高中数学必修二期末考试试卷(含答案)
- 格式:docx
- 大小:283.85 KB
- 文档页数:7
高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。
答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。
答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。
xyOxyOxyOxyO数学必修二综合测试题一. 选择题*1.下列叙述中,正确的是( )(A )因为,P Q αα∈∈,所以PQ ∈α(B )因为P α∈,Q β∈,所以αβ⋂=PQ(C )因为AB α⊂,C ∈AB ,D ∈AB ,所以CD ∈α(D )因为AB α⊂,AB β⊂,所以()A αβ∈⋂且()B αβ∈⋂ *2.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).(A)30 (B)45 (C)60 (D)135 *3.已知点(,1,2)A x B 和点(2,3,4),且AB =,则实数x 的值是( ). (A)-3或4 (B)–6或2 (C)3或-4 (D)6或-2*4.长方体的三个面的面积分别是632、、,则长方体的体积是( ).A .23B .32C .6D .6*5.棱长为a 的正方体内切一球,该球的表面积为 ( ) A 、2a π B 、22a π C 、32a π D 、a π24 *6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线( ) (A )只有一条 (B )无数条 (C )是平面α内的所有直线 (D )不存在 **7.已知直线l 、m 、n 与平面α、β,给出下列四个命题: ①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥ ,m ∥, 则⊥β③若m ∥ ,n ∥ ,则m ∥n ④若m ⊥ , ⊥β ,则m ∥ 或m ⊂≠α其中假命题是( ).(A) ① (B) ② (C) ③ (D) ④**8.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ).**9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( * ). (A) 4π (B) 54π(C) π (D) 32π **10.直线3y 2x =--与圆9)3y ()2x (22=++-交于E 、F 两点,则∆EOF(O 是原点)的面积为( ).A .52B .43C .23D .556**11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( )A 、34k ≥或4k ≤- B 、34k ≥或14k ≤- C 、434≤≤-k D 、443≤≤k ***12.若直线k 24kx y ++=与曲线2x 4y -=有两个交点,则k 的取值范围是( ).A .[)∞+,1 B .)43,1[-- C . ]1,43( D .]1,(--∞ 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.**13.如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么点A 的坐标是 .**14.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球面的面积是 . **15.已知222212:1:349O x y O x y +=+=圆与圆(-)(+),则12O O 圆与圆的位置关系为 .***16.如图①,一个圆锥形容器的高为a ,内装一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为2a(如图②),则图①中的水面高度为 .三.解答题:**17.(本小题满分12分)如图,在OABC 中,点C (1,3). (1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程 .**18.(本小题满分12分)如图,已知正四棱锥V -ABCD 中,AC BD M VM 与交于点,是棱锥的高,若6cm AC =,5cm VC =,求正四棱锥V -ABCD 的体积.***19.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点.(1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.***20. (本小题满分12分)已知直线1l :mx-y=0 ,2l :x+my-m-2=0王新敞(Ⅰ)求证:对m ∈R ,1l 与 2l 的交点P 在一个定圆上;(Ⅱ)若1l 与定圆的另一个交点为1P ,2l 与定圆①②BA1F的另一交点为2P ,求当m 在实数范围内取值时,⊿21P PP 面积的最大值及对应的m .***21. (本小题满分12分)如图,在棱长为a 的正方体ABCD D C B A -1111中,(1)作出面11A BC 与面ABCD 的交线l ,判断l 与线11A C 位置关系,并给出证明; (2)证明1B D ⊥面11A BC ; (3)求线AC 到面11A BC 的距离; (4)若以D 为坐标原点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出1,B B 两点的坐标.****22.(本小题满分14分)已知圆O :221x y +=和定点A (2,1),由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1) 求实数a 、b 间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.参考答案一.选择题 DBACA BDCCD AB二.填空题 13. )2,1(- 14. 2a 3π 15. 相离 16.(1a三.解答题 17. 解: (1)点O (0,0),点C (1,3),OC 所在直线的斜率为30310OC k -==-. (2)在OABC 中,//AB OC,CD ⊥AB , CD ⊥OC .CD 所在直线的斜率为13CD k =-.CD 所在直线方程为13(1)3y x -=--,3100x y +-=即.18. 解法1:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ∴===⨯=(cm). 且11661822ABCDS AC BD =⨯⨯=⨯⨯=(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为111842433ABCD S VM ⨯=⨯⨯=(cm 3).解法2:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ===⨯=(cm).且AB BC AC === .2218ABCD S AB ===(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为113S 319. (1)证明:连结BD .在长方体1AC 中,对角线11//BD B D . 又 E 、F 为棱AD 、AB 的中点, //EF BD ∴.11//EF B D ∴. 又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1.(2)在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1,∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又B 1D 1⊂≠ 平面CB 1D 1,平面CAA 1C 1⊥平面CB 1D 1.20. 解:(Ⅰ)1l 与 2l 分别过定点(0,0)、(2,1),且两两垂直,∴ 1l 与 2l 的交点必在以(0,0)、(2,1)为一条直径的圆:0)1y (y )2x (x =-+- 即0y x 2y x 22=--+王新敞(Ⅱ)由(1)得1P (0,0)、2P (2,1),∴⊿21P PP 面积的最大值必为45r r 221=⋅⋅. 此时OP 与12P P 垂直,由此可得m=3或13-.21.解:(1)在面ABCD 内过点B 作AC 的平行线BE ,易知BE 即为直线l , ∵AC ∥11A C ,AC ∥l ,∴l ∥11A C .(2)易证11A C ⊥面11DBB D ,∴11A C ⊥1B D ,同理可证1A B ⊥1B D , 又11A C ⋂1A B =1A ,∴1B D ⊥面11A BC .(3)线AC 到面11A BC 的距离即为点A 到面11A BC 的距离,也就是点1B 到面11A BC 的距离,记为h ,在三棱锥111B BA C -中有111111B BA C B A B C V V --=,即1111111133A BC ABC S h S BB ∆∆⋅=⋅,∴3h =.(4)1(,,0),(,,)C a a C a a a 22. 解:(1)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222PQ OP OQ =-.又由已知PQ PA =,故22PQ PA =. 即:22222()1(2)(1)a b a b +-=-+-.化简得实数a 、b 间满足的等量关系为:230a b +-=. (2)由230a b +-=,得23b a =-+.PQ ===故当65a =时,minPQ =即线段PQ解法2:由(1)知,点P 在直线l :2x + y -3 = 0 上.∴ | PQ |min = | PA |min ,即求点A 到直线 l 的距离. ∴ | PQ |min =| 2×2 + 1-3 |2 2 + 12 = 255 . (3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆 O 的半径为1,1 1.R OP R ∴-≤≤+即1R OP ≥-且1ROP ≤+.而OP ==故当65a =时,minOP =此时, 3235b a =-+=,min 1R =.得半径取最小值时圆P 的方程为22263()()1)55x y -+-=.解法2: 圆P 与圆O 有公共点,圆 P 半径最小时为与圆O 外切(取小者)的情形,而这些半径的最小值为圆心O 到直线l 的距离减去1,圆心P 为过原点与l 垂直的直线l ’ 与l 的交点P 0.r = 32 2 + 1 2 -1 = 355 -1.又 l ’:x -2y = 0,解方程组20,230x y x y -=⎧⎨+-=⎩,得6,535x y ⎧=⎪⎪⎨⎪=⎪⎩.即P 0( 65 ,35).∴ 所求圆方程为22263()()1)55x y -+-=.。
班级 姓名 学号 分数高二上学期数学期末测试卷(A 卷·夯实基础)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.过两点()()5,,3,1A y B -的直线的倾斜角是135°,则y 等于( ) A .2 B .2- C .3 D .3-【答案】D 【详解】因为斜率tan1351k ︒==-,所以1153y k +==--,得3y =-. 故选:D.2.40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是( ) A50y ++= B.40x += C.50x += D.0x +=【答案】C 【详解】40y --=,令0x =,解得4y =-, 设()0,4A -,关于直线10x y +-=的对称点为(),B m n , 则4141022n mm n +⎧=⎪⎪⎨-⎪+-=⎪⎩,解得51m n =⎧⎨=⎩,即()5,1B ,40y --=,令x =1y =-,设)1C-,关于直线10x y +-=的对称点为(),D a b ,则11102b =--=,解得21a b =⎧⎪⎨=⎪⎩(2,1D ,BD k ==直线BD:)15y x -=-,即50x =。
故选:C3.已知异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==,则,a b 夹角的大小是( ) A .56πB .34π C .3π D .6π【答案】C 【详解】异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==∴21132371cos ,1424m n m n m n⨯+⨯-+⨯-⋅-====-, 异面直线,a b 所成角为范围为02πθ<≤,,a b ∴夹角的大小是3π故选:C4.设数列{}n a 的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16C .49D .64【答案】A 【详解】878644915a S S =-=-= 故选:A5.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【详解】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.6.直三棱柱111ABC A B C -中,90BCA ∠=,M 、N 分别是11A B 、11A C 的中点,1BC CA CC ==,则BM 与NA 所成的角的余弦值为( )A .BCD . 【答案】C 【详解】由题意可知1CC ⊥平面ABC ,且90BCA ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设12BC CA CC ===,则()2,0,0A 、()0,2,0B 、()1,0,2N 、()1,1,2M ,()1,0,2AN =-,()1,1,2BM =-,30cos ,56AN BM AN BM AN BM⋅<>===⨯⋅故BM 与NA 30故选:C.7.设抛物线C :y 2=4x 的焦点为F ,M 为抛物线C 上一点,N (2,2),则MF MN +的最小值为( ) A .3 B .2C .1D .4【答案】A 【详解】因为抛物线C :y 2=4x 的焦点为F (1,0),准线为1x =-, 根据抛物线定义可知MF =1M x +,所以当MN 垂直抛物线准线时,MF MN +最小, 最小值为:13N x +=. 故选:A .8.已知椭圆C :2222x y a b +=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为34,点P 为椭圆上一点,若∠F 1PF 2=π2,且F 1PF 2内切圆的半径为1,则C 的方程为( ) A .22167x y +=1B .223214x y +=1C .24x +y 2=1D .22447x y +=1【答案】A 【详解】易知F 1PF 2中,内切圆半径r =1212-2PF PF F F +=a -c =1,又离心率为34c a =,解得a =4,c =3,所以椭圆C 的方程为22167x y +=1. 故选:A二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则( ) A .2d =- B .124a =C .2628a a +=D .n S 取得最大值时,11n =【答案】AC 【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项) 选项D 错误. 故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误; 对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误. 故选:AC10.已知直线:440l kx y k -+-=与圆22:4440M x y x y +--+=,则下列说法中正确的是( )A .直线l 与圆M 一定相交B .若0k =,则直线l 与圆M 相切C .当1k =时,直线l 被圆M 截得的弦最长D .圆心M 到直线l的距离的最大值为【答案】BCD【详解】22:4440M x y x y +--+=,即()()22224x y -+-=,是以()2,2为圆心,以2为半径的圆,A.因为直线:440l kx y k -+-=,直线l 过()4,4,2244444440+-⨯-⨯+>,则()4,4在圆外,所以直线l 与圆M 不一定相交,故A 错误;B.若0k =,则直线:4l y =,直线l 与圆M 相切,故B 正确;C.当1k =时,直线l 的方程为0x y -=,过圆M 的圆心,即直线l 是直径所在直线,故C 正确;D.由圆的性质可知当直线l 与过点()4,4的直径垂直时,圆心M 到直线l 的距离的最大,此时=故D 正确,故选:BCD.11.已知点P 在双曲线22:1169x y C -=上,1F ,2F 分别为双曲线的左、右焦点,若12PF F △的面积为20,则下列说法正确的是( ) A .