-Z-Z1) (180)18.1方案概述 (180)18.2接入系统一次 (180)18.2.1 送出方案 (180)18.2.2 电气计算 (182)18.2.3 主要设备选择原则 (183)18.2.4 电气主接线 (183)18.2.5 系统对光伏电站的技术要求 (184)18.2.6 设备清单 (186)18.3接入系统二次 (186)18.3.1 系统继电保护及安全自动装置 (186)18.3.2 系统调度自动化 (187)18.3.3 系统通信 (188)第19章 10KV多点接入用户电网方案典型设计(XGF10-Z-Z1) 19019.1 方案概述 (190)19.2 接入系统一次 (190)19.2.1 送出方案 (190)19.2.2 电气计算 (191)19.2.3 主要设备选择原则 (192)19.2.4 电气主接线 (193)19.2.5 系统对光伏电站的技术要求 (194)19.2.6 设备清单 (196)19.3接入系统二次 (196)19.3.1 系统继电保护及安全自动装置 (196)19.3.2 系统调度自动化 (202)19.3.3 系统通信 (207)第20章 380V/10KV多点接入用户电网方案典型设计(XGF380/10-Z-Z1) (216)20.1方案概述 (216)20.2 接入系统一次 (216)20.2.1 送出方案 (216)20.2.2 电气计算 (218)20.2.3 主要设备选择原则 (219)20.2.4 电气主接线 (220)20.2.5 系统对光伏电站的技术要求 (223)20.2.6 设备清单 (224)20.3接入系统二次 (224)20.3.1 系统继电保护及安全自动装置 (225)20.3.2 系统调度自动化 (230)20.3.3 系统通信 (237)第21章 380V多点接入公共电网组合方案典型设计(XGF380-T-Z1) (246)21.1 方案概述 (246)21.2 接入系统一次 (246)21.2.1 送出方案 (246)21.2.2 电气计算 (247)21.2.3 主要设备选择原则 (248)21.2.4 电气主接线 (248)21.2.5 系统对光伏电站的技术要求 (249)21.3 接入系统二次 (251)21.3.1 系统继电保护及安全自动装置 (251)21.3.2 系统调度自动化 (252)21.3.3 系统通信 (253)第22章 380V/10KV多点接入公共电网方案典型设计(XGF380/10-T-Z1) (255)22.1 方案概述 (255)22.2 接入系统一次 (255)22.2.1 送出方案 (255)22.2.2 电气计算 (256)22.2.3 主要设备选择原则 (257)22.2.4 电气主接线 (258)22.2.5 系统对光伏电站的技术要求 (259)22.2.6 设备清单 (260)22.3接入系统二次 (261)22.3.1 系统继电保护及安全自动装置 (261)22.3.2 系统调度自动化 (266)22.3.3 系统通信 (272)附 录 (286)1 短路电路计算公式 (286)2 送出线路导线截面 (286)2.1 架空导线 (286)2.2电缆 (288)3 光伏电站谐波电压与电流 (290)4光伏电站电压异常时的响应特性 (290)5光伏电站频率异常时的响应特性 (291)6升压站主变性能参数 (291)第一篇 总 论第1章 概 述能源是国民经济发展的基础。
5kW分布式光伏发电接入系统方案
一、概况
分布式光伏发电安装在昆明市西山区西福路海珀澜庭8-101刘红梅(户号:0501153041574644)自有住房一楼庭院顶部。
采用光伏组件与建筑屋面结合方式,光伏电站总容量为4.95kW。
采用自发自用,余电上网方式。
二、一次接入系统方案
光伏电站总容量为4.95kW,经过一台三相逆变器接入三相表箱。
并网点设置一台断路器及具有明显断开点的隔离刀闸。
三、二次接入系统方案
(1)380V/220V线路保护
并网点断路器具有短路瞬时、长延时保护功能和分励脱扣、欠压脱扣功能,当线路发生各种类型故障时,线路保护能快速动作,瞬时跳开断路器,满足故障时快速可靠切除故障的要求。
