必修4:三角函数与平面向量高考试题
- 格式:doc
- 大小:543.00 KB
- 文档页数:4
高考数学《三角函数与平面向量》专项训练一、单选题1.已知()1,2a =r ,()1,0b =r ,则2a b +=r r ( ) A .5 B .7 C .5 D .25 2.若3sin 122πα⎛⎫-= ⎪⎝⎭,则2sin 23πα⎛⎫-= ⎪⎝⎭( ) A .12 B .12-C .32D .3- 3.已知平面向量()()2,1,2,4a b ==r r ,则向量a r 与b r 的夹角的余弦值为( ) A .35 B .45 C .35- D .45- 4.若4sin 3cos 0αα-=,则2sin 22cos αα+=( )A .4825B .5625C .85D .43 5.将函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,则12x x -的最大值为( )A .πB .2πC .3πD .4π 6.已知042a ππβ<<<<,且5sin cos 5αα-=,4sin 45πβ⎛⎫+= ⎪⎝⎭则sin()αβ+=( ) A .31010- B .155- C .155 D .310 7.如图,已知ABC ∆中,D 为AB 的中点,13AE AC =uu u r uuu r ,若DE AB BC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .56-B .16-C .16D .568.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos cos a B b A =,则ABC ∆形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形 9.如图,在ABC V 中,1cos 4BAC ∠=,点D 在线段BC 上,且3BD DC =,15AD =,则ABC V 的面积的最大值为( )A .32B .4C 15D .2310.在ABC △中,角A B C ,,的对边分别为a b c ,,,已知25c =2sin cos sin sin a C B a A b B =-+5sin C ,点O 满足0OA OB OC ++=uu v uu u v uuu v ,3cos 8CAO ∠=,则ABC △的面积为( )A 55B .35C .52D 55二、填空题11.sin 613cos1063tan 30︒︒︒++的值为________.12.函数()21sin f x x =+的最小正周期是__________. 13.如图所示,正八边形12345678A A A A A A A A 的边长为2,若P 为该正八边形上的动点,则131A A A P⋅u u u u r u u u r 的取值范围________.14.将函数()3)13f x x π=+-的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则函数()g x 具有性质__________.(填入所有正确性质的序号) 33x π=-对称; ②图象关于y 轴对称;③最小正周期为π; ④图象关于点(,0)4π对称; ⑤在(0,)3π上单调递减 三、解答题15.若向量(3,0)(cos ,sin )(0)m x n x x ωωωω==->r r ,在函数()()f x m m n t =⋅++r r r 的图象中,对称中心到对称轴的最小距离为,4π且当[0,],()3x f x π∈时的最大值为1. (I )求函数()f x 的解析式;(II )求函数()f x 的单调递增区间.16.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin 32B m ⎛= ⎝u r ,cos ,cos 2B n B ⎛⎫= ⎪⎝⎭r ,且m n ⊥u r r .(Ⅰ)求角B 的大小;(Ⅱ)如果1a =,3b =,求ABC ∆的面积.17.如图所示,在ABC V 中,,A ∠,B ∠C ∠的对边分别为a ,b ,c ,已知2sin cos sin 0,b A B a B +=1a =,2c =.(1)求b 和sin C ;(2)如图,设D 为AC 边上一点,37BD CD =ABD △的面积.参考答案1.C【解析】【分析】求出向量2a b +r r 的坐标,然后利用向量模的坐标表示可求出2a b +r r 的值.【详解】()()()221,21,03,4a b +=+=r r Q,因此,25a b +==r r .故选:C.【点睛】本题考查向量模的坐标运算,考查计算能力,属于基础题.2.A【解析】【分析】 根据条件和二倍角公式,先计算出cos 26πα⎛⎫- ⎪⎝⎭的值,再将所要求的2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,根据诱导公式进行化简,得到答案.【详解】因为sin 122πα⎛⎫-= ⎪⎝⎭,所以2cos 21262πα⎛⎫⎛⎫-=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭12=- 2sin 2sin 2362πππαα⎡⎤⎛⎫⎛⎫-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ cos 26πα⎛⎫=-- ⎪⎝⎭ cos 26πα⎛⎫=-- ⎪⎝⎭ 12=.【点睛】本题考查三角函数中的给值求值,二倍角公式,诱导公式化简,属于中档题.3.B【解析】【分析】 由向量的模的坐标计算公式求出,a b r r ,利用数量积的坐标表示求出a b ⋅r r ,再根据向量的夹角公式即可求出.【详解】由()()2,1,2,4a b ==r r,得a b ==r r .设向量a r 与b r 的夹角为θ,则84105cos θ===. 故选:B .【点睛】本题主要考查向量的夹角公式,向量的模的坐标计算公式,以及数量积的坐标表示的应用,意在考查学生的数学运算能力,属于基础题.4.B【解析】【分析】由4sin 3cos 0αα-=,求得3tan 4α=,再由222tan 2sin 22cos tan 1αααα++=+,即可求出. 【详解】由4sin 3cos 0αα-=,求得sin 3tan cos 4ααα==, 而222222sin cos 2cos 2tan 2sin 22cos sin cos tan 1ααααααααα+++==++, 所以22322564sin 22cos 25314αα⨯++==⎛⎫+ ⎪⎝⎭. 故选:B .