点P 到x 轴的距离为4 B .12523PF PF += C .12PF F △为钝角三角形 D .1260F PF ∠=︒【答案】AC 【详解】由双曲线的方程可得4a =,3b =,则5c =,由12PF F △的面积为20,得112102022P P c y y ⨯⨯=⨯⨯=,解得4P y =,即点P 到x 轴的距离为4,故A 选项正确; 将4P y =代入双曲线方程可得203P x =,根据双曲线的对称性可设20,43P ⎛⎫⎪⎝⎭,则2133PF =,由双曲线的定义知1228PF PF a -==,则11337833PF =+=, 则12133750333PF PF +=+=,故B 选项错误; 在12PF F △中,12371321033PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则12PF F △为钝角三角形,故C 选项正确;()2222121212121212122100cos 22PF PF PF PF PF PF F F F PF PF PF PF PF -+-+-∠==13376410021891331133713372233-+⨯⨯⨯==-≠⨯⨯⨯, 则1260F PF ∠=︒错误, 故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立 【答案】ACD 【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确; 对于选项B ,2ln 2ln 1fxx x x x x ,令()0f x '>可得2ln 10x ,有x >知函数()f x 的减区间为⎛⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x '-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确. 故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.与直线3250x y -+=的斜率相等,且过点()4,3-的直线方程为_________ 【答案】392y x =+【详解】直线3250x y -+=的斜率为32,故所求直线方程为()3342-=+y x ,即392y x =+.故答案为:392y x =+. 14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________ 【答案】13【详解】 122nn n a a a +=+,11a =, 则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+. 故答案为:13.15.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________. 【答案】2 【详解】∵()ln f x x x =+, ∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行, ∴2k =. 故答案为:2.16.设5(4P -是双曲线2222:1(0,0)x y C a b a b -=>>上一点,1(2,0)F -是C 的左焦点,Q 是C右支上的动点,则C 的离心率为______,1PQF △面积的取值范围是_______. 【答案】2)+∞ 【详解】双曲线C 的右焦点为2(2,0)F,则13||2PF =,27||2PF ,因点P 在双曲线C 上,则由双曲线定义得2122a PF PF =-=,即1a =,又2c =, 所以双曲线C 的离心率为2ce a==;因直线PF 1的斜率1PF k =ba=1PF 与双曲线C 在第一、三象限的渐近线平行,则这条渐近线与直线1PF 0y -+的距离d ==上的点Q 到直线PF 1距离h d >=,于是得11113222PQF SPF h =⋅⋅>⨯所以1PQF △面积的取值范围是)+∞.故答案为:2;)+∞ 四、解答题(本大题共6小题,共70分)17.已知圆()22:20C x y mx y m R ++-=∈,其圆心在直线0x y +=上.(1)求m 的值;(2)若过点()1,1的直线l 与C 相切,求l 的方程. 【答案】 (1)2m =(2)20x y +-=或0x y -= 【详解】 (1)圆C 的标准方程为:222(1)124m m x y ⎛⎫++-=+⎪⎝⎭, 所以,圆心为,12m ⎛⎫- ⎪⎝⎭由圆心在直线0x y +=上,得2m =. 所以,圆C 的方程为:22(1)(1) 2.x y ++-=(2)由题意可知直线l 的斜率存在,设直线l 的方程为:()11y k x -=-, 即10,kx y k --+=由于直线l 和圆C解得:1k =±所以,直线方程为:20x y +-=或0x y -=.18.如图,在三棱锥P -ABC 中,△ABC 是以AC 为底的等腰直角三角形,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求直线PC 与平面PAM 所成角的正弦值. 【答案】 (1)证明见解析. (2【详解】 (1)证明:连接BO,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =,又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥,OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC ,(2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+,所以PC 与平面PAM 所成角的正弦值为则平面PAC 的法向量为() 1,0,0m =, 设平面MPA 的法向量(,,),n x y z =则(0,2,PA =--20,n PA y ⋅=--= ()()22220n AM x y λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即=13λ= 或 3λ=( 舍),设平面MPA的法向量(23,n =,(0,2,PC =-,设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>==+19.已知椭圆与双曲线221169x y -=具有共同的焦点1F 、2F ,点P 在椭圆上,12PF PF ⊥,____________①椭圆过点(),②椭圆的短轴长为10,③(①②③中选择一个) (1)求椭圆的标准方程; (2)求12PF F △的面积. 【答案】(1)条件选择见解析,椭圆方程为2215025x y += (2)1225PF F S=【详解】 (1)解:设椭圆方程()222222210,x y a b c a b a b+=>>=-.因为椭圆与双曲线221169x y -=具有共同的焦点,则225c =.选①:由已知可得a =225b =,椭圆方程为2215025x y +=; 选②:由已知可得5b =,则250a =,椭圆方程为2215025x y +=;选③得c a =,则250a =,椭圆方程为2215025x y +=. (2)解:由椭圆定义知122PF PF a +==, 又12PF PF ⊥,222124100PF PF c ∴+==②,由①可得2212121221002200PF PF PF PF PF PF ++⋅=+⋅=,解得1250PF PF ⋅=, 因此,12121252PF F SPF PF =⋅=. 20.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【答案】(1)7100x y ++=;(2)极小值点为1x =-,极大值点为13x =; (3)()min 1f x =,()max 97f x =.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x ∴在2x =-处的切线方程为()472y x -=-+,即7100x y ++=; (2)令()23210f x x x '=--+=,解得:1x =-或13x =, 则()(),,x f x f x '变化情况如下表:()f x ∴的极小值点为1x =-,极大值点为3x =; (3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增; 又()5125255297f -=--+=,()02f =,()111121f -=--+=, ()()min 11f x f ∴=-=,()()max 597f x f =-=.21.已知椭圆C 的离心率e =()1A ,)2A (1)求椭圆C 的方程;(2)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q ,求证:以PQ 为直径的圆过定点()1,0N .【答案】(1)2212x y +=; (2)证明见解析.【详解】(1)椭圆长轴端点在x 轴上,∴可设椭圆方程为()222210x y a b a b+=>>,由题意可得:222a b c c e a a ⎧=+⎪⎪==⎨⎪⎪=⎩,解得:11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2212x y +=; (2) 由2212x y y kx b ⎧+=⎪⎨⎪=+⎩得:()222124220k x kbx b +++-=,曲线C 与直线l 只有一个公共点,()228120k b ∴=+-=,即2221b k =+,设(),P P P x y ,则()22422212P kb kb k x b b k =-=-=-+, 222221p P k b k y kx b b b b b-∴=+=-+==,21,k P b b ⎛⎫∴- ⎪⎝⎭; 由2y kx b x =+⎧⎨=⎩得:22x y k b =⎧⎨=+⎩,即()2,2Q k b +; ()1,0N ,211,k NP bb ⎛⎫∴=-- ⎪⎝⎭,()1,2NQ k b =+, 2210k k b NP NQ b b+∴⋅=--+=,即NP NQ ⊥, ∴以PQ 为直径的圆恒过定点()1,0N .22.已知函数()ln xe f x ax a x x=-+. (1)若a e =,求()f x 的极值点;(2)若()0f x ≥,求a 的取值范围.【答案】(1)极小值点为1,无极大值点(2)(,]e -∞【详解】(1)解:(1)()f x 定义域为(0,)+∞,222(1)(1)(1)()()x x x x xe e e x e e x x e ex f x e x x x x x -----'=-+=-=, 令(),(0,)x g x e ex x =-∈+∞,则()x g x e e '=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()10g x g ≥=,即0x e ex -≥,当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在()0,1上递减,在()1,+∞上递增,()f x ∴的极小值点为1,无极大值点;(2)由()0f x ≥得ln (ln )x x e a x x --≥,令ln ,(0,)t x x x =-∈+∞,则t e at ≥,111x t x x-'=-=, 当01x <<时,0t '<,当1x >时,0t '>,所以函数ln ,(0,)t x x x =-∈+∞在()0,1上递减,在()1,+∞上递增,所以当1x =时,min 1t =,[1+t ∴∈∞,),te a t∴≤, 令(),[1,)te m t t t =∈+∞,则2(1)()0t e t m t t -'=≥, 所以函数()t e m t t=在[1,)t ∈+∞上递增,所以min ()(1)m t m e ==, 所以a e ≤,所以a 的取值范围为(,]e -∞.。
【易错题】高中必修二数学下期末试卷及答案一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 3.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .432⎛ ⎝⎭,B .432⎡⎢⎣⎦,C .432⎡⎢⎣⎭,D .43⎛ ⎝⎦4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .45.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .266.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .7.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增9.函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.在ABC ∆中,2cos (,b,22A b ca c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.设a >0,b >0,若3是3a 与3b的等比中项,则11a b+的最小值是__. 15.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________16.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 .17.函数()2sin sin 3f x x x =+-的最小值为________.18.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______.19.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.20.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 三、解答题21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程.22.已知2()sin cos f x x x x =+ (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小.25.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围. 26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v =,221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.2.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 4.B 解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.5.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=, 则()323266663213132?25a b a b a b a b a b ba b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【压轴题】⾼中必修⼆数学下期末试题(含答案)【压轴题】⾼中必修⼆数学下期末试题(含答案)⼀、选择题1.△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5B .7C .9D .113.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满⾜条件A CB ??的集合C 的个数为()A .1B .2C .3D .44.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为() A .3B .2C .1D .05.某三棱锥的三视图如图所⽰,则该三棱锥的体积为()A .20B .10C .30D .606.设正项等差数列的前n 项和为,若,则的最⼩值为 A .1 B .C .D .7.已知1sin 34πα??-= ,则cos 23πα??+= ()A .58-B .58C .78-D .788.已知函数21(1)()2(1)a x x f x x x x x ?++>?=?-+≤在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.函数()lg ||f x x x =的图象可能是()A .B .C .D .10.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则() A .a c b >> B .a b c >>C .c a b >>D .c b a >>11.