(2)防孤岛检测及安全自动装置
采用具备防孤岛能力的三相逆变器。
逆变器具有低电压闭锁、检有压自动并网功能(采用低于20%UN、0.2秒闭锁发电,检有压85%UN自动并网控制参数)。
所采用的逆变器应过国家认可资质机构的检测或认证。
(3)电能量计量
因采用自发自用,余电上网方式,需装设并网电能表和市电计量表。
并网电能表安装于并网点的并网表箱内。
市电计量表沿用已安装的入户计量电表。
分布式电源接入系统典型设计首先,分布式电源接入系统的电源接入方式可以分为并网式和孤岛式两种。
并网式是指将分布式电源与电力网并联运行,通过电力网进行能量的传输和互补,实现供电。
孤岛式是指分布式电源单独工作,不与电力网进行连接,通过内部能量互相补充,实现供电。
两种方式各有其适用场景,需要根据实际需求进行选择。
其次,分布式电源接入系统需要采用合适的电源接入控制策略。
典型的策略包括电源投入策略、容量调度策略和电源退出策略。
电源投入策略是指根据电力需求和电源产能,确定电源投入的优先级和容量。
容量调度策略是指根据电网负荷变化情况,合理调度电源的运行容量,保证电力系统的稳定运行。
电源退出策略是指在电源运行结束或故障情况下,及时退出电源,并进行其他电源的投入。
通过合理制定和实施这些策略,可以提高电源接入系统的效率和可靠性。
再次,分布式电源接入系统需要具备一定的保护机制。
典型的保护措施包括电源过流保护、电源过电压保护、电源短路保护以及对电力网的保护等。
电源过流保护是指在电源输出过大时,通过断开或限流的方式保护电源和电力网的安全。
电源过电压保护是指在电源输出电压过高时,通过降低电源输出电压或断开电源的方式保护电力设备的安全。
电源短路保护是指在电源输出短路时,通过断开电源或限流的方式保护电源和电力设备的安全。
对电力网的保护主要包括过载保护、过频保护和欠频保护等,以防止电力设备的损坏和电力系统的运行不稳定。
最后,分布式电源接入系统还需要考虑对暂态过程的处理。
由于分布式电源的投入和退出会引起电力系统的瞬时变化,需要对暂态过程进行合理处理,保证电力系统的稳定运行。
典型的处理方法包括采用合适的电源智能控制器、使用电源电流限制装置和适当延长电源投入和退出时间等。
综上所述,分布式电源接入系统的典型设计包括电源接入方式、电源接入控制策略、电源接入系统保护以及对暂态过程的处理。
通过科学合理地设计这些方面,可以实现分布式电源的高效、可靠、安全地接入电力网,为能源的统一分配和管理提供支持。
分布式电源并联供电系统的设计与应用本文介绍了基于DC-DC模块并联的分布式供电系统,根据主从均流法和强迫均流原理,设计了由两个电源模块并联组成的供电系统,改善了传统开关电源模块化、单一化、低功率的缺陷,提高了供电系统的规范性和可靠性,同时利用同步整流技术,提高供电效率,比较了两种均流方法的效率及稳定性,为未来开关电源设计提供了新的思路和方法。
标签:分布式供电;并联均流;开关电源设计;引言随着电力电子技术的迅速发展,人类的社会生产生活已与其紧密的联系在一起,电力电子设备实现其功能的关键在于供电系统的优劣,传统的开关电源是定制的、集中的,他们的功率由负载决定,每个负载根据自己功率的不同都有其配套的电源,而且某个集中的电源一旦出现故障,整个供电系统将会瘫痪,如此将极大的提高成本并降低运行效率。
一、均流控制法的选择与实施方案的设计1.1 主从均流法。
在并联电源系统中,选用一个电源模块单元作为主电源模块,直接连接到均流母线,其余模块为从电源模块,从母线上获取均流信号。
图1为采用电压环内调整结构的主从均流法。
主电源模块工作于电压源方式,从模块工作于电流源方式[1]。
由于系统在同一的误差电压下调整,模块的输出电流与误差电压成正比,所以不管负载电流如何变化,各模块的电流总是相等。
本文系1.2 强迫均流法。
图2为强迫均流法控制框图,主要通过电路系统中的监控模块对多个电源模块实现均流。
检测模块将采集到的电流反馈到单片机,经过软件计算,比较各模块电流与系统平均电流的数值,再分别调整模块电压使其与系统平均电流相等。
二、系统设计方案2.1 方案一。