【点睛】本题主要考查已知正切值,齐次式求值问题的解法以及二倍角公式的应用,意在考查学生的数学运算能力,属于5.C【解析】【分析】首先利用函数图象的平移变换的应用求出新函数的关系式,进一步利用函数的最值的应用求出结果.【详解】解:函数()226f x sin x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位,得到226y sin x π⎛⎫=+ ⎪⎝⎭的图象,再向上平移1个单位,得到()2216g x sin x π⎛⎫=++ ⎪⎝⎭的图象, 由于若()()129g x g x ⋅=,且1x ,[]22,2x ππ∈-,所以函数在1x x =和2x 时,函数()2216g x sin x π⎛⎫=++ ⎪⎝⎭都取得最大值. 所以()12262x k k Z πππ+=+∈,解得16x k ππ=+, 由于且1x ,[]22,2x ππ∈-,所以176x π=,同理2116x π=-,所以711366πππ+=. 故选:C .【点睛】 本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换的应用,主要考查学生的运算能力和转换能力及思维能力,属于中等题.6.D【解析】【分析】首先根据sin cos 5αα-=,求得sin 410πα⎛⎫-= ⎪⎝⎭,结合角的范围,利用平方关系,求得cos 410πα⎛⎫-= ⎪⎝⎭,利用题的条件,求得3cos 45πβ⎛⎫+= ⎪⎝⎭,之后将角进行配凑,使得()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用正弦的和角公式求得结果. 【详解】因为sin cos αα-=sin 4πα⎛⎫-= ⎪⎝⎭因为42a ππ<<,所以cos 410πα⎛⎫-= ⎪⎝⎭. 因为04πβ<<,4sin 45πβ⎛⎫+= ⎪⎝⎭,所以3cos 45πβ⎛⎫+= ⎪⎝⎭,所以()sin sin 44a ππβαβ⎡⎤⎛⎫⎛⎫+=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 3455=+= 故选D.【点睛】 该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.7.C【解析】【分析】利用向量的线性运算将DE u u u r 用,AB AC u u u r u u u r表示,由此即可得到,λμ的值,从而可求λμ+的值.【详解】 因为1123DE DA AE BA AC =+=+u u u r u u u r u u u r u u u r u u u r ()111111236363BA BC BA BA BC AB BC =+-=+=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以16λ=-,13μ=.故16λμ+=. 故选:C.【点睛】 本题考查向量的线性运算以及数乘运算在几何中的应用,难度一般.向量在几何中的应用可通过基底的表示形式进行分析.8.D【解析】【分析】 由cos cos a B b A=,利用正弦定理化简可得sin2A =sin2B ,由此可得结论. 【详解】∵cos cos a B b A=, ∴由正弦定理可得sin cos sin cos A B B A =, ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∴2A =2B 或2A +2B =π,∴A =B 或A +B =2π, ∴△ABC 的形状是等腰三角形或直角三角形故选:D .【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.9.C【解析】【分析】设BAD θ∠=,则0BAC θ<<∠,根据三角形的面积公式求出AC ,AB ,然后由1sin 2ABC S AB AC BAC ∆=⋅∠()4213sin θϕ⎡⎤=+-⎣⎦,根据三角函数的性质求出面积的最大值. 【详解】解:设BAD θ∠=,则0BAC θ<<∠.3BD DC =Q ,AD =,34ABD ABC S S ∴=V V ,131242AB ADsin AB ACsin BAC θ∴⋅=⋅⋅∠, 83AC sin θ∴=,同理()8AB sin BAC θ=∠-,()1124ABC S AB ACsin BAC sin BAC sin θθθθθ⎫∴=⋅∠=∠-=-⎪⎪⎝⎭V()421(sin θϕ⎤=+-⎦其中tan ϕ=,0BAC θ<<∠Q ,∴当22πθϕ+=时,sin(2)1max θϕ+=,()ABC max S ∴=V故选:C .【点睛】本题考查了余弦定理和三角恒等变换,以及三角形的面积公式,考查了运算能力和转化能力,属于中档题.10.D【解析】【分析】运用正弦定理和余弦定理将角统一成边,再利用向量的数量积运算和三角形的面积公式结合求解.【详解】由2sin cos sin sin sin a C B a A b B C =-+,可得2222222a c b ac a b ac +-⨯=-+,即c =.又c =,所以4b =. 因为0OA OB OC ++=u u u v u u u v u u u v v ,所以点O 为ABC △的重心,所以3AB AC AO +=u u u v u u u v u u u v ,所以3AB AO AC =-u u u v u u u v u u u v, 两边平方得22|9|6cos AB AO AO AC CAO =-∠u u u v u u u v u u u v u u u v 2||AC +u u u v . 因为3cos 8CAO ∠=,所以2223|9|6||8AB AO AO AC AC =-⨯+u u u v u u u v u u u v u u u v u u u v , 于是29||AO -u u u v 940AO -=u u u v ,所以43AO =u u u v ,AOC △的面积为114sin 4223AO AC CAO ⨯⨯⨯∠=⨯⨯⨯u u u v u u u v =.因为ABC △的面积是AOC △面积的3倍.故ABC △【点睛】本题关键在于运用向量的平方可以转化到向量的夹角的关系,再与三角形的面积公式相结合求解,属于难度题.11【解析】【分析】根据诱导公式,进行化简,从而得到答案.【详解】sin 613cos1063tan 30︒︒︒++()sin 253cos 17tan30︒︒︒=+-+()sin 73cos 17tan30︒︒︒=-+-+=cos17cos17tan 30︒︒︒-++=故答案为:3【点睛】 本题考查诱导公式化简,特殊角三角函数值,属于简单题.12.