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .1212.如图,在△ABC 中, 13AN NC =u u u v u u u v ,P 是BN 上的⼀点,若29AP m AB AC ??→??→??→=+,则实数m 的值为( )A .B .C .19D .⼆、填空题13.在ABC △中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________. 14.已知函数()3sin(2)cos(2)(||)2 f x x x π=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最⼤值为__. 15.已知ABC V ,135B o∠=,22,4AB BC ==,求AB AC ?=u u u r u u u r______.16.函数()12x f x =-的定义域是__________. 17.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆⼼,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平⾯图形绕直线旋转⼀周,则所形成的⼏何体的体积为 .18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的⽅程为____________.19.若()1,x ∈+∞,则131y x x =+-的最⼩值是_____. 20.在△ABC 中,85a b ==,,⾯积为12,则cos 2C =______.三、解答题21.设ABC ?的内⾓A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值;(2)当ABC ?的⾯积为3时,求a+c 的值. 22.已知x ,y ,()0,z ∈+∞,3x y z ++=.(1)求111x y z++的最⼩值(2)证明:2223x y z ≤++.23.已知数列{}n a 是等⽐数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 24.已知数列{}n a 满⾜11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等⽐数列,并说明理由;(3)求{}n a 的通项公式.25.以原点为圆⼼,半径为r 的圆O 222:()0O x y r r +=>与直线380x --=相切. (1)直线l 过点(6)-且l 截圆O 所得弦长为43l l 的⽅程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ?=-,证明:直线AB 恒过⼀个定点,并求出该定点坐标.26.如图,平⾏四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表⽰DE u u u v 、BF u u uv 、CG u u u v .【参考答案】***试卷处理标记,请不要删除⼀、选择题 1.D 解析:D 【解析】【分析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单⼀,根据余弦定理整理出关于b 的⼀元⼆次⽅程,再通过解⽅程求b.运算失误是基础题失分的主要原因,请考⽣切记!2.A解析:A【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=?==,选A. 3.D解析:D 【解析】【分析】【详解】求解⼀元⼆次⽅程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ??,所以根据⼦集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的⼦集个数,即有224=个,故选D. 【点评】本题考查⼦集的概念,不等式,解⼀元⼆次⽅程.本题在求集合个数时,也可采⽤列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极⾼.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表⽰以()0,0为圆⼼,1为半径的单位圆上所有点组成的集合,集合B 表⽰直线y x =上所有的点组成的集合,⼜圆221x y +=与直线y x =相交于两点,22? ??,22??-- ? ???,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较⼤,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满⾜互异性.5.B解析:B 【解析】【分析】根据三视图还原⼏何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得⼏何体直观图如下图所⽰:可知三棱锥⾼:4h =;底⾯⾯积:1155322S == ∴三棱锥体积:1115410332V Sh ==??=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原⼏何体,从⽽准确求解出三棱锥的⾼和底⾯⾯积. 6.D解析:D 【解析】【分析】先利⽤等差数列的求和公式得出,再利⽤等差数列的基本性质得出,再将代数式和相乘,展开后利⽤基本不等式可求出的最⼩值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成⽴,因此,的最⼩值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应⽤,考查利⽤基本不等式求最值,解题时要充分利⽤定值条件,并对所求代数式进⾏配凑,考查计算能⼒,属于中等题。
人教版高中数学必修二期末检测卷一、单项选择题(本大题共8小题,共40.0分)1.如图,在正方体EFGH−E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A. 平面E1FG1与平面EGH1B. 平面FHG1与平面F1H1GC. 平面F1H1H与平面FHE1D. 平面E1HG1与平面EH1G2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂a,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α//β;③若α⊥β,m⊥β,m⊄α.则m//α;④若α⊥β,m//α,则m⊥β.其中正确命题的个数为()A. 1B. 2C. 3D. 43.如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么()A. α⊥γ且l⊥mB. α⊥γ,且m//βC. m//β且l⊥mD. α//β且α⊥γ4.著名数学家华罗庚曾说过,“数无形时少直觉,形少数时难入微”,事实上,很多代数问题都可以转化为几何问题加以解决,如:√(x−a)2+(y −b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x2+4x+20+√x2+2x+10的最小值为()A. 2√5B. 5√2C. 4D. 85.已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A. −1或2B. 0或2C. 2D. −16.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>c1C. b <0,d >0,a >cD. b <0,d >0,a <c7. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,圆C:x 2+y 2+2x =b 2−1(b >0)的位置关系是“平行相交”,则b 的取值范围为 ( )A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞) 8. 直线y =kx +3与圆(x −3)2+(y −2)2=4相交于M ,N 两点,若|MN|=2√3,则k 的值是( )A. −34B. 0C. 0或−34D. 34 二、填空题(本大题共5小题,共25.0分)9. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 .10. 过两圆x 2+y 2−2y −4=0与x 2+y 2−4x +2y =0的交点,且圆心在直线l :2x +4y −1=0上的圆的方程是_________________.11. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是_____________.12. 如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积为 .13. 已知点M 是点P(4,5)关于直线y =3x −3的对称点,则过点M 且平行于直线y =3x −3的直线的方程是________.三、解答题(本大题共7小题,共84.0分)14. 如图,在三棱柱ABC −A 1B 1C 1中,O 为AB 的中点,CA =CB ,AB =AA 1,∠BAA 1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.15.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.16.求过点P(4,−1)且与直线3x−4y+6=0垂直的直线方程.317.在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x−4上.(1)若圆心C也在直线y=−x+5上,求圆C的方程;(2)在上述的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.18.如图,在直三棱柱ABC−A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1//平面DEC1;(2)BE⊥C1E.19.已知ΔABC的顶点B(3,4),AB边上的高所在的直线方程为x+y−3=0,E为BC的中点,且AE所在的直线方程为x+3y−7=0.(Ⅰ)求顶点A的坐标;(Ⅱ)求过E点且在x轴、y轴上的截距相等的直线l的方程.20.已知直线l:x−ay+1=0与圆C:x2+y2−4x−2y+1=0交于A,B两点,|AB|=2√3.(1)求a的值;(2)求与直线l平行的圆C的切线方程.答案和解析1.【答案】A【解析】【分析】本题考查了线面平行的判定,面面平行的判定,属于中档题.根据几何体中的线段特征确定平行关系,再确定线面的平行关系,E1G1//面EGH1,E1F//面EGH1,即可得出确定的平行平面.【解答】解:如图:在正方体EFGH−E1F1G1H1中,连接EG,E1F,E1G1,H1E,H1G,∵EG//E1G1,EG⊂面EGH1,E1G1⊄面EGH1,∴E1G1//面EGH1,∵E1F//H1G,H1G⊂面EGH1,E1F⊄面EGH1,∴E1F//面EGH1,∵E1G1∩E1F=E1,E1G1,E1F⊂面E1FG1,∴面EGH1//面E1FG1,故选A.2.【答案】B【解析】【分析】本题以命题的真假判断为载体,考查了空间直线与平面的位置关系及平面与平面的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.根据空间线面平行和垂直的几何特征及判定方法,逐一分析四个命题的真假,最后综合讨论5结果,可得答案.【解答】解:根据面面垂直的性质,故①正确;由α⊥γ,β⊥γ,得到α//β或相交,故②错误;由α⊥β,且m⊥β,得到m与α可能平行,也可能m在平面面α内,又m⊄α,则m//α,故③正确;若α⊥β,m//α,则m与β可能平行,可能相交,也可能线在面内,故④错误;其中正确命题的个数为2.故选B.3.【答案】A【解析】【分析】本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,属于基础题.m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.【解答】解:∵m⊂α且m⊥γ,∴α⊥γ,∵l=β∩γ,∴l⊂γ.又∵m⊥γ,∴l⊥m,即α⊥γ且l⊥m,故选A.4.【答案】B【解析】【分析】本题考查利用函数的几何意义求函数的最值,考查两点之间的距离公式的运用,属于中档题.由题意得到f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离,即要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|即可求解.【解答】解:∵f(x)=√x2+4x+20+√x2+2x+10=√(x+2)2+(0−4)2+√(x+1)2+(0−3)2,∴f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离之和.设点A(−2,4)关于x轴的对称点为A′,则A′的坐标为(−2,−4).要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|=√(−1+2)2+(3+4)2=5√2,即f(x)=√x2+4x+20+√x2+2x+10的最小值为5√2.故选B.5.【答案】D【解析】【分析】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.由a·a−(a+2)=0,即a2−a−2=0,解得a.经过验证即可得出.【解答】解:由题意知a⋅a−(a+2)=0,即a2−a−2=0,解得a=2或−1.经过验证可得:a=2时两条直线重合,舍去.∴a=−1.故选D.6.【答案】C【解析】【分析】本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解.【解答】解:l1 :y=−1a x−ba,l2 : y=−1cx−dc,由图象知:①−1a >−1c>0,②−ba<0,③−dc>0,,故选C.77.【答案】D【解析】【分析】本题主要考查直线与圆的位置关系及应用,属于中档题.结合新定义,求出圆心到直线的距离,根据相离相切的条件求出b 的范围,进而求出平行相交时b 的范围.【解答】解:圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行得a(a +1)−6=0,解得a =2或a =−3.又当a =2时,直线l 1,l 2重合,应舍去,∴两平行线的方程分别为x −y −2=0和x −y +3=0.由直线x −y −2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22; 由直线x −y +3=0与圆相切,得b =√2=√2.当两直线与圆都相离时,b <√2.∴“平行相交”时,b 满足{b >√2,b ≠3√22, ∴b 的取值范围是(√2,3√22)∪(3√22,+∞). 故选D . 8.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 由点到直线距离公式可得弦心距d =√k 2+1,再由弦长,半径,弦心距之间关系列出关于k 的等式,由此解得k 的值.【解答】解:圆心(3,2)到直线y =kx +3的距离d =√k 2+1,则|MN|=2 √4−(3k+1)2k 2+1=2√3,解得k =0或k =−34. 故选C .9.【答案】√105.【解析】【分析】本题主要考查直线与平面所成的角、线面垂直的判定,属于中档题.根据正方形条件得到线线垂直,再由线面垂直得到线线垂直,进而证明线面垂直找到点C1在面BB1D1D上的射影O,即线面角∠OBC1,进一步利用锐角三角形求解.【解答】解:如图所示,在长方体ABCD−A1B1C1D1中,连接A1C1、B1D1,交于O点,连接OB,由已知四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又∵BB1⊥平面A1B1C1D1,OC1⊂平面A1B1C1D1,∴OC1⊥BB1,而BB1∩B1D1=B1,∴OC1⊥平面BB1D1D.∴OB是BC1在平面BB1D1D内的射影.∴∠C1BO是BC1与平面BB1D1D所成的角.在正方形A1B1C1D1中,OC1=12A1C1=12√22+22=√2.在矩形BB1C1C中,BC1=√BC2+CC12=√4+1=√5.9∴sin∠C1BO=OC1BC1=√2√5=√105.故答案为√105.10.【答案】x2+y2−3x+y−1=0【解析】【分析】本题考查求圆的一般方程,圆系方程及其应用,属于中档题.可设新圆方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1),通过整理,不难表示出新圆的圆心坐标,接下来根据新圆的圆心在直线l上,将所得圆心坐标代入,解方程即可得解.