根据主从均流法的均流原理,设计以LM2596为核心的降压电路和以STM32F407为核心的控制系统。
2.1.2 硬件设计。
● 恒流源模块在本次开关电源并联供电系统的设计中,使用主从均流法,将一个电源模块作为恒流源,并将另一个电源模块作为恒压源。
● 恒压源模块恒压源模块与恒流源模块的电路几乎相同的,区别就在于恒压源模块中少了比较器LM358。
光电分布式光伏发电接入系统方案1.工程概况某某光电位于某新城经济开发区和平路7号,总用地面积约70亩。
该公司主要经营围是太阳能单晶硅棒、硅片、电池片组件、太阳能光伏系统工程、太阳能电池控制等太阳能系列产品的研发、生产、销售和施工服务。
生产厂房于2009年9月建成投产。
该厂区现建设有1座10kV环网柜。
该环网柜采用压气式负荷开关,一进三出,保护采用熔断器保护。
环网柜电源“T”接在110kV店埠变10kV19开关二水厂线公用线路上,安装630kVA、200kVA变压器各一台,电压等级为10/0.4kV。
某某光电厂区共计2栋厂房和1个办公楼屋顶建筑面积约20000m2。
本工程计划在屋顶安装6120块245w/块太阳能电池组件,设计按每20块组件组成一串,每10或11串接入一个汇流箱,每10个汇流箱接分别入3台直流柜,经3台电源生产的500kW逆变器逆变为交流270V,经1台1000kVA的双分裂变压器及1台500kVA的双绕组变压器升压至10kV,接入厂区本期工程建设的配电房的10kV母线。
总装机容量1500千瓦,采用用户侧并网方式。
计划于2013年10月建成投运。
2.建设必要性太阳能发电是绿色、环保、清洁、可再生能源,有利于节约煤炭资源,符合国家产业政策。
本工程利用厂房屋顶建设光伏发电示项目,建成后可就近向某某光电厂区供电,能有效利用资源和保护环境,经济、社会、环境效益显著。
因此,本工程的建设是必要的。
3、接入系统1)电厂定位根据电力平衡,本工程定位为用户侧并网太阳能电站,所发电力在某某光电厂区就地消化。
2)主要技术原则(1)本工程接入系统方案应以国家电网公司分布式光伏发电接入系统典型设计、某电网现状及规划接线为基础,并与某某光电厂区部供电规划相结合。
接入系统方案应保证电网和电厂的安全稳定运行,技术、经济合理,便于调度管理。
(2)本工程光伏电站接入系统方案应充分考虑并网太阳能电站的特殊性及其对电网的影响并采取有效的防措施。
分布式光伏典型接入方案设计1.系统一次设计在确保电网和分布式电源安全运行的前提下,综合考虑分布式光伏项目报装装机容量和远期规划装机容量等因素,合理确定接入电压等级、接入点;同时明确相应电气计算(包括潮流、短路、电能质量分析、无功平衡、三相不平衡校验等),合理选择送出线路回路数、导线截面,明确无功容量配置,对升压站主接线、设备参数选型提出要求,提出系统对光伏电站的技术要求。
分布式电源并网电压等级根据装机容量进行初步选择的参考标准如下:8kW 及以下可接入220V;8kW-400kW可接入380V;400kW-6MW 可接入10kV。
2.继电保护及安全自动装置设计线路保护:分布式光伏以380V电压等级接入电网时,并网点接入点和公共连接点的断路器应具备短路瞬时、长延时保护功能和分励脱扣等功能,按实际需求配置失压跳闸及低压闭锁合闸功能,同时应配置剩余电流保护装置。
分布式电源接入变电站、开关站、环网室(箱)、配电室或箱变10kV母线时,一般情况下配置(方向)过流保护,也可以配置距离保护:当上述两种保护无法整定或配合困难时,需增配纵联电流差动保护。
母线保护:分布式电源系统设有母线时,可不设专用母线保护发生故障时可由母线有源连接元件的后备保护切除故障。
有特殊要求时,如后备保护时限不能满足要求,需相应配置保护装置,快速切除母线故障。
需对变电站或开关站侧的母线保护进行校验,若不能满足要求时,则变电站或开关站侧需要配置保护装置,快速切除母线故障。
孤岛检测及安全自动装置:分布式光伏发电逆变器必须具备快速检测孤岛且检测到孤岛后立即断开与电网连接的能力,其防孤岛方案应与继电保护配置、频率电压异常紧急控制装置配置和低电压穿越等相配合,时限上互相匹配。
分布式光伏接入系统的安全自动装置应该实现频率电压异常紧急控制功能,按照整定值跳开并网点断路器。