π【解析】【分析】利用二倍角公式化简函数的解析式,再利用余弦型函数的周期公式,即可求得函数的最小正周期.【详解】因为()21cos 2311sin 1cos 2222x f x x x -=+=+=-, 所以函数的最小正周期为22T ππ==. 故答案为:π.【点睛】本题主要考查二倍角公式的应用以及余弦型函数的周期公式的应用,属于基础题.13.⎡-+⎣【解析】【分析】由题意可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r 最小,当P 与4A 重合时,131A A A P⋅u u u u r u u u r 最大,求出即可. 【详解】由题意,正八边形12345678A A A A A A A A 的每一个内角均为135o ,且边长12182A A A A ==u u u u r u u u u r ,1317A A A A ==u u u u r u u u u r , 由正弦函数的单调性及值域可知,当P 与8A 重合时,131A A A P ⋅u u u u r u u u r最小,且最小值为2cos112.5⎛⨯==-⎝⎭o当P与4A重合时,1318A A A P⋅==+u u u u r u u u r因此,131A A A P⋅u u u u r u u u r的取值范围是⎡-+⎣.故答案为:⎡-+⎣.【点睛】本题考查平面向量数量积的运算以及数形结合思想的应用,解题的关键就是找出临界位置进行分析,考查计算能力,属于中等题.14.②③④【解析】将函数()213f x xπ⎛⎫=+-⎪⎝⎭的图象向左平移3π个单位长度,得到2133y xππ⎡⎤⎛⎫=++-⎪⎢⎥⎝⎭⎣⎦()211x xπ=+-=-的图象向上平移1个单位长度,得到函数()g x x=的图象,对于函数()g x,由于当3xπ=-时,()g x=故()g x图象不关于直线3xπ=-对称,故排除①;由于该函数为偶函数,故它的图象关于y轴对称,故②正确;它的最小周期为22ππ=,故③正确;当4xπ=时,()0g x=,故函数的图象关于点,04π⎛⎫⎪⎝⎭对称,故正④确;在0,3π⎛⎫⎪⎝⎭上,()220,,3x g xπ⎛⎫∈ ⎪⎝⎭不是单调函数,故排除⑤,故答案为②③④.【方法点晴】本题主要考查三角函数的单调性、三角函数的周期性及奇偶性,属于难题.三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.15.3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分 【解析】解:(I )由题意得()()f x m m n t =⋅++r r r 2m m n =+⋅r r r23sin cos 33cos 222223)432x x x tx x t x t ωωωωωπω=⋅+=-++=-++L L L L 分 ∵对称中心到对称轴的最小距离为4π ()f x ∴的最小正周期为T π=2,12ππωω∴=∴=………………6分3()),32[0,],2[,]3333f x x t x x πππππ∴=-++∈-∈-当时 2,()333x x f x πππ∴-==即时取得最大值3t +)max (1,31,21()).832x f t t f x x π=∴+=∴=-∴=--n Q L L L L L L 分 (II )222,232k x k k Z πππππ-≤-≤+∈………………10分55222,2612125()[,]()121212k x k k x k f x k k k Z ππππππππππππ-≤≤+-≤≤+∴-+∈L L L L 函数的单调递增区为分16.(Ⅰ)23π;. 【解析】【分析】 (Ⅰ)由m n ⊥u r r 得出0m n ⋅=u r r ,利用平面向量数量积的坐标运算、二倍角公式以及同角商数关系可求得tan B =,结合B 的范围可得出角B 的值;(Ⅱ)利用余弦定理求出c 的值,然后利用三角形的面积公式即可求出ABC ∆的面积.【详解】(Ⅰ)m n ⊥u r r Q ,2sin cos sin 022B B m n B B B ∴⋅==+=u r r .化简得:tan B =,又0B Q π<<,23B π∴=;(Ⅱ)由余弦定理2222cos b a c ac B =+-得,2221122c c ⎛⎫=+-- ⎪⎝⎭,整理得220c c +-=,解之得:1c =,11sin 1122ABC S ac B ∆∴==⨯⨯=. 【点睛】 本题考查利用余弦定理解三角形、三角形面积的计算,涉及平面向量垂直的坐标表示,考查计算能力,属于基础题.17.(1)b =7;【解析】【分析】(1)通过正弦定理边化角,整理化简得到cos B 的值,再利用余弦定理,求出b ,根据正弦定理,求出sin C ;(2)根据正弦定理得到sin 1CBD ∠=,即2CBD π∠=,根据勾股定理得到BD =,根据三角形面积公式,求出ABD △的面积.【详解】(1)因为2sin cos sin 0b A B a B +=,所以在ABC V 中,由正弦定理sin sin sin a b c A B C ==,得2sin sin cos sin sin 0B A B A B +=,因为sin sin 0A B ≠,所以2cos 10B +=, 所以1cos 2B =-, 又0B π<<,所以23B π=, 由余弦定理得,2222cos b a c ac B =+-1142122⎛⎫=+-⨯⨯⨯- ⎪⎝⎭7=,所以b =,在ABC V 中,由正弦定理sin sin c b C B =, 所以sin sin c BC b=22sin π=7=; (2)在ABD △中,由正弦定理得,sin sin BD C CD CBD =∠,因为BD CD =sin sin C CBD =∠因为sin 7C =,所以sin 1CBD ∠=, 而()0,CBD π∠∈ 所以2CBD π∠=,由BD CD =,BD=CD =,所以222)1)+=,所以12t =,所以2BD =, 因为ABD ABC DBC ∠=∠-∠232ππ=-6π=,所以1sin 2ABD S AB BD ABD =⨯⨯∠V 11222=⨯4=. 【点睛】 本题考查正弦定理边角互化,正弦定理、余弦定理解三角形,属于简单题.。