【解答】解:设所求圆的方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1).整理得x2+y2+−41+λx+2−2λ1+λy−4λ1+λ=0,所以圆心坐标为(21+λ,λ−11+λ),因为圆心在直线2x+4y=1上,故41+λ+4(λ−1)1+λ=1,解得λ=13.所以所求圆的方程为x2+y2−3x+y−1=0.故答案为x2+y2−3x+y−1=0.11.【答案】(x−2)2+(y−2)2=2【解析】【试题解析】【分析】本题考查直线与圆相切的性质的应用,求圆的标准方程,难度一般.先求出圆心C1(6,6)到直线x+y−2=0的距离为d=√2=5√2.再求过点C1且垂直于x+ y−2=0的直线y=x,所求的最小圆的圆心C2在直线y=x上,圆心C2到直线x+y−2=0的距离为5√2−3√22=√2,则圆C2的半径长为√2.设C2的坐标为(x0,x0),则00√2=√2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),即可求出所求.【解答】解:曲线化为(x−6)2+(y−6)2=18,=5√2.其圆心C1(6,6)到直线x+y−2=0的距离为d=|6+6−2|√2过点C1且垂直于x+y−2=0的直线为y−6=x−6,即y=x,所以所求的最小圆的圆心C2在直线y=x上,如图所示,=√2,圆心C2到直线x+y−2=0的距离为5√2−3√22则圆C2的半径长为√2.设C2的坐标为(x0,x0),=√2,解得x0=2(x0=0舍去),则00√2所以圆心坐标为(2,2),所以所求圆的标准方程为(x−2)2+(y−2)2=2.故答案为(x−2)2+(y−2)2=2.12.【答案】2√6【解析】【分析】本题考查截面面积的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连接MN,作A1H⊥MN于H,由题意能求出截面的面积.【解答】解:分别取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,11∵A1N//PC1//MC,且A1N=PC1=MC,∴四边形A1MCN是平行四边形.又∵A1N//PC1,A1N⊄平面PBC1,PC1⊂平面PBC1,∴A1N//平面PBC1,同理可证A1M//平面PBC1,∵A1N∩A1M=A1,且A1N,A1M⊂平面A1MCN,∴平面A1MCN//平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形A1MCN,连接MN,作A1H⊥MN于点H,∵A1M=A1N=√5,MN=2√2,∴△A1MN为等腰三角形.∴A1H=√3,∴S△A1MN =12×2√2×√3=√6.故S▱A1MCN =2S△A1MN=2√6.故答案为2√6.13.【答案】3x−y+1=0【解析】【分析】本题考查了点关于直线的对称点的求法,考查了直线方程的点斜式,是基础题.设出M的坐标,利用点到直线的距离以及两平行线间的距离公式求解.【解答】解:因为点M是点P(4,5)关于直线y=3x−3的对称点,所以两点到直线y=3x−3的距离相等,所以过点M且平行于直线y=3x−3的直线与y=3x−3之间的距离等于点P到直线y=3x−3的距离.点P(4,5)到直线3x−y−3=0距离为√12+32=√10.设过点M且与直线y=3x−3平行的直线的方程为3x−y+c=0,13所以由两平行线间的距离公式有√12+32=√10,即|c +3|=4,解得c =1或c =−7, 即所求直线的方程为3x −y −7=0或3x −y +1=0.由于点P(4,5)在直线3x −y −7=0上,故过M 点且平行于直线y =3x −3的直线方程是3x −y +1=0.14.【答案】(1)证明:∵CA =CB ,O 为AB 的中点,∴OC ⊥AB .∵AB =AA 1,∠BAA 1=60∘,∴△AA 1B 为等边三角形,∴OA 1⊥AB ,又OC ∩OA 1=O ,∴AB ⊥平面A 1OC .(2)解:∵AB =CB =2,∴△ABC 为边长是2的等边三角形,则S △ABC =12×2×√3=√3.∵OA 1⊥AB ,OA 1⊥OC ,AB ∩OC =O ,∴OA 1⊥平面ABC ,即OA 1是三棱锥A 1−ABC 的高,又OA 1=√3,∴三棱锥A 1−ABC 的体积V =13×√3×√3=1.【解析】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出CO ⊥AB ,A 1O ⊥AB ,由此能证明AB ⊥平面A 1OC .(2)推导出A 1O ⊥平面ABC ,由此能求出三棱锥A 1−ABC 的体积.15.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0; 当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =√(a−1)2+(2a+3)2=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 16.【答案】解:∵所求直线与直线3x −4y +6=0垂直,∴设其为4x +3y +m =0.∵该直线过点P(4,−1),∴4×4+3×(−1)+m =0,解得m =−13.故所求直线方程为4x +3y −13=0.【解析】考查对于直线方程的求解问题,利用垂直性质求解,属于基础.17.【答案】解:(1)由{y =2x −4y =−x +5 得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x −3)2+(y −2)2=1;(2)由题意知切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx −y +3=0,∴√k 2+1=1,∴|3k +1|=√k 2+1,∴2k(4k +3)=0,∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3,即y =3或者3x +4y −12=0;(3)设M 为(x,y),由√x 2+(y −3)2=√x 2+y 215整理得直线m :y =32, ∴点M 应该既在圆C 上又在直线m 上,即:圆C 和直线m 有公共点,∴|2a −4−32|≤1,∴94≤a ≤134,终上所述,a 的取值范围为:[94,134].【解析】此题考查了圆的切线方程,点到直线的距离公式,涉及的知识有:两直线的交点坐标,直线的点斜式方程,圆的标准方程,是一道综合性较强的试题.(1)联立直线l 与直线y =−x +5,求出方程组的解得到圆心C 坐标,可得圆C 的方程;(2)根据A 坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(3)设M(x,y),由|MA|=|MO|,利用两点间的距离公式列出关系式,整理后得到点M 的轨迹为直线y =32,由M 在圆C 上,得到圆C 与直线相交,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.18.【答案】证明:(1)∵在直三棱柱ABC −A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,∴DE//AB ,AB//A 1B 1,∴DE//A 1B 1,∵DE ⊂平面DEC 1,A 1B 1⊄平面DEC 1,∴A 1B 1//平面DEC 1.解:(2)∵在直三棱柱ABC −A 1B 1C 1中,E 是AC 的中点,AB =BC .∴BE ⊥AA 1,BE ⊥AC ,又AA 1∩AC =A ,∴BE ⊥平面ACC 1A 1,∵C 1E ⊂平面ACC 1A 1,∴BE ⊥C 1E .【解析】(1)推导出DE//AB ,AB//A 1B 1,从而DE//A 1B 1,由此能证明A 1B 1//平面DEC 1.(2)推导出BE ⊥AA 1,BE ⊥AC ,从而BE ⊥平面ACC 1A 1,由此能证明BE ⊥C 1E .本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)AB 边上的高所在的直线方程为x +y −3=0,∴k AB =−1−1=1. ∴直线AB 方程为:y −4=x −3,化为:x −y +1=0,联立{x −y +1=0x +3y −7=0,解得x =1,y =2.∴A(1,2).(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得a =4,b =1.∴E(4,1). 由直线l 与x 轴、y 轴截距相等,①当直线l 经过原点时,设直线l 的方程为:y =kx .把E 的坐标代入可得:1=4k ,解得k =14.∴直线l 的方程为:y =14x.②当直线l 不经过原点时,设直线l 的方程为:x +y =m .把E 的坐标代入可得:m =5.∴直线l 的方程为:x +y =5.综上直线l 的方程为:x −4y =0或x +y −5=0.【解析】本题考查了直线的方程、直线的交点、相互垂直的直线斜率之间的关系、中点坐标公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)AB 边上的高所在的直线方程为x +y −3=0,可得k AB =1.把直线AB 方程与AE 的方程联立解得A 的坐标.(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得E 坐标.由直线l 与x 轴、y 轴截距相等,对截距分类讨论即可得出.20.【答案】解:(1)∵圆C :(x −2)2+(y −1)2=4,∴圆心为(2,1),半径r =2,∴圆心到直线x −ay +1=0的距离为:d =√12+a 2=√r 2−(√3)2=√4−3=1, 解得a =43,(2)由(1)知直线l :3x −4y +3=0,因为切线与直线l 平行,所以设所求的切线方程为3x −4y +D =0.因为直线与圆相切,所以圆心到切线的距离d =√32+(−4)2=|2+D |5=2.所以D =8或D =−12.所以所求切线方程为3x −4y +8=0或3x −4y −12=0.【解析】本题主要考查了点到直线的距离公式,考查直线与圆的位置关系,属于基础题.(1)首先确定圆心和半径,然后利用点到直线的距离公式可以列出等式,由此求出a的值.(2)由(1)知直线l:3x−4y+3=0,依题意,设所求切线方程为3x−4y+D=0,则圆心到=2.求解即可得结果切线的距离d=|2+D|517。
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.在直角坐标系中,已知A(-1,2),B(3,0),那么线段AB中点的坐标为中点的坐标为(().A.(2,2)B.(1,1)C.(-2,-2)D.(-1,-1) 2.右面三视图所表示的几何体是.右面三视图所表示的几何体是(().A.三棱锥.三棱锥B.四棱锥.四棱锥C.五棱锥.五棱锥D.六棱锥.六棱锥3.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为的值为(().A.2 B.21C.-2 D.-214.一个球的体积和表面积在数值上相等,则该球半径的数值为.一个球的体积和表面积在数值上相等,则该球半径的数值为(().A.1 B.2 C.3 D.4 5.下面图形中是正方体展开图的是.下面图形中是正方体展开图的是(().6.圆x2+y2-2x-4y-4=0的圆心坐标是的圆心坐标是(().A.(-2,4) B.(2,-4) C.(-1,2) D.(1,2)7.直线y=2x+1关于y轴对称的直线方程为轴对称的直线方程为(().A.y=-2x+1 B.y=2x-1 C.y=-2x-1 D.y=-x-1 8.已知两条相交直线a,b,a∥平面 a,则b与a 的位置关系是的位置关系是(().A.bÌ平面a B.b⊥平面aC.b∥平面a D.b与平面a相交,或b∥平面a9.在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出是不重合的平面,则下列条件中可推出a∥b的是的是(().A.aÌa,bÌb,a∥b B.a∥a,bÌbC.a⊥a,b⊥a D.a⊥a,bÌa10.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是的位置关系是(().正视图正视图 侧视图侧视图俯视图俯视图(第2题)11.如图,正方体ABCD —A'B'C'D'中,直线D'A 与DB 所成的角可以表示为所成的角可以表示为(( ). A .∠D'DB B .∠AD' C' C .∠ADBD .∠DBC'12. 圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于轴截得的弦长等于(( ). A . 1 B .23C . 2 D . 3 13.如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是中点,则下列叙述正确的是(( ).A .CC 1与B 1E 是异面直线是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E14.有一种圆柱体形状的笔筒,底面半径为4 4 cm cm ,高为12 12 cm cm .现要为100个这种相同规格的笔筒涂色个这种相同规格的笔筒涂色((笔筒内外均要涂色,笔筒厚度忽略不计要涂色,笔筒厚度忽略不计)). 如果每0.5 kg 涂料可以涂1 m 2,那么为这批笔筒涂色约需涂料.,那么为这批笔筒涂色约需涂料.A .1.23 kg B .1.76 kg C .2.46 kg D .3.52 kg 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.分.把答案填在题中横线上. 15.坐标原点到直线4x +3y -12=0的距离为的距离为 .16.以点A (2,0)为圆心,且经过点B (-1,1)的圆的方程是 .17.如图,在长方体ABCD —A 1B 1C 1D 1中,棱锥A 1——ABCD 的体积与长方体的体积之比为_______________.18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.分.解答应写出文字说明,证明过程或演算步骤. 19.已知直线l 经过点经过点((0,-2),其倾斜角是60°. (1)求直线l 的方程;的方程;(2)求直线l 与两坐标轴围成三角形的面积.与两坐标轴围成三角形的面积. 20.如图,在三棱锥P —ABC 中,PC ⊥底面ABC , AB ⊥BC ,D ,E 分别是AB ,PB 的中点.的中点.(1)求证:DE ∥平面P AC ;CBAD A ¢ B ¢C ¢D ¢(第11题)A 1 B 1 C 1 ABEC(第13题)ABC DD1 C 1 B 1 A 1 (第17题)ACPE(2)求证:AB ⊥PB ;21.已知半径为5的圆C 的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.相切. (1)求圆C 的方程;的方程;(2)设直线ax -y +5=0与圆C 相交于A ,B 两点,求实数a 的取值范围;的取值范围;(3) 在(2)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.存在,请说明理由.22.为C 的圆经过点A(1,1)和B(2,-2)且圆心C 在直线L:x-y+1=0上,求圆心为C 的圆的标准方程 23.知圆22:68210C x y x y +--+=和直线:430l kx y k --+=.⑴ 证明:不论证明:不论k 取何值,直线l 和圆C 总相交;总相交;⑵ 当当k 取何值时,圆C 被直线l 截得的弦长最短?并求最短的弦的长度截得的弦长最短?并求最短的弦的长度24知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为27;③圆心在直线x -3y =0上. 求圆C 的方程. 25,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证:(1) FD ∥平面ABC; (2) AF ⊥平面EDB.26.图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.F EDCBAM FGE C1D1A1B1DC ABPD 1B 1D B。
(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。