分布式光伏10kV接入系统时,需在并网点设置安全自动装置;若10kV 线路保护具备失压跳闸及低压闭锁合闸功能,可不配置具备该功能的自动装置。
分布式电源接入10KV及以下配电网的设计探究摘要:分布式电源以其高效、经济、清洁等特点越来越广泛的存在于电网运行中,其接入是实现智能电网的必然趋势。
本文以10KV及以下电压等级接入电网的分布式电源为例,选取分布式光伏发电接入系统和分布式燃机发电接入系统分别进行阐述,提出防孤岛保护、逆功率保护等一系列保护在实践工程中的运用。
对于解决当前分布式电源项目建设存在的问题,实现可再生能源建设与电网建设的协调、可持续发展具有重要意义。
关键词:分布式电源;防孤岛保护;逆功率保护能源是国民经济发展的基础,我国是能源大国,其中太阳能资源总储量约为1.47X108亿kWh/年。
然而我国的能源资源分布又是极不均匀的,资源利用在西部地区较为集中,中东部地区较为分散,因此要充分利用可再生能源,分布式发电就成为能源利用的重要形式之一。
根据国家能源发展规划,加快转变能源发展方式,规划能源新技术的研发和应用,解决有限能源和资源的约束,着力提高能源开发、转化和利用的效率,充分利用可再生能源,推动能源生产和利用方式的变革。
分布式发电将成为未来发展的重点,深入研究分布式发电具有重要意义。
1.分布式电源分布式电源主要包括太阳能发电、风力发电、资源综合利用、天然气发电等多种形式。
其具有资源分散、项目容量较小、用户类型多样等特点,可以灵活分布于用户所在场地或附近建设安装,运行方式多以用户“自发自用、余电上网”为主。
虽然分布式电源大大减少了输配电网远距离传输,但其对主网电能质量的影响也是不可忽略的,所以系统的设计有助于分布式电源与主网并网的安全可靠运行。
2.分布式光伏发电接入系统近年来,太阳能光伏发电以其清洁、源源不断、安全等显著优势,得到了国家政策方面的大力扶持。
特别是针对开发区一些生厂企业而言,出资建设屋顶光伏电站不仅解决了部分企业用电量大的情况,而且也给企业带来了一定的经济效益。
以某公司800kWp分布式太阳能光伏发电项目为例:该项目单从并网装机容量800kWp来看,处在0.4~6MW这个范围,采用10KV电压等级接入,光伏电站可通过800KVA升压变升压至10KV电压等级并入公共电网。
光电分布式光伏发电接入系统方案1. 工程概况某某光电有限公司位于某新城经济开发区和平路7号,总用地面积约70亩。
该公司主要经营范围是太阳能单晶硅棒、硅片、电池片组件、太阳能光伏系统工程、太阳能电池控制等太阳能系列产品的研发、生产、销售和施工服务。
生产厂房于2009年9月建成投产。
该厂区现建设有1座10kV环网柜。
该环网柜采用压气式负荷开关,一进三出,保护采用熔断器保护。
环网柜电源接在llOkV店埠变10kV19开关二水厂线公用线路上,安装630kVA. 200kVA变压器各一台,电压等级为10/0. 4kV o某某光电有限公司厂区共计2栋厂房和1个办公楼屋顶建筑面积约20000m2o本工程计划在屋顶安装6120块245w/块太阳能电池组件,设计按每20块组件组成一串,每10或11串接入一个汇流箱,每10个汇流箱接分别入3台直流柜,经3台阳光电源生产的500kW逆变器逆变为交流270V,经1台lOOOkVA 的双分裂变压器及1台500kVA的双绕组变压器升压至10kV,接入厂区本期工程建设的配电房的10kV母线。
总装机容量1500 千瓦,采用用户侧并网方式。
计划于2013年10月建成投运。
2・建设必要性太阳能发电是绿色、环保、清洁、可再生能源,有利于节约煤炭资源,符合国家产业政策。
本工程利用厂房屋顶建设光伏发电示范项目,建成后可就近向某某光电有限公司厂区供电, 能有效利用资源和保护环境,经济、社会、环境效益显著。
因此,本工程的建设是必要的。
3、接入系统1)电厂定位根据电力平衡,本工程定位为用户侧并网太阳能电站,所发电力在某某光电有限公司厂区内就地消化。
2)主要技术原则(1)本工程接入系统方案应以国家电网公司分布式光伏发电接入系统典型设计、某电网现状及规划接线为基础,并与某某光电有限公司厂区内部供电规划相结合。