一、选择题1.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .322.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B.0,(1,)3⎛⋃+∞ ⎝⎭C.3⎛⎫ ⎪ ⎪⎝⎭ D .(1,)+∞3.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .24.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于(). A B.5C .D .316.已知非零向量,OA a OB b == ,且BC OA ⊥,C 为垂足,若(0)OC a λλ=≠,则λ等于( )A .a b a b⋅ B .2a b a⋅ C .2a b b⋅ D .a b a b⋅7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]+B .[0,2]C .22,222]-+D .[222,2]-9.已知ABC 中,3AB AC ==,且||||AB AC AB AC +=-,点D ,E 是BC 边的两个三等分点,则AD AE ⋅=( ) A .3B .4C .5D .610.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定11.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .412.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A .3B .3 C .12D .1二、填空题13.如图所示,已知AOB ,点C 是点B 关于点A 的对称点,2OD DB =,DC 和OA 交于点E ,若OE OA λ=,则实数λ的值为_______.14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 16.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.17.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 18.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________19.在梯形ABCD 中,AB //CD ,90DAB ∠=,2AB =,1CD AD ==,若点M在线段BD 上,则AM CM ⋅的最小值为______________.20.已知平面向量a ,b 满足1a =,2a b -与2b a -的夹角为120°,则2b 的最大值是_______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.如图,在OAB 中,P 为边AB 上的一点2BP PA =,6OA =,2OB =且OA 与OB 的夹角为60︒.(1)设OP xOA yOB =+,求x ,y 的值; (2)求OP AB ⋅的值.23.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 24.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 25.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值 26.如图,在直角△ABC 中,点D 为斜边BC 的靠近点B 的三等分点,点E 为AD 的中点,3,6AB AC ==(1)用,AB AC 表示AD 和EB ; (2)求向量EB 与EC 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OAC AEC S S =△△,即可得解.【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.2.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.3.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,13,33D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,3DO y ⎛=- ⎝⎭, //BO DO ,所以,2313y y =-,解:32y =, 322OA OB OC OE OE OE ++=+==,所以选项C 错误; 1233ED ⎛= ⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.B解析:B 【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模. 【详解】由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B.【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解. 6.B解析:B 【解析】试题分析:BC OA ⊥,即()200BC OC OC OB OC OC OB OC ⊥⇒-⋅=⇒-⋅=,即220a a b λλ-⋅=,20,a b aλλ⋅≠∴=.考点:平面向量的数量积的应用.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.D解析:D 【解析】如图所示:OA a =,OB b =,OC c =,OD a b =+ ∵()()0a c b c -⋅-≤,∴点C 在劣弧AB 上运动,a b c +-表示C 、D 两点间的距离CD .CD 的最大值是BD =2,CD 最小值为OD 2222-=.故选D9.B解析:B 【分析】由||||AB AC AB AC +=-知,0AB AC ⋅=,根据平面向量的线性运算可推出2133AD AB AC =+,1233AE AB AC =+,故21123333AD AE AB AC AB AC ⎛⎫⎛⎫⋅=+⋅+ ⎪ ⎪⎝⎭⎝⎭,展开后代入数据进行运算即可.【详解】解:∵||||AB AC AB AC +=-,∴0AB AC ⋅=, ∵点D 是BC 边的三等分点, ∴11()33AD AB BD AB BC AB AC AB =+=+=+-2133AB AC =+.同理可得,1233AE AB AC =+, ∴()2221122(3339)3AD AE AB AC AB AC AB AC ⎛⎫⋅=+⋅+=+ ⎪⎝⎭2(99)49=⨯+=. 故选:B. 【点睛】本题考查平面向量数量积运算、模的运算、平面向量基本定理,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意基底的选择.10.