(4)(3)(1)俯视图俯视图俯视图侧视图侧视图侧视图侧视图正视图正视图 正视图正视图(2)俯视图·高一数学(必修二)期末质量检测试题1.若直线l 经过原点和点A (-2;-2);则它的斜率为( ) A .-1B .1C .1或-1D .02.各棱长均为a 的三棱锥的表面积为( ) A .234aB .233aC .232aD .23a3. 如图⑴、⑵、⑶、⑷为四个几何体的三视图;根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台4.经过两点(3;9)、(-1;1)的直线在x 轴上的截距为( )A .23-B .32-C .32 D .25.已知A (1;0;2);B (1;,3-1);点M 在z 轴上且到A 、B 两点的距离相等;则M 点坐标为( )A .(3-;0;0)B .(0;3-;0)C .(0;0;3-)D .(0;0;3)6.如果AC <0;BC <0;那么直线Ax+By+C=0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知圆心为C (6;5);且过点B (3;6)的圆的方程为( ) A .22(6)(5)10x y -+-= B .22(6)(5)10x y +++= C .22(5)(6)10x y -+-=D .22(5)(6)10x y +++=8.在右图的正方体中;M 、N 分别为棱BC 和棱CC 1的中点;则异面直线AC 和MN 所成的角为( ) A .30° B .45°C .90°D . 60°9.给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个10.点),(00y x P 在圆222r y x =+内;则直线200r y y x x =+和已知圆的公共点的个数为( )A .0B .1C .2D .不能确定二、填空题(每题4分;共20分)111.已知原点O (0;0);则点O 到直线x+y+2=0的距离等于 .12.经过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程 13.过点(1;2);且在两坐标轴上截距相等的直线方程 14.一个圆柱和一个圆锥的底面直径..和它们的高都与某一个球的直径相等;这时圆柱、圆锥、球的体积之比为 .15.已知两条不同直线m 、l ;两个不同平面α、β;给出下列命题: ①若l 垂直于α内的两条相交直线;则l ⊥α; ②若l ∥α;则l 平行于α内的所有直线; ③若m ⊂α;l ⊂β且l ⊥m ;则α⊥β; ④若l ⊂β;α⊥l ;则α⊥β;⑤若m ⊂α;l ⊂β且α∥β;则m ∥l ;其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题(5道题;共40分)16.(本大题6分)如图是一个圆台形的纸篓(有底无盖);它的母线长为50cm ;两底面直径分别为40 cm 和30 cm ;现有制作这种纸篓的塑料制品50m 2;问最多可以做这种纸篓多少个?17.(本大题8分)求经过直线L 1:3x + 4y – 5 = 0与直线L 2:2x – 3y + 8 = 0的交点M ;且满足下列条件的直线方程M(1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;18.(本大题8分)求圆心在03:1=-x y l 上;与x 轴相切;且被直线0:2=-y x l 截得弦长为72的圆的方程.19. (本大题8分)在正方体ABCD-A 1B 1C 1D 1中;E 、F 分别是BB 1、CD 的中点. (1).证明:;1F D AD ⊥ (2). 求AE 与D 1F 所成的角;ED 1C 1B 1A 1(3). 设AA 1=2;求点F 到平面A 1ED 1的距离.20.(本大题10分)已知方程04222=+--+m y x y x . (1)若此方程表示圆;求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M ;N 两点;且OM ⊥ON (O 为坐标原点)求m的值;(3)在(2)的条件下;求以MN 为直径的圆的方程.参考答案一、选择题:二、填空题:11.212. 4 x+3y+13=0 13.3,2+==x y x y 14.3:1:2.15. ①④ 三、 解答题:16.解:)('2'rl l r r S ++=π-----------1分=)5020501515(2⨯+⨯+π)(2m π----------3分≈=Sn 5080(个)-------5分 答:(略)--------6分17.解:⎩⎨⎧-=-=+832543y x y x 解得⎩⎨⎧=-=21y x --------2分所以交点(-1;2) (1)2-=k -----3分直线方程为02=+y x --------5分 (2)21=k ---------6分 直线方程为052=+-y x --------8分 18.解:由已知设圆心为(a a 3,)--------1分与x 轴相切则a r 3=---------2分圆心到直线的距离22a d =----------3分弦长为72得:229247a a =+-------4分 解得1±=a ---------5分圆心为(1;3)或(-1;-3);3=r -----------6分 圆的方程为9)3()1(22=-+-y x ---------7分或9)3()1(22=+++y x ----------8分19.证明:(1). 正方体ABCD-A 1B 1C 1D 1; C C DD AD 11面⊥∴;C C DD F D 111面⊂;.1F D AD ⊥∴ -------------------2分(2) 取AB 的中点;并连接A 1P ; 易证ABE AP A ∆≅∆1; 可证;AE P A ⊥1;即F D AE 1⊥;所以AE 与D 1F 所成的角为.90︒-------------------4分(3) 取CC 1中点Q ; 连接FQ ;11//D A FQ 又作FQD A FH 1平面⊥; 又 111,,A FQD FH FQ FH Q D FH 平面⊥∴⊥⊥;所以FH 即为F 到平面FQD 1A 1的距离; -------------------6分 解得:,553=FH 所以F 点到平面A 1ED 1的距离为.553-------------------8分20.解:(1)04222=+--+m y x y x D=-2;E=-4;F=mF E D 422-+=20-m 40>5<m …………2分(2)⎩⎨⎧=+--+=-+04204222m y x y x y x y x 24-=代入得 081652=++-m y y ………..3分51621=+y y ;5821my y += ……………4分 ∵OM ⊥ON得出:02121=+y y x x ……………5分 ∴016)(852121=++-y y y y ∴58=m …………….7分 (3)设圆心为),(b a582,5421121=+==+=y y b x x a …………….8分 半径554=r …………9分 圆的方程516)58()54(22=-+-y x ……………10分。
高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。
期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。
北师大版高中数学必修第二册期末质量检测试卷本试卷共150分,考试时长120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-i 1+2i=()A .1B .-1C .iD .-i2.已知OA →=(-1,2),OB →=(3,m),若OA →⊥OB →,则m 的值为()A .1B .32C .2D .43.现有四个函数:①y =x·sin x ;②y =x·cos x ;③y =x·|cos x|;④y =x·2x 的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A .①④②③B .①④③②C .④①②③D .③④②①4.已知a ,b 为直线,α,β为平面,给出下列四个命题:①若a ⊥α,b ⊥α,则a ∥b ;②a ∥α,b ∥α,则a ∥b ;③若a ⊥α,a ⊥β,则α∥β;④若b ∥α,b ∥β,则α∥β.其中真命题的个数是()A .0B .1C .2D .35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为()A .32B .22C .12D .-126.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →=()A .14a +12bB .12a +14bC .23a +13bD .13a +23b 7.下列命题中正确的是()A .y =cos x 的图象向右平移π2个单位长度得到y =sin x 的图象B .y =sin x 的图象向右平移π2个单位长度得到y =cos x 的图象C.当φ<0时,y=sin x的图象向左平移|φ|个单位长度可得y=sin(x+φ)的图象D.y=sin(2x+π3)的图象是由y=sin2x的图象向左平移π3个单位长度得到的8.在三棱锥PABC中,PA⊥平面ABC,AB⊥BC,AB=BC=1,PA=3,则该三棱锥外接球的表面积为()A.5πB.2πC.20πD.4π二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.设a,b是两个非零向量,则下列说法不正确的是()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|10.在△ABC中,下列命题正确的是()A.若A>B,则cos A>cos BB.若sin2A=sin2B,则△ABC一定为等腰三角形C.若a cos B-b cos A=c,则△ABC一定为直角三角形D.若三角形的三边的比是3∶5∶7,则此三角形的最大角为钝角11.对于函数f(x)x,sin x≤cos x,x,sin x>cos x,下列四个结论正确的是()A.f(x)是以π为周期的函数B.当且仅当x=π+kπ(k∈Z)时,f(x)取得最小值-1 C.f(x)图象的对称轴为直线x=π4+kπ(k∈Z)D.当且仅当2kπ<x<π2+2kπ(k∈Z)时,0<f(x)≤2 212.如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点.下列命题中正确的是()A.A1C⊥平面B1EFB.在平面A1B1C1D1内总存在与平面B1EF平行的直线C.△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形D.当E,F为中点时,平面B1EF截该正方体所得的截面图形是五边形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知tanθ=2,则cos2θ=__________,tan=________.14.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.16.如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,以角α的终边为始边,逆时针旋转π4得到角β.(1)求tan α的值;(2)求cos (α+β)的值.18.(12分)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a 的值;(2)sin C 和△ABC 的面积.条件①:c =7,cos A =-17;条件②:cos A =18,cos B =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.19.(12分)在①函数f为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数f (x )=2sin (ωx+φ>0,0<φ,f (x )的图象相邻两条对称轴间的距离为π,________.(1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)在①ac=3,②c sin A=3,③c=3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)如图,已知直四棱柱ABCDA1B1C1D1的底面是菱形,F是BB1的中点,M 是线段AC1的中点.(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.22.(12分)已知四棱锥PABCD的底面ABCD是菱形.(1)求证:AD∥平面PBC;(2)若PB=PD,求证:BD⊥平面PAC;(3)下面两问任选一问作答.①E、F分别是AB、PD上的点,若EF∥平面PBC,AE=2EB,求PFPD的值;②若∠DAB=60°,平面PAD⊥平面ABCD,PB⊥PD,判断△PAD是不是等腰三角形,并说明理由.参考答案与解析1.解析:解法一:2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=2-2-5i5=-i ,选D.解法二:利用i 2=-1进行替换,则2-i 1+2i =-2×(-1)-i 1+2i =-2i 2-i 1+2i=-i (1+2i )1+2i =-i ,选D.答案:D2.解析:由OA →⊥OB →,得OA →·OB →=-3+2m =0,故m =32.答案:B 3.解析:①y =x ·sin x 为偶函数,y 轴对称,②y =x ·cosx 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x ,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.答案:A4.解析:由“垂直于同一平面的两直线平行”知①是真命题;由“平行于同一平面的两直线平行或异面或相交”知②是假命题;由“垂直于同一直线的两平面平行”知③是真命题;在长方体ABCD A 1B 1C 1D 1中,易知A 1B 1∥平面DCC 1D 1,A 1B 1∥平面ABCD ,但以上两平面却相交,故④是假命题.答案:C5.解析:由余弦定理的推论,得cos C =a 2+b 2-c 22ab =a 2+b 24ab≥12,当且仅当a =b 时取“=”.答案:C6.解析:如图,∵AC →=a ,BD →=b ,∴AD →=AO →+OD →=12AC →+12BD →=12a +12b .∵E 是OD 的中点,∴DE EB =13.∴DF =13AB ,∴DF →=1AB →=13(OB →-OA →)=13-12→-12AC =16AC →-16BD →=16a -16b ,AF →=AD →+DF →=12a +12b +16a -16b =23a +13b ,故选C.答案:C7.解析:y =cos x 的图象向右平移π2个单位长度得到y =cos =sin x 的图象,故A 正确;y =sin x 的图象向右平移π2个单位长度得到y =sin =-cos x 的图象,故B 错误;y =sin x 的图象向左平移|φ|个单位长度得到y =sin (x +|φ|)=sin (x -φ)的图象,故C错误;y =sin 2x 的图象向左平移π3个单位长度得到y =sin 2=sin x 的图象,故D 错误.答案:A 8.解析:如图,取PC 的中点O ,连接OA ,OB ,∵PA ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC .∴PA ⊥AC ,PA ⊥BC .在Rt △PAC 中,∵O 为PC 的中点,∴OA =12PC ,又PA ⊥BC ,AB ⊥BC ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴BC ⊥PB ,在Rt △PBC 中,可得OB =12PC ,∴OA =OB =OC =OP ,∴O 是三棱锥P ABC 的外接球的球心,∵Rt △PAC 中,AC =2,PA =3,∴PC =5,∴三棱锥P ABC 的外接球的半径R =12PC =52,∴该三棱锥外接球的表面积S =4πR 2=5π.答案:A9.解析:若|a +b |=|a |-|b |,则a ,b 反向共线,且|a |>|b |,即存在实数λ,使得b =λa ,故A 不正确,C 正确;若a ⊥b ,显然在以a ,b 对应的线段为邻边的长方形中|a +b |=|a |-|b |不成立,故B 不正确;若λ>0,则a ,b 为同向的共线向量,显然|a +b |=|a |-|b |不成立,故D 不正确.故选ABD.答案:ABD10.解析:在△ABC 中,若A >B ,则a >b ,sin A >sin B ,但cos A >cos B 不正确,A 错误;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,B 错误;若a cos B -b cos A =c ,则sin A ·cos B -sin B cos A =sin C =sin(A +B ),所以sin B cos A =0,即cos A =0,A =π2,所以△ABC 定为直角三角形,C 正确;三角形的三边的比是3∶5∶7,设最大边所对的角为θ,则cos θ=32+52-722×3×5=-12,因为π3<θ<π,所以θ=2π3,D 正确.