接入系统方案应保证电网和电厂的安全稳定运行,技术、经济合理,便于调度管理。
(2)本工程光伏电站接入系统方案应充分考虑并网太阳能电站的特殊性及其对电网的影响并采取有效的防范措施。
分布式电源(光伏、风电)接入系统方式汇总分析2019年8月本报告所指的分布式电源仅包含分布式光伏发电、分散式风电,其他分布式电源不在所述范围之内。
其中,110kV(东北地区66kV)电压等级接入的分散式风电项目,接入系统设计和管理按照集中式风电场执行,本报告不做具体分析介绍。
分布式光伏、分散式风电接入系统方案分类如下:配置情况说明;下面就不同接入系统方式做具体说明分析。
一、分布式光伏发电项目(1)XGF10-T-1方案一:专线接入公共电网变电站10kV母线;具体方案配置如下:于光伏扶贫项目);具体方案配置如下:具体方案配置如下:具体方案配置如下:(5)XGF380-T-1方案五:以1回380V线路接入公共电网配电箱/线路;具体方案配置如下:(6)XGF380-T-2方案六:以1回380V线路接入公共电网配电室、箱变或柱上变压器低压母线;(应用于光伏扶贫项目)具体方案配置如下:(7)XGF380-Z-1方案七:以1回380V线路接入用户配电箱/线路;具体方案配置如下:(8)XGF380-Z-2方案八:以1回380V线路接入用户配电室、箱变或柱上变压器低压母线;具体方案配置如下:二、分散式风力发电项目(1)XFD110-T-1方案一:专线接入公共电网110kV变电站110kV母线;具体方案配置如下:具体方案配置如下:具体方案配置如下:具体方案配置如下:具体方案配置如下:具体方案配置如下:(7)XFD10-T-1方案七:专线接入公共电网变电站10kV母线;具体方案配置如下:具体方案配置如下:具体方案配置如下:具体方案配置如下:(11)XFD380-T-1方案十一:以1回380V线路接入公共电网配电室、箱变或柱上变压器低压母线;具体方案配置如下:(12)XFD380-Z-1方案十二:以1回380V线路接入用户配电室、箱变或柱上变压器低压母线;具体方案配置如下:。
2022年台区经理多选题和答案(12)共1种题型,共100题多选题(共100题)1.箱式变电站停电工作前,应断开所有可能送电到箱式变电站的线路的(),验电、接地后,方可进行箱式变电站的高压设备工作。
A:A、断路器(开关)B:B、负荷开关C:C、隔离开关(刀闸)D:D、熔断器【答案】:ABCD2.一把拉线由杆上至地下组成的金具和材料有()。
A:A、拉线抱箍、延长环B:B、LX楔型线夹、钢绞线、C:C、UT式可调线夹、拉线棒、拉线盘D:D、钢芯铝绞线【答案】:ABC3.《国网江苏省电力公司营销部(农电工作部)关于进一步强化电费资金管理的通知》大力推广()、()和()等缴费方式,减少电费资金流转人工操作环节。
A:A、电子托收B:B、网银渠道C:C、银行柜台预收预存D:D、现金【答案】:ABC4.GB/T20234.2-2015标准中,交流充电接口中三相交流电源电流等级有()。
A:A、10AB:B、16AC:C、32AD:D、63A【答案】:BCD5.电能表安装工艺上的错误与不规范包括()。
A:A、表尾线头剥削过长造成露芯B:B、表尾接线端子只压一只螺钉C:C、不同规格导线在接线柱处叠压不规范D:D、线鼻子弯圆方向与接线柱螺母旋紧方向相反【答案】:ABCD6.一般缺陷列入()工作计划消除。
A:A、年B:B、季C:C、月D:D、周【答案】:ABC7.新装、增容客户,用电变更客户,电能计量装置参数变化的客户,其业务流程处理完毕后的首次电量电费计算,应逐户审核,认真核对其户名,地址,表计编号,()定比定量的执行标准等信息。
A:A、拆除电量B:B、基本电费C:C、电价执行D:D、变压器损耗电量【答案】:ABCD8.安装绝缘子前应进行外观检查,且符合下列要求()。
A:A、瓷绝缘子与铁绝缘子结合紧密B:B、铁绝缘子镀锌良好,螺杆与螺母配合紧密C:C、技术文件齐全D:D、瓷绝缘子轴光滑,无裂纹、缺釉、斑点、烧痕和气泡等缺陷【答案】:ABD9.电费收取中证据的使用,诉讼方式一般包括()。