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.11.A解析:A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△, ∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin''2141sin2OA BOABOA OB A OBSS OA OB AOB⋅∠==⋅∠△△,即114x t=,同理16y t=,121z t=,11161462121ABCS x y z t t t t=++=++=△,∴6216121ABCOBCtSS t==△△.故选:A.【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.12.B解析:B【分析】利用向量a与b的夹角是23π,且a a b=+,得出a b a b==+,进而将22a tbb+化成只含有t为自变量的二次函数形态,然后利用二次函数的特性来求出最值.【详解】对于a,b和a b+的关系,根据平行四边形法则,如图a BA CD==,b BC=,a b BD+=,23ABCπ∠=,3DCBπ∴∠=,a ab =+,CD BD BC ∴==,a b a b ∴==+,2222222==222a tb a tb a tb b b b +++,a b =, 22222222244cos 223=224a t a b t b a tb a tb b b b π++++=, 22222222244cos4231244a t a b t b a t aa t a t tb aπ++-+==-+当且仅当1t =时,22a tb b +的最小值为2. 故选:B.【点睛】 本题考查平面向量的综合运用,解题的关键点在于把22a tb b +化成只含有t 为自变量的二次函数形态,进而求最值. 二、填空题13.【分析】设可得又因为即可求解【详解】如图所示:设由于所以由于点是点关于点的对称点则为中点所以得所以由于又因为得故答案为:【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法解析:45【分析】设,OA a OB b ==,可得523DC a b =-,()2EC a b λ=--,又因为//EC DC ,即可求解λ.【详解】如图所示:设,OA a OB b ==,由于2OD DB =,所以23OD b =, 由于点C 是点B 关于点A 的对称点,则A 为BC 中点, 所以()12OA OB OC =+,得2OC a b =- 所以523DC OC OD a b =-=-由于()2EC OC OE a b λ=-=-- ,又因为//EC DC 21523λ-= 得45λ= . 故答案为:45【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【 解析:33【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到232CB CA CD ⎛⎫+== ⎪⎝⎭2OA OB AB -≤=,得到2||2OA OB OD ⎛⎫+= ⎪⎝⎭范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===,如图所示:因为||2,||2||a b a b -==,所以||2,||2||AB OA OB ==,取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=,解得228CB CA +=, 所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭ 所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=, 所以2OB ≤,当A ,O ,B 共线时,取等号, 所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤.【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解. 15.【分析】已知式平方后求得再由数量积的定义可得夹角【详解】由得∴∴∴故答案为:【点睛】本题考查求向量的夹角解题关键是掌握向量的模与数量积的关系由模求得数量积后可得 解析:23π 【分析】已知式223a b -=平方后求得a b ⋅,再由数量积的定义可得夹角.【详解】由223a b -=得222(2)4444412a b a a b b a b -=-⋅+=-⋅+=,∴1a b ⋅=-, ∴cos ,2cos ,1a b a b a b <>=<>=-,1cos ,2a b <>=-,∴2,3a b π<>=. 故答案为:23π. 【点睛】 本题考查求向量的夹角,解题关键是掌握向量的模与数量积的关系,由模求得数量积后可得. 16.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解.【详解】由平面向量的数量积的定义,可得1221211cos 11()322e e e e π⋅=⋅=⨯⨯-=-, 222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=, 22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为172147a b b⋅==. 故答案为:7. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题. 17.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积 解析:6【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解.【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P , 所以()()3,1,3,3PA PB =-=--,所以()()()33136PA PB ⋅=-⨯-+⨯-=,故答案为:6.【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题. 18.