故选CD.答案:CD11.解析:函数f (x )x ,sin x ≤cos x ,x ,sin x >cos x的最小正周期为2π,画出f (x )在一个周期内的图象,可得当2k π+π4≤x ≤2k π+5π4,k ∈Z 时,f (x )=cos x ,当2k π+5π4<x ≤2k π+9π4,k ∈Z 时,f (x )=sin x ,可得f (x )的对称轴方程为x =π4+k π,k ∈Z ,当x =2k π+π或x =2k π+3π2,k ∈Z 时,f (x )取得最小值-1;当且仅当2k π<x <π+2k π(k ∈Z )时,f (x )>0.f (x )的最大值为=22,可得0<f (x )≤22,综上可得,正确的有CD.答案:CD 12.解析:连接AB 1,B 1D 1,AD 1,由正方体的性质可得A 1C ⊥平面AB 1D 1,而平面AB 1D 1与平面B 1EF 不可能平行,所以显然有A 1C 与平面B 1EF 不垂直,故A 错误;由题图可知,平面A 1B 1C 1D 1与平面B 1EF 相交,则一定有一条交线,所以在平面A 1B 1C 1D 1内一定存在直线与此交线平行,则此直线与平面B 1EF 平行,故B 正确;点F 在侧面BCC 1B 1上的投影为点B ,点E 在侧面BCC 1B 1上的投影在棱CC 1上,所以投影三角形的面积为S =12BB 1·BC =12,为定值,故C 正确;在D 1C 1上取点M ,使D 1M =14D 1C 1,在AD 上取点N ,使AN =23AD ,连接B 1M ,EM ,EN ,FN ,则五边形B 1MENF 即为截面,故D 正确,故选BCD.答案:BCD13.解析:解法一:因为tan θ=2,所以sin θ=2cos θ,由22θ=1可知,sin 2θ=45,cos 2θ=15,所以cos2θ=cos 2θ-sin 2θ=15-45=-35,=tan θ-11+tan θ=2-11+2=13.解法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,=tan θ-11+tan θ=2-11+2=13.答案:-351314.解析:解法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2=2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.解法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr =2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:115.解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3+i ,∴a +c =3,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2=a 2+b 2+c 2+d 2-(2ac +2bd )=8-(-4)=23.答案:2316.解析:依题意得AD ∥BC ,∠BAD =120°,由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=|AD →||BC →|=16.取MN 的中点E ,连接DE ,则DM →+DN→=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.注意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin ∠B =332,因此DE →2-142-14=132,即DM →·DN →的最小值为132.答案:1613217.解析:(1)∵角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,∴tan α=45-35=-43.(2)以角α的终边为始边,逆时针旋转π4得到角β,∴β=α+π4.由(1)利用任意角的三角函数的定义可得cos α=-35,sin α=45.∴sin 2α=2sin αcos α=-24,cos 2α=2cos 2α-1=-725.∴cos(α+β)=cos α=cos 2αcosπ4-sin 2αsin π4=22(cos 2α-sin 2α)=17250.18.解析:方案一:选条件①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7,得a 2=(11-a )2+49-2(11-a )×7,∴a =8.(2)∵cos A =-17,A ∈(0,π),∴sin A =437.由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,∴S △ABC =12ab sin C =12×8×3×32=63.方案二:选条件②(1)∵cos A =18,∴A,sin A =378.∵cos B =916,∴B ,sin B =5716.由正弦定理a sin A =bsin B ,得a378=11-a 5716,∴a =6.(2)sin C =sin (π-A -B )=sin (A +B )=sin A cos B +cos A sin B =74.∵a +b =11,a =6,∴b =5.∴S △ABC =12ab sin C =12×6×5×74=1574.19.解析:∵函数f (x )的图象相邻对称轴间的距离为π,∴T =2πω=2π,∴ω=1,∴f (x )=2sin (x +φ).方案一:选条件①∵=+φ为奇函数,∴=2sin =0,解得:φ=π3+k π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案二:选条件②=2sin =3,∴sin =32,∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z ,(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案三:选条件③∵23π是函数f (x )的一个零点,∴=2sin +=0.∴φ=k π-2π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π].20.解析:方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b2=32,由此可得b =c .由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1.方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3.由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =23.方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c .由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.21.证明:(1)连接BD ,设AC ,BD 相交于点O ,连接MO ,因为M 是线段AC 1的中点,所以在△ACC 1中,MO 綊12CC 1.又F 是BB 1的中点,所以BF 綊12CC 1,所以BF 綊MO ,故四边形MOBF 是平行四边形,所以MF∥BO.又MF⊄平面ABCD,BO⊂平面ABCD,所以MF∥平面ABCD.(2)由(1)知OB∥MF,在菱形ABCD中,OB⊥AC,所以MF⊥AC.在直四棱柱ABCDA1B1C1D1中,CC1⊥平面ABCD,BO⊂平面ABCD,所以BO⊥CC1,即MF⊥CC1.又MF⊥AC,CC1∩AC=C,AC⊂平面ACC1A1,CC1⊂平面ACC1A1,所以MF⊥平面ACC1A1.因为MF⊂平面AFC1,所以平面AFC1⊥平面ACC1A1.22.解析:(1)证明:因为四边形ABCD是菱形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.(2)证明:设AC、BD交于点O,连接PO.因为四边形ABCD是菱形,所以AC⊥BD,DO=OB.因为PB=PD,所以PO⊥BD.因为AC∩PO=O,PO,AC⊂平面PAC,所以BD⊥平面PAC.(3)①过F作FG∥DC交PC于G,连接BG.在菱形ABCD中,AB=DC,AB∥DC,所以FG∥AB.所以E,F,G,B共面.因为EF∥平面PBC,平面FEBG∩平面PBC=BG,所以EF∥BG.所以四边形FEBG为平行四边形,所以EB=FG.所以AE=2EB,所以PFPD=FGDC=EBAB=13.②△PAD不是等腰三角形,理由如下:作BQ⊥AD交AD于点Q,连接PQ.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BQ⊂平面ABCD,所以BQ⊥平面PAD.所以BQ⊥PD.因为PD⊥PB,PB∩BQ=B.所以PD⊥平面PBQ.所以PD⊥PQ.所以AD>PD,AD>PA,QD>PD,∠PQD<90°.所以∠PQA>90°.所以PA>AQ.在菱形ABCD中,∠DAB=60°,所以△ABD是等边三角形.所以Q为AD的中点.所以AQ=QD.所以PA>PD.所以△PAD不可能为等腰三角形.。
高中数学必修二期末测试题二一、选择题。
1. 倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x 2. 原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( )A .02=+y xB .042=-+y xC .052=+-y xD .032=++y x 3. 如果直线l 是平面α的斜线,那么在平面α内( )A .不存在与l 平行的直线B .不存在与l 垂直的直线C .与l 垂直的直线只有一条D .与l 平行的直线有无穷多条 4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )A .只有一个B .至多有两个C .不一定有D .有无数个5. 直线093=-+y ax 与直线03=+-b y x 关于原点对称,则b a ,的值是 ( )A .a =1,b = 9B .a =-1,b = 9C .a =1,b =-9D .a =-1,b =-96. 已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 ( )A .2211k x x +⋅-B .k x x ⋅-21C .2211kx x +- D .kx x 21-7. 直线l 通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l 的方程是( )A .063=-+y xB .03=-y xC .0103=-+y xD .083=+-y x8. 如果一个正三棱锥的底面边长为6)A.92 B.9 C.2729. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )SB 1C 1A 1CBAA .31003cm πB .32083cm πC .35003cm π D .341633cm π 10.在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的一点,S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( )A .1B .32C .2D .3 11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB相交,则直线l 的斜率的取值k 范围是 ( ) A .34k ≥或4k ≤- B .34k ≥或14k ≤- C .434≤≤-k D .443≤≤k 12.过点(1,2),且与原点距离最大的直线方程是( )A .052=-+y xB .042=-+y xC .073=-+y xD .032=+-y x 二、填空题。
高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。
4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。
)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。
6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。
7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。
若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。
8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。
9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。
10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。
11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。
高中必修2数学试题及答案一、选择题(每题4分,共40分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。
A. 5B. 3C. 1D. -12. 如果\( \sin(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。
A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)3. 直线\( y = 3x + 2 \)与直线\( y = -4x + 6 \)的交点坐标是:A. (-1, 1)B. (1, 3)C. (2, 8)D. (-2, 4)4. 已知\( a \),\( b \)为正整数,且\( a^2 + b^2 = 45 \),求\( a \)和\( b \)的值。
A. (3, 6)B. (6, 3)C. (5, 5)D. (以上都不是)5. 圆\( x^2 + y^2 = 25 \)的半径是:A. 5B. 10C. 15D. 256. 函数\( y = \log_{10}x \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)7. 已知\( \tan(\theta) = 2 \),求\( \sin(\theta) \)的值。
A. \( \frac{2}{\sqrt{5}} \)B. \( -\frac{2}{\sqrt{5}} \)C. \( \frac{1}{\sqrt{5}} \)D. \( -\frac{1}{\sqrt{5}} \)8. 抛物线\( y = x^2 - 2x + 1 \)的顶点坐标是:A. (1, 0)B. (-1, 0)C. (1, 1)D. (-1, 1)9. 已知\( \sin(\theta) = \frac{1}{2} \),求\( \cos(2\theta) \)的值。