目次前言........................................ .......................................III1范围......................................... . (1)2规范性引用文件......................................... (1)3术语和定义......................................... . (1)4设计依据和主要内容......................................... .. (2)4.1设计依据........................................ (2)4.2设计范围........................................ (2)4.3设计边界条件........................................ .. (2)4.4设计主要内容........................................ .. (2)4.5设计思路和研究重点........................................ .. (2)5系统一次......................................... (2)5.1电力系统现状概况及分布式电源概述........................................ (2)5.2地区电网发展规划........................................ . (3)5.3接入系统方案........................................ .. (3)5.4附图........................................ . (4)6系统二次......................................... (4)6.1总体要求........................................ (4)6.2继电保护........................................ (4)6.3调度自动化........................................ . (4)6.4电能计量装置及电能量采集终端........................................ . (5)6.5接入系统二次设备清单及投资估算........................................ .. (5)6.6附图........................................ . (5)7系统通信......................................... (5)7.1概述......................................... (5)7.2技术要求及选型......................................... .. (6)7.3分布式电源通信方案......................................... . (6)7.4通道组织及话路分配......................................... . (6)7.5通信设备配置方案......................................... (6)7.6设备清单及投资......................................... .. (6)7.7附图......................................... (6)8接入系统方案经济技术比选.......................................... . (6)9结论.......................................... ....................................6编制说明......................................... (7)I前言本标准在调查研究,总结国内分布式电源接入系统工程设计实践经验,参考国内外有关标准并在广泛征求意见的基础上编制而成。