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆解析:2【分析】作向量OA a =,OB b =,OC c =,根据已知条件可得出a 与b 的夹角为120︒,A ,O ,B ,C 四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a =,OB b =,OC c =,∴CA a c =-,CB b c =-,1a b ==,1cos ,2a b a b a b ⋅=⋅⋅=-, ∴a 与b 的夹角为120︒,即120AOB ∠=︒.∴120AOB ∠=︒.又a c -与b c -的夹角为60︒,即CA 与CB 夹角为60︒,∴A ,O ,B ,C 四点共圆. ∴当OC 为直径时c 最大,在AOB 中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB =︒. ∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2.故答案为:2.【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.19.【分析】根据建立平面直角坐标系设得到再求得的坐标利用数量积的坐标运算求解【详解】建立如图所示平面直角坐标系:因为所以设所以所以所以所以当时的最小值为故答案为:【点睛】本题主要考查平面向量的数量积运算 解析:920-【分析】根据AB //CD ,90DAB ∠=,2AB =,1CD AD ==,建立平面直角坐标系,设,01λλ=≤≤BM BD ,得到()22,λλ-M ,再求得,AM CM 的坐标,利用数量积的坐标运算求解.【详解】建立如图所示平面直角坐标系:因为AB //CD ,90DAB ∠=,2AB =,1CD AD ==,所以()2,0B ,()0,1D ,()1,1C ,设,01BM BD λλ=≤≤,所以()()2,2,1λ-=-x y所以()22,λλ-M ,所以()()22,,12,1λλλλ---==AM CM ,所以()()22,12,1λλλλ⋅=-⋅--AM CM ,227957251020λλλ⎛⎫=-+=-- ⎪⎝⎭, 当710λ=时,AM CM ⋅的最小值为920-. 故答案为:920-【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题. 20.【分析】设设则有联立四个方程令整理得到从方程有根判别式大于等于零求得结果【详解】设由题意可知则由与夹角为所以①且②③④因为联立①②③④令即整理得将其看作关于的方程若方程有解则有整理得解得因为所以的最【分析】设设2a b c =-,2b d a =-,则有cos120c d c d ⋅=︒,22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,2222(2)44c a b a a b b =-=-⋅+,2222(2)44d b a b a b a =-=-⋅+,联立四个方程,令21,m b n a b =+=⋅,整理得到2228204330n mn m m -+-+=,从方程有根,判别式大于等于零求得结果.【详解】设2a b c =-,2b d a =-,由题意可知,则由c 与d 夹角为120︒,所以cos120c d c d ⋅=︒,①且22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,② 2222(2)44c a b a a b b =-=-⋅+,③ 2222(2)44d b a b a b a =-=-⋅+,④因为11,cos1202a =︒=-, 联立①②③④,2222244104444b a b a a b b b a b a +-⋅=-⋅+⋅-⋅+, 令21,m b n a b =+=⋅,即410m n -=2222168010044316161212129m mn n m mn m mn n n m n -+=---+++--, 整理得2228204330n mn m m -+-+=,将其看作关于n 的方程,若方程有解,则有22(20)428(433)0m m m ∆=-⨯⨯-+≥,整理得2770m m -+≤,解得7722m +≤≤因为21m b =+,所以2b 1-=,. 【点睛】思路点睛:该题考查的是有关向量的问题,解题思路如下:(1)根据向量数量积的定义式求得两向量的数量积;(2)根据向量数量积运算法则求得其结果;(3)利用向量的平方与向量模的平方相等,得到等量关系式;(4)联立,从方程有根,判别式大于等于零,得到不等关系式,求得结果.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-. 【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-= ∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=; (2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==; (3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1)23x =,13y =;(2)623-. 【分析】(1)由向量的加减运算,可得()2233=+=+=+-OP OB BP OB BA OB OA OB ,进而可得答案. (2)用OAOB ,表示OP AB ⋅,利用向量数量积公式,即可求得结果.【详解】(1)因为2BP PA =,所以23BP BA =. ()22213333OP OB BP OB BA OB OA OB OA OB =+=+=+-=+. 又OP xOA xOB =-,又因为OA 、OB 不共线,所以,23x =,13y = (2)结合(1)可得: ()2133OP AB OA OB OB OA ⎛⎫⋅=+⋅- ⎪⎝⎭. 2222113333=⋅-+-⋅OA OB OA OB OA OB 22121333=⋅-+OA OB OA OB , 因为6OA =,2OB =,且OA 与OB 的夹角为60︒. 所以22112162626232333OP AB ⋅=⨯⨯⨯-⨯+⨯=-. 【点睛】本题考查了向量的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目.23.(Ⅰ)2AD =;(Ⅱ)0.【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果.【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a b a a b b b b ∴=+=+=+⋅+=++=整理得2280b b +-=, 0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥,因此,AC 和BD 夹角的余弦值为0.