选择性必修第二册 期末模块检测试卷 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知等比数列{}n a 中,1212a a +=,3134a a -=,则4=a ( )A .18- B .18C .4-D .4【答案】A 【分析】根据题意,将条件表示为1,a q 的形式,计算出1,a q ,再计算4a 即可. 【详解】∵等比数列{}n a 中,1212a a +=,3134a a -=,∴112111234a a q a a q ⎧+=⎪⎪⎨⎪-=⎪⎩,解得111,2a q ==-, ∴341311128a a q ⎛⎫=⨯-=-⎪⎝⎭= .故选:A.2.已知等差数列{}n a 的前n 项和为n S ,3a =5,则5S =( ) A .5B .25C .35D .50【答案】B 【分析】根据等差中项及等差数列求和公式即可求解. 【详解】由题意可知,{}n a 为等差数列,所以15355()5252525222a a a S +⨯⨯⨯==== 故选:B3.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日五尺,问日织几何?”意思是:“女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这名女子每天分别织布多少?”某数学兴趣小组依托某制造厂用织布机完全模拟上述情景,则从第一天开始,要使织布机织布的总尺数为165尺,则所需的天数为( ) A .7 B .8 C .9 D .10【答案】D 【分析】设该女子第一天织布x 尺,根据题意,求得531x =尺,结合等比数列的求和公式,列出方程,即可求解. 【详解】设该女子第一天织布x 尺,则5天共织布5(12)512x -=-,解得531x =尺,在情境模拟下,设需要n天织布总尺数达到165尺,则有5(12)3116512n -=-,整理得21024n=,解得10n =.故选:D . 4.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++⋅⋅⋅++小于( )A .1n n + B .211n n -+ C .211n n ++ D .21nn + 【答案】C 【分析】根据已知式子分子和分母的规律归纳出结论. 【详解】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n ,()2221112112311n n n ++++⋅⋅⋅+<++∴. 故选:C.5.设曲线1e x y ax -=-在点1x =处的切线方程为2y x =,则a =( ) A .0 B .1C .2D .3【答案】D 【分析】利用12x y ='=可求得答案. 【详解】1e x y a -'=-,∵112x y a ==-=',则3a =.故选:D6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n-=,则55a b =( ) A .3415B .2310C .317D .6227【答案】D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D7.已知函数()331xf x x e =++,其导函数为()f x ',则()()()()2020202020212021f f f f ''+-+--的值为( )A .1B .2C .3D .4【答案】C 【分析】求得可得()'f x 的解析式,求出()f x '-解析式,可得()f x '为偶函数,即可求出()()20212021f f ''--的值,再求()()3f x f x +-=,即可求得()()20202020f f +-的值,即可求得答案. 【详解】()()22331xxe f x x e-'=++,()()()2222333()311xxxxe ef x x x ee----'-=+-=+++,所以()f x '为偶函数,所以()()202120210f f ''--=,因为()()33333331111x x x x x e f x f x x x e e e e -+-=++-=+=++++,所以()()202020203f f +-=,所以()()()()20202020202120213f f f f ''+-+--=. 故选:C .8.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞ B .()2e ,+∞C .()20,eD .()0,e【答案】B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x --'=,得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.二、多选题9.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a >B .6S 最大C .130S >D .110S >【答案】ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确;所以()113137131302a a S a+⨯==<,故C 错误;所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.10.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列叙述不正确的是( )A .()()()f a f e f d >>B .函数()f x 在[],a b 上递增,在[],b d 上递减C .函数()f x 的极值点为c ,eD .函数()f x 的极大值为f b 【答案】ABD 【分析】对A ,B 由导数与函数单调性的关系,即可判断()f a ,()f b ,()f c 的大小以及()f x 的单调性,对C ,D 由极值的定义即可判断. 【详解】解:由题图知可,当(),x c ∈-∞时,()0f x '>,当(),x c e ∈时,()0f x '<,当(),x e ∈+∞时,()0f x '>, 所以()f x 在(),c -∞上递增, 在(),c e 上递减,在(),e +∞上递增, 对A ,()()f d f e >,故A 错误;对B ,函数()f x )在[],a b 上递增,在[],b c 上递增,在[],c d 上递减,故B 错误;对C ,函数()f x 的极值点为c ,e ,故C 正确; 对D ,函数()f x 的极大值为()f c ,故D 错误. 故选:ABD.11.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍 【答案】BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6S 求出1a ,然后求出相应的项,判断各选项. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以611611()(1)23781112a a q S q ⎡⎤-⎢⎥-⎣⎦===--,解得1192a =.选项A :55611192()62a a q ==⨯=,故A 错误,选项B :由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.选项C :211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D :2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为37833642-=, 而且336428÷=,D 正确. 故选:BCD . 【点睛】关键点点睛:本题考查等比数列的应用,解题关键是引入等比数列{}n a ,n a 表示第n 天行走的路程,根据前6项的和求出首项1a ,然后可得通项公式,从而判断出结论.12.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确; 121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=,故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.三、填空题13.已知()2()21f x x xf =+',则()1f '等于__________.(用数字作答)【答案】-2【分析】求出()f x 的导函数,代入1x =即可求解.【详解】()2()21f x x xf =+',()()221f x x f ''∴=+,()()12121f f ''∴=⨯+,解得()12f '=-.故答案为:2-.14.()f x 对任意x ∈R 都有()()112f x f x +-=.数列{}n a 满足:()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()11n f f n -⎛⎫++ ⎪⎝⎭,则n a =__________. 【答案】14n + 【分析】采用倒序相加法即可求得结果.【详解】由题意得:()()1012f f +=,1112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,2212n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,……, ()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()12110n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 122n n a +∴=,解得:14n n a +=.故答案为:14n +. 【点睛】本题考查利用倒序相加法求和的问题,属于基础题.15.已知32()263f x x x =-+,对任意的2][2x ∈-,都有()f x a ≤,则a 的取值范围为_______. 【答案】[3)+∞,【分析】利用导数研究函数的单调性,进而求得在给定区间上的最大值,根据不等式恒成立的意义即得实数a 的取值范围.【详解】由2()6120f x x x '=-=得0x =或2x =,在区间[-2,0)上()'0f x >,()f x 单调递增;在(0,2)内时()()'0,f x f x <单调递减. 又(2)37f -=-,(0)3f =,(2)5f =-,∴max ()3f x =,又()f x a ≤对于任意的x ∈[-2,2]恒成立,∴3a ≥,即a 的取值范围是[)3,+∞故答案为:[)3,+∞.【点睛】本题考查利用导数研究函数的在闭区间上的最值进而求不等式恒成立中的参数范围,属基础题,关键在于利用导数研究函数的单调性,求得在给定区间上的最大值.16.古代埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都可写成若干个单分数和的形式.例如2115315=+,可这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分2成5份,每人得115,这样每人分得11315+.形如)*2(3,21n n N n ∈-的分数的分解:2115315=+,2117428=+,2119545=+,按此规律,则221n =-________()*3,n n N ∈. 【答案】2112n n n+- 【分析】 根据21123133(231)=+⨯-⨯⨯-,21124144(241)=+⨯-⨯⨯-,21125155(251)=+⨯-⨯⨯-,…进行归纳推理. 【详解】 由题意得,2115315=+,即21123133(231)=+⨯-⨯⨯-, 2117428=+,即21124144(241)=+⨯-⨯⨯-, 2119545=+,即21125155(251)=+⨯-⨯⨯-, 由此归纳出)*211(3,21(21)n n N n n n n =+∈⨯--. 经验证112112(21)(21)21n n n n n n n -++==---,结论成立, ∴2211212n n n n=+--. 故答案为:2112n n n +-. 【点睛】方法点睛:由数列的前n 项归纳通项公式时,首先要分析项的结构,然后再探究结构中的各部分与项的序号n 间的函数关系,进而求得通项公式.四、解答题17.已知数列{}n a 各项均为正数,其前n 项和为n S ,且满足()241n n S a =+. (1)求数列{}n a 的通项公式.(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-;(2)21n n T n =+. 【分析】(1)由=1n 可得11a =,再由2n ≥时,()21141n n S a --=+与条件作差可得12n n a a --=,从而利用等差数列求通项公式即可; (2)由n b 1(21)(21)n n =-+利用裂项相消求和即可. 【详解】(1)∵()241n n S a =+,∴()21141a a =+,解得11a =,当2n ≥时,由()241n n S a =+①可得, ()21141n n S a --=+②,①-②:()()1120n n n n a a a a --+--=,∵0n a >,∴10n n a a -+≠,∴120n n a a ---=,即∴12n n a a --=,∴{}n a 是以11a =为首项,以2d =为公差的等差数列,∴1(1)12(1)21n a a n d n n =+-=+-=-综上所述,结论是:21n a n =-.(2)由(1)可得11n n n b a a +=1(21)(21)n n =-+11122121n n ⎛⎫=- ⎪-+⎝⎭∴2n a n T b b b =+++111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭ 11122121n n n ⎛⎫=-= ⎪++⎝⎭, 综上所述,21n n T n =+. 18.在①133a a b +=,②254b S b +=-,③194a a +=-这三个条件中任选两个,补充在下面的问题中.若问题中的m 存在,求出m 的值;若不存在,请说明理由.设等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,设前n 项和为n T ,若 , ,且1422,5b T T ==.是否存在大于2的正整数m ,使得134,,m S S S 成等比数列?(注:如果选择多个条件分别解答,按第一个解答计分.)【答案】答案见解析.【分析】由等比数列的条件,求得2q ,可得等比数列的通项公式.然后分别选取条件①②,条件①③,条件②③,列出关于等差数列首项与公差的方程组,求得首项与公差,得到等差数列的通项公式及前n 项和,再由14S ,3S ,m S 成等比数列列式求解m 值即可.【详解】解:设{}n a 的 公差为d ,{}n b 的公比为(0)q q >,由题意知1q ≠,所以421142(1)(1)5511b q b q T T q q--===--, 整理得215q +=,因为0q >,所以2q ,所以2n n b =.(1)当选取的条件为①②时,有1358416a a S +=⎧⎨+=-⎩,所以1122824a d a d +=⎧⎨+=-⎩, 解得1128a d =⎧⎨=-⎩. 所以2820,416n n a n S n n =-+=-+.所以21312,12,416m S S S m m ===-+,若134,,m S S S 成等比数列,则2314m S S S =,所以241630m m -+=,解得2m = 因为m 为正整数,所以不符合题意,此时m 不存在.(2)当选取的条件为①③时,有131984a a a a +=⎧⎨+=-⎩,所以11228284a d a d +=⎧⎨+=-⎩, 解得162a d =⎧⎨=-⎩. 所以228,7n n a n S n n =-+=-+.所以2136,12,7m S S S m m ===-+,若134,,m S S S 成等比数列,则2314m S S S =,所以2760m m -+=,解得6m =或1m =(舍去)此时存在正整数6m =满足题意.(3)当选取的条件为②③时,有1954416a a S +=-⎧⎨+=-⎩,所以1128424a d a d +=-⎧⎨+=-⎩, 解得161a d =-⎧⎨=⎩. 所以2137,2n n n n a n S -=-=. 所以213136,15,2m m m S S S -=-=-=, 若134,,m S S S 成等比数列,则2314m S S S =,即22524m S =-,所以2452750m m -+=,解得132m =, 因为m 为正整数,所以不符合题意,此时m 不存在.【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.19.已知数列{}n a 中,11a =,()*13n n n a a n N a +=∈+ (1)证明:数列112n a ⎧⎫+⎨⎬⎩⎭是等比数列 (2)若数列{}n b 满足()312n n n n n b a -=⋅,求数列{}n b 的前n 项和nT . 【答案】(1)证明见解析 ;(2)1242n n n T -+=-. 【分析】(1)由()*13n n n a a n N a +=∈+可得11111322n n a a +⎛⎫+=+ ⎪⎝⎭,然后可得答案; (2)由(1)可算出231n n a =-,12n n n b -=,然后用错位相减法可算出答案. 【详解】 (1)证明:由()*13n n n a a n N a +=∈+,知11111322n n a a +⎛⎫+=+ ⎪⎝⎭又111322a +=,∴112n a ⎧⎫+⎨⎬⎩⎭是以32为首项,3为公比的等比数列 (2)解:由(1)知111333222n n n a -+=⨯=,∴231n n a =-,12n n n b -= 0122111111123(1)22222n n n T n n --=⨯+⨯+⨯++-⨯+⨯ 211111112(1)22222n n n T n n -=⨯+⨯++-⨯+⨯ 两式相减得012111111222222222n n n nT n n -+=++++-⨯=- ∴1242n n n T -+=- 20.已知函数()()x x f x a a R e=-∈ (1)求函数()f x 的单调区间;(2)若方程()f x =0有两个不相等的实数根,求实数a 的取值范围.【答案】(1)()f x 的单调递增区间是(,1)-∞,单调递减区间是(1,)+∞.