分布式电源接入系统典型设计【征求意见稿】2016版目录第一篇总论 (1)第1章概述 (1)1.1 工作目的和意义 (2)1.2 设计原则 (3)1.3 工作方式 (3)1.4 设计范围及方案划分 (4)1.5 应用说明 (14)第2章工作过程 (17)第3章典型设计依据 (18)3.1 设计依据性文件 (18)3.2 主要设计标准、规程规范 (18)3.3 主要电气设备技术标准 (21)第二篇接入系统典型方案及技术原则 (22)第4章概述 (22)第5章系统一次设计及方案划分 (23)5.1 内容和深度要求 (23)5.2 主要原则及接入系统方案 (24)第6章系统继电保护及安全自动装臵 (46)6.1 内容与深度要求 (46)6.2 技术原则 (46)第7章系统调度自动化 (50)7.1 内容与深度要求 (50)7.2 技术原则 (50)第8章系统通信 (54)8.1 内容及深度要求 (54)8.2 技术原则 (54)第9章计量 (58)9.1 内容与深度要求 (58)9.2 技术原则 (58)第三篇光伏发电(逆变器型)接入系统典型设计方案 (61)第10章10K V接入公共电网变电站方案典型设计(XGF10-T-1)(61)10.1 方案概述 (61)10.2 接入系统一次 (61)10.3 接入系统二次 (66)第11章10K V接入公共电网开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-T-2) 8511.1 方案概述 (85)11.2 接入系统一次 (85)11.3 接入系统二次 (90)第12章10K V T接公共电网线路方案典型设计(XGF10-T-3)(113)12.1 方案概述 (113)12.2 接入系统一次 (113)12.3 接入系统二次 (118)第13章10K V接入用户开关站、环网室(箱)、配电室或箱变方案典型设计(XGF10-Z-1) . 13613.1 方案概述 (136)13.2 接入系统一次 (136)13.3 接入系统二次 (142)1。
附件5公共连接点380V分布式光伏接入系统典型方案(自发自用、余电上网)告知事项依据国家有关政策和规定、电网的规划、分布式光伏并网需求以及当地供电条件等因素,贵户年月日递交的分布式光伏并网申请经现场查勘,并经购售电双方协商一致后,()分布式光伏具备并网条件,接入系统方案详见正文。
()不具备并网条件,主要原因是,待具备并网条件时另行答复。
一、方案概述本工程光伏电力汇流后通过1回线路接入用户内部(自然人光伏接入用户漏电保护器的电网侧):用户电源点信息:上级配变台区名称:光伏并网点位置:二、系统一次1.电气主接线380V采用单元接线2.接入示意图380V当发自用、余量上网模式分布式光伏发电接入示意图(直接接入式)并网计量箱设备配置单:1表计绝缘安装底板2选线所路器(空开)3进线隔离刀第4出线隔离刀闸5漏电流保护器6浪涌保护器7机械型运欠压延时保护(自复式)8出线断路器(空开)9接地端子(银排)10计量箱卖印扣380V自发当用、余量上网模式分布式光伏发电接入示意图(经电流互感器接入)并网计量柜设备配置单:1表计绝缘安装底板2进线断路器(空开)3进线隔离刀第4日线隔离刀闸5漏电流保护器6洩涌保护器7机械型这欠压延时保护(自复式)8出线断路器(空开)9接地端子(银排)10计量箱卖印扣11电流互感器3.主要设备选择原则(1)送出线路导线截面分布式光伏送出线路电缆截面选择应遵循以下原则:1)分布式光伏送出线路电缆截面选择需根据所需送出的光伏容量、并网电压等级选取,并考虑光伏发电效率等因素;2)分布式光伏送出线路电缆截面一般按电缆允许载流量选择;3)380伏电缆可选用YJV22-1x10m ㎡,16m㎡,25m㎡,35m㎡,50m㎡,70m㎡等截面铜芯电缆。