【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.24.(1)(2,4)-;(2)5-.【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标;(2)根据向量数量积的运算律及数量积的定义计算.【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-, 故(2,4)b =-;(2)21(a =+=∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭.【点睛】 本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.25.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc +-+--=-=- ()222231.4442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.26.(1)2133AD AB AC =+,2136EB AB AC =-,(2)7130- 【分析】(1)利用平面向量基本定理和向量的加减法法则进行求解即可(2)如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系,然后表示出向量EB 与EC 的坐标,再利用向量夹角的坐标公式求解【详解】解:(1)因为D 为斜边BC 的靠近点B 的三等分点, 所以1111()3333BD BC AC AB AC AB ==-=-, 所以2133AD AB BD AB AC =+=+, 因为E 为AD 的中点,所以112111223336AE AD AB AC AB AC ⎛⎫==+=+ ⎪⎝⎭, 所以2136EB AB AE AB AC =-=-, (2)1536EC AC AE AB AC =-=-+, 如图,以AC ,AB 所在的方向分别为x 轴,y 轴的正方向,建立平面直角坐标系, 则(0,3),(6,0)B C ,所以21(1,2)36EB AB AC =-=-,15(5,1)36EC AB AC =-+=- ,所以(1)52(1)7EB EC ⋅=-⨯+⨯-=-,222(1)25,5EB EC =-+==+= 设向量EB 与EC 夹角为θ,则cos 1305EB ECEB EC θ⋅===-⋅ 【点睛】此题考查平面向量基本定理的应用,考查向量夹角公式的应用,考查计算能力,属于中档题。
平面向量与三角函数综合1. 已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.2. 设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2].(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.3. 已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ), n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA ―→·(AB ―→-AC ―→)=18,求c .4. 已知向量a =(sin x,1),b =(t ,x ),若函数f (x )=a·b 在区间⎣⎡⎦⎤0,π2上是增函数,则实数t 的取值范围是________.5.已知向量a =(cos x ,sin x ),b =(-cos x ,cos x ),c =(-1,0).(1)若x =π6,求向量a ,c 的夹角;(2)当x ∈⎣⎡⎦⎤π2,9π8时,求函数f (x )=2a ·b +1的最小值.6.已知向量m =(sin α-2,-cos α),n =(-sin α,cos α),其中α∈R.(1)若m ⊥n ,求角α;(2)若|m -n |=2,求cos 2α的值.7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c , 且2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.8. 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c , 且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.9. 已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,向量m =(sin A,1), n =(cos A ,3),且m ∥n .(1)求角A 的大小;(2)若a =2,b =22,求△ABC 的面积.10.已知向量m =(sin x ,-1),向量n =(3cos x ,-12),函数f (x )=(m +n )·m .(1)求f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在[0,π2]上的最大值,求A ,b 和△ABC 的面积S .11. 在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC ―→|=1,且∠AOC =x ,其中O 为坐标原点.(1)若x =3π4,设点D 为线段OA 上的动点,求|OC ―→+OD ―→|的最小值;(2)若x ∈⎣⎡⎦⎤0,π2,向量m =BC ―→,n =(1-cos x ,sin x -2cos x ),求m ·n 的最小值及对应的x 值.12. 已知向量a =(2sin(ωx +2π3),2),b =(2cos ωx,0)(ω>0),函数f (x )=a ·b 的图象与直线 y =-2+3的相邻两个交点之间的距离为π.(1)求函数f (x )在[0,2π]上的单调递增区间;(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )的图象.若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.参考答案平面向量与三角函数综合1. 解 (1)因为a ∥b ,所以2sin θ=cos θ-2sin θ. 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=12+22,所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4或2θ+π4=7π4. 