(2)10a e <<【分析】(1)首先求出函数的导函数,再解不等式即可得到函数的单调区间;(2)由()0x x f x a e =-=得x x a e =, 将此方程的根看作函数x x y e=与y a =的图象交点的横坐标,结合(1)中相关性质得到函数的图象,数形结合即可得到参数的取值范围;【详解】解:(1)∵()()x x f x a a R e=-∈ 所以21()()x x x x e xe x f x e e--'== ∴当1x <时,()0f x '>,当1x >时,()0f x '<;即()f x 的单调递增区间是(,1)-∞,单调递减区间是(1,)+∞.(2)由()0x x f x a e =-=得xx a e =, 将此方程的根看作函数x x y e =与y a =的图象交点的横坐标, 由(1)知函数x x y e =在1x =时有极大值1e,作出其大致图象,∴实数a 的取值范围是10a e<<. 【点睛】 本题考查利用导数研究函数的单调性及函数的零点问题,属于基础题.21.设函数()21x f x e ax x =---,a R ∈. (1)0a =时,求()f x 的最小值.(2)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.【答案】(1)0;(2)1(,]2-∞.【分析】(1)当0a =时,求导可得()1xf x e '=-,令()0f x '=,解得0x =,分别讨论(),0x ∈-∞和()0,∞+时,()'f x 的正负,即可得()f x 的单调性,即可求得答案;(2)求导可得()21x f x e ax '=--,设()21(0)x h x e ax x =--≥,分别讨论12a ≤和12a >时()h x '的正负,可得()h x 的单调性,进而可得()f x 的单调性,综合分析,即可得答案.【详解】(1)当0a =时,()1x f x e x =--,则()1xf x e '=-, 令()0f x '=,解得0x =,当(),0x ∈-∞时,()0f x '<,所以()f x 在(),0-∞单调递减函数;当()0,x ∈+∞时,()0f x '>,所以()f x 在()0,∞+单调递增函数;所以()()min 00f x f ==.(2)()21x f x e ax x =---,则()21xf x e ax '=--, 设()21(0)xh x e ax x =--≥,则()2x h x e a '=-, 当12a ≤时,()0h x '≥,所以()h x 在[)0,+∞上为增函数, 又(0)0h =,所以()(0)0h x h ≥=,即()0f x '≥,所以()f x 在在[)0,+∞上为增函数,又(0)0f =,所以()(0)0f x f ≥=,满足题意; 当12a >时,令()0h x '=,解得ln2x a =, 当(0,ln 2)x a ∈时,()0h x '<,所以()h x 在(0,ln 2)a 为减函数,所以当[0,ln 2)x a ∈时,()(0)0h x h ≤=,即()0f x '≤,所以()f x 在[0,ln 2)x a ∈为减函数,又(0)0f =所以()(0)0f x f ,不满足题意,综上:a 的取值范围是1(,]2-∞【点睛】解题的关键是熟练掌握利用导数求解函数单调性,极(最)值的方法,若处理恒成立问题时,需满足min ()0f x ≥,若处理存在性问题时,需满足max ()0f x ≥,需仔细审题,进行求解,属中档题. 22.已知2()2ln f x x x a x =-+.(1)若函数()f x 在2x =处取得极值,求实数a 的值;(2)若()()g x f x ax =-,求函数()g x 的单调递增区间;(3)若2a =,存在正实数12,x x ,使得()()1212f x f x x x +=+成立,求12x x +的取值范围.【答案】(1)4-;(2)答案见解析;(3)32⎡⎫++∞⎪⎢⎪⎣⎭. 【分析】(1)由题意结合极值的概念可得(2)0f '=,解得4a =-后,验证即可得解;(2)求导得(1)(2)()(0)x x a g x x x--'=>,按照0a ≤、02a <<、2a =、2a >分类讨论,求得()0g x '>的解集即可得解;(3)转化条件得()()()212121212322ln x x x x x x x x +-+=-,令12t x x =,()22ln (0)t t t t ϕ=->,求导确定()t ϕ的单调性和值域即可得解.【详解】(1)222()22(0)a x x a f x x x x x-+-+'==>, ∵函数()f x 在2x =处取得极值,∴84(2)0a f x -+'==,解得4a =-, 当4a =-时,()2222(1)(2)()x x x x f x x x'--+-==. ∴当02x <<时,()0f x '<,()f x 单调递减;当2x >时,()0f x '>,()f x 单调递增;∴当4a =-时,函数()f x 在2x =处取得极小值;(2)2()()(2)ln g x f x ax x a x a x =-=-++, ∴22(2)(1)(2)()2(2)(0)a x a x a x x a g x x a x x x x-++--'=-++==>, 令()0f x '=,则1x =或2a x =, ①当0a ≤时,令()0g x '>可得1x >,∴函数()g x 的单调递增区间为(1,)+∞;②当02a <<时,令()0g x '>可得02a x <<或1x >, ∴函数()g x 的单调递增区间为0,,(1,)2a ⎛⎫+∞ ⎪⎝⎭; ③当2a =时,()0g x '≥在(0,)x ∈+∞上恒成立,∴函数()g x 的单调递增区间为(0,)+∞;④当2a >时,令()0g x '>可得01x <<或2a x >,∴函数()g x 的单调递增区间为(0,1),,2a⎛⎫+∞ ⎪⎝⎭; (3)2a =,∴2()22ln f x x x x =-+,()()1212f x f x x x +=+,∴()()221212121222ln x x x x x x x x +-++=+,整理可得()()()212121212322ln x x x x x x x x +-+=-,令12t x x =,()22ln (0)t t t t ϕ=->, 12(1)()21t tt tϕ-⎛⎫'=-= ⎪⎝⎭,令()0t ϕ'=,解得1t =, 当01t <<时,()0t ϕ'<,()t ϕ单调递减;当1t >时,()0t ϕ'>,()t ϕ单调递增; ∴当1t =时,()t ϕ取得极小值即最小值为()12ϕ=,∴()()2121232x x x x +-+≥即()()21212320x x x x +-+-≥,解得1232x x +≤(舍去)或1232x x +≥,∴12x x +的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】本题考查了导数的综合应用,考查了运算求解能力、逻辑推理能力、分类讨论思想,属于中档题.。
高中数学必修一期末考试试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱2.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形3.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22 B.1C. 2D.2 24.如图,正方形ABCD的边长为1,CE所对的圆心角∠CDE=90°,将图形ABCE绕AE所在直线旋转一周,形成的几何体的表面积为()A.5πB.4πC.3πD.2π5.以长为8 cm,宽为6 cm的矩形的一边为旋转轴旋转而成的圆柱的底面面积为()A.64π cm2B.36π cm2C.64π cm2或36π cm2D.48π cm26.将若干毫升水倒入底面半径为2 cm的圆柱形器皿中,量得水面高度为6 cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面高度为()A.6 3 cmB.6 cmC.2318 cmD.3312 cm7.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC 是等腰直角三角形D.△ABC 是等边三角形8.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( ) A.316 B.916 C.38 D.9329.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A.23hB.1927hC.363h D.3193h 10.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( ) A.23 B.16 C.56 D.1311.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为( ) A.3π B.6π C.18πD.24π12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛二、填空题(本大题共4小题,每小题5分,共20分)13.若一个圆台的母线长为l ,上、下底面半径分别为r 1,r 2,且满足2l =r 1+r 2,其侧面积为8π,则l =________. 14.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点.记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.15.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)16.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.三、解答题(本大题共6小题,共70分)17.(10分)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.18.(12分)如图所示,在多面体FE-ABCD中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,求该多面体的体积V.19.(12分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm,两底面直径分别为40 cm和30 cm.求纸篓的表面积.20.(12分)有一盛满水的圆柱形容器,内壁底面半径为5,高为2,现将一个半径为3的玻璃小球缓慢浸没于水中.(1)求圆柱的体积;(2)求溢出水的体积.21.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.22.(12分)如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.高中数学必修一期末考试试卷(一)答案(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.答案 A解析 ∵n 棱柱共有3n 条棱,n 棱锥共有2n 条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A. 2.答案 A解析 三棱锥的侧面和底面均为三角形. 3.答案 D解析 ∵Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2, ∴直角三角形的直角边长是2, ∴直角三角形的面积是12×2×2=1,∴原平面图形的面积是1×22=2 2.故选D. 4.答案 A解析 由题意知,形成的几何体是组合体:上面是半球、下面是圆柱, ∵正方形ABCD 的边长为1,∠CDE =90°, ∴球的半径是1,圆柱的底面半径是1,母线长是1,∴形成的几何体的表面积S =π×12+2π×1×1+12×4π×12=5π.5.答案 C解析 分别以长为8 cm ,宽为6 cm 的边所在的直线为旋转轴,即可得到两种不同大小的圆柱,显然C 选项正确. 6.答案 B解析 设圆锥中水的底面半径为r cm ,由题意知 13πr 2×3r =π×22×6, 得r =23,∴水面的高度是3×23=6(cm). 7.答案 C 8.答案 A解析 设球的半径为R ,所得的截面为圆M ,圆M 的半径为r . 画图可知(图略),R 2=14R 2+r 2,∴34R 2=r 2.∴S 球=4πR 2,截面圆M 的面积为πr 2=34πR 2,则所得截面的面积与球的表面积的比为34πR 24πR 2=316.故选A.9.答案 D解析 设圆锥形容器的底面积为S , 则未倒置前液面的面积为49S ,∴水的体积V =13Sh -13×49S (h -h 1)=1981Sh ,设倒置后液面面积为S ′,则S ′S =⎝⎛⎭⎫h 2h 2,∴S ′=Sh 22h2.∴水的体积V =13S ′h 2=Sh 323h 2,∴1981Sh =Sh 323h2, 解得h 2=319h3,故选D. 10.答案 C解析 易知V =1-8×13×12×12×12×12=56.11.答案 B解析 将三棱锥补成边长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R =6,解得R =62,故S =4πR 2=6π. 12.答案 B解析 米堆的体积即为四分之一的圆锥的体积, 设圆锥底面半径为r ,则14×2πr =8,得r =16π,所以米堆的体积为13×14πr 2×5≈3209(立方尺),3209÷1.62≈22(斛). 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 2解析 S 圆台侧=π(r 1+r 2)l =2πl 2=8π,所以l =2. 14.答案 14解析 如图,设点C 到平面P AB 的距离为h ,则点E 到平面P AD 的距离为12h .∵S △DAB =12S △P AB ,∴V1V2=13S△DAB·12h13S△PAB·h=13×12S△P AB·12h13S△P AB·h=14.15.答案15π3解析如图所示,剪下最大的扇形的半径即圆锥的母线长l等于正方形的边长4,扇形的弧长=14×(2π×4)=2π,即为圆锥的底面周长,设圆锥的底面半径为r,高为h,则2πr=2π,所以r=1,所以h=l2-r2=15,所以圆锥的容积为13πr2h=15π3.16.答案48 3解析设球的半径为r,则43πr3=323π,得r=2,柱体的高为2r=4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V=34×(43)2×4=48 3.三、解答题(本大题共6小题,共70分)17.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.故S四边形A1EHA=12×(4+10)×8=56,S四边形EB1BH=12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).18.解如图所示,分别过A,B作EF的垂线AG,BH,垂足分别为G,H.连接DG,CH,容易求得EG=HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24,V =V E -ADG +V F -BHC +V AGD -BHC =⎝⎛⎭⎫13×12×24×2+24×1=23.19解 根据题意可知,纸篓底面圆的半径r ′=15 cm ,上口的半径r =20 cm ,设母线长为l , 则纸篓的表面积S =πr ′2+(2πr ′+2πr )l2=π(r ′2+r ′l +rl )=π(152+15×50+20×50)=1 975π(cm 2).20.(12分)有一盛满水的圆柱形容器,内壁底面半径为5,高为2,现将一个半径为3的玻璃小球缓慢浸没于水中.(1)求圆柱的体积; (2)求溢出水的体积.解 (1)∵内壁底面半径为5,高为2,∴圆柱体积V =π×52×2=50π. (2)溢出水的体积为43×π×33=36π.21解 由题图可知半球的半径为4 cm , 所以V 半球=12×43πR 3=12×43π×43=1283π(cm 3),V 圆锥=13πR 2h =13π×42×12=64π(cm 3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子. 22.解 (1)该三棱柱的侧面展开图是宽为4,长为9的矩形, 所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB 1展开,如图所示. 设PC 的长为x ,则MP 2=MA 2+(AC +x )2.因为MP =29,MA =2,AC =3,所以x =2(负值舍去),即PC 的长为2. 又因为NC ∥AM ,所以PC P A =NC AM ,即25=NC 2,所以NC =45.。