参选范围:220V单相最大接入容量原则上不超过8kW,通常8kW 至20kW选用10m㎡截面的导线,20kW至30kW选用16m㎡截面的导线,30kW至40kW以下选用25m㎡截面的导线,40kW至60kW 选用35m㎡截面的导线,60kW至100kW选用50m㎡截面的导线,100kW至160kW选用70m㎡截面的导线。
分布式电源系统设计2008-3-7 14:24:00分布式电源系统不再使用统一的直流电源给系统供电,而是对系统中不同设备、不同电路板、甚至对同一电路板上不同的电路采用不同的电源供电。
系统中低频电路和高频电路,小电流负载和大负载供电线路完全分离。
特别在低电压大电流负载时,采用较高电压传输到负载附近再用DC—DC变换模块降压供给负载。
系统中各电路的电源相对独立,减少了大电流传输线路,使系统的总效率有一定的提高,并且对可靠性和电磁兼容性问题也比较容易解决。
一、分布式电源系统结构分布式电源系统可分为交流分布和直流分布两种基本结构。
每一种结构都可以采用不同的变换模块在深度和广度两个方面扩展,当然两种结构也可以互相渗透。
(一)交流分布式电源系统交流分布式电源系统由多个AC—DC变换模块组成,每一块电路板或一个装置拥有一个AC—DC变换模块,典型结构如图9—30所示。
这种结构比较昂贵,因为每一个AC—DC变换模块都需具有整流滤波及抑制电磁干扰电路,也意味着交流电源线围绕整个系统,增加了电磁干扰敏感程度和安全问题。
然而,在某些情况下这种结构可能是正确的方案。
例如,某电信设备制造厂利用这种结构给某栋楼房中的电信设备供电。
每层楼使用一个AC—DC模块,配电结构如图9—31所示。
这种结构也应用于某电脑生产厂家的文件服务器中,如图9—32所示。
图中CPU板和每一个磁盘驱动器都使用一个AC—DC模块电源。
(二)直流分布式电源系统直流分布式电源系统是应用最广泛的一种结构。
它一般包含一个交流前端AC—DC模块(或者多个前端模块并连,也可使用冗余技术),前端模块将交流电压变换成24、48V或300V的直流电压,形成直流分布总线。
利用直流总线传输到系统中每一个负载板上,由负载板上的DC—DC变换模块再来产生负载需要的直流电压。
这种DC—DC变换可能需要多次。
例如,某负载板上需要5 V和2.1V两种直流电压,5V电压可利用一个DC—DC模块从48V总线获得,2.1V电压用另一个DC—DC模块从5V电压获得比较好。
分布式电源接入系统典型设计
首先,逆变器选型是分布式电源接入系统设计的首要任务。
逆变器用
于将分布式电源的直流电能转换为交流电能供电到电网中。
逆变器的选型
需要考虑分布式电源的功率、电压等参数,并满足电力系统的要求。
常见
的逆变器有串联逆变器和并联逆变器两种,根据不同的应用场景选择合适
的逆变器类型。
其次,电网同步控制是分布式电源接入系统设计中的关键环节。
电网
同步控制主要是指将分布式电源的交流电压与电网电压进行同步,以保证
分布式电源和电网的功率匹配。
电网同步控制可以通过改变逆变器的输出
电压和频率来实现。
在设计中,需要考虑同步控制的算法、控制策略以及
系统的响应速度等因素。
同时,故障保护是分布式电源接入系统设计中必不可少的一部分。
故
障保护主要是指当电网出现故障时,分布式电源能够及时脱离电网,以保
护其自身的运行安全。
常见的故障保护措施包括过电流保护、过压保护、
短路保护等。
在设计中,需要考虑故障保护的快速响应和可靠性。
此外,分布式电源接入系统设计还需要关注电能质量的问题。
分布式
电源的接入可能会对电力系统的电能质量产生影响,如谐波、功率因素等
问题。
因此,在系统设计中需要考虑电能质量的监测和控制,确保分布式
电源接入系统不会对电力系统的正常运行造成影响。
最后,分布式电源接入系统设计还需考虑经济性和可行性。
设计中需
要综合考虑分布式电源的成本、效率等因素,以及系统的可行性和可靠性。
在实际应用中,还需要根据具体情况进行参数优化和系统调试,以实现最
佳的设计效果和经济效益。
综上所述,分布式电源接入系统的典型设计包括逆变器选型、电网同步控制、故障保护等方面。
在设计中需要综合考虑分布式电源的特性和电力系统的需求,以实现系统的安全可靠运行和经济高效运行。