所以θ=π2或θ=3π4.2. 解 (1)由|a |=(3sin x )2+(sin x )2=2sin 2x ,|b |=(cos x )2+(sin x )2=1,及|a |=|b |,得sin 2x =14. 又x ∈[0,π2],从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],所以当2x -π6=π2,即x =π3时,sin(2x -π6)取得最大值1,所以f (x )的最大值为32.3. [解] (1)由已知得m·n =sin A cos B +sin B cos A =sin(A +B ),∵在△ABC 中,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m·n =sin C , 又m·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3.(2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B , 由正弦定理得2c =a +b . ∵CA ―→·(AB ―→-AC ―→)=18,∴CA ―→·CB ―→=18, 即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36, ∴c =6.4. 解析:由f (x )=a·b =t sin x +x ,得f ′(x )=t cos x +1,因为函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数,所以f ′(x )≥0在区间⎣⎡⎦⎤0,π2上恒成立, 即t cos x +1≥0恒成立,即t ≥-1cos x 在⎣⎡⎦⎤0,π2上恒成立,所以t ≥⎝⎛⎭⎫-1cos x max ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2,所以t ≥-1. 答案:[-1,+∞) 5.解:(1)当x =π6时,cos 〈a ,c 〉=a ·c|a ||c |=-cos x cos 2x +sin 2x ·-2+02=-cos x=-cos π6=-32.又∵0≤〈a ,c 〉≤π,∴〈a ,c 〉=5π6,即向量a ,c 的夹角为5π6.(2)f (x )=2a ·b +1=2(-cos 2x +sin x cos x )+1=2sin x cos x -(2cos 2x -1) =sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4. ∵x ∈⎣⎡⎦⎤π2,9π8,∴2x -π4∈⎣⎡⎦⎤3π4,2π,故sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-1,22, ∴当2x -π4=3π2,即x =7π8时,f (x )取得最小值为- 2.6. 解:(1)若m ⊥n ,则m ·n =0,即为-sin α(sin α-2)-cos 2α=0,即sin α=12,可得α=2k π+π6或α=2k π+5π6,k ∈Z.(2)若|m -n |=2,即有(m -n )2=2,即(2sin α-2)2+(2cos α)2=2, 即为4sin 2α+4-8sin α+4cos 2 α=2,即有8-8sin α=2,可得sin α=34,即有cos 2α=1-2sin 2α=1-2×916=-18.7. 解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,∴cos(A -B )cos B -sin(A -B )sin B =-35,∴cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =bsin B ,所以sin B =b sin A a =22. 由题意知a >b ,则A >B ,故B =π4.根据余弦定理,有(42)2=52+c 2-2×5c ×(-35),解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.8. 解:m·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝⎛⎭⎫x 2+π6+12. (1)∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12,cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12,cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin C cos B +sin B cos C ,∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0,∴cos B =12,B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,12<sin ⎝⎛⎭⎫A 2+π6<1.又∵f (x )=m·n =sin ⎝⎛⎭⎫x 2+π6+12,∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12, 故1<f (A )<32.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 9. 解 (1)根据m ∥n ,可得到tan A =33. 注意到A ∈(0,π),得到A =π6. (2)由正弦定理可得:sin B =b sin A 2=22,因为a <b ,所以A <B ,所以B =π4或3π4. 当B =π4时,sin C =sin(A +B )=sin A cos B +cos A ·sin B =21+34,所以S △ABC =12ab sin C =1+3;当B =3π4时,sin C =sin(A +B )=sin A cos B +cos A ·sin B =23-14,所以S △ABC =12ab sin C =3-1. 故△ABC 的面积为1+3或3-1.10.解 (1)f (x )=(m +n )·m =sin 2x +1+3sin x cos x +12=1-cos 2x 2+1+32sin 2x +12=32sin 2x -12cos 2x +2=sin(2x -π6)+2, 因为ω=2,所以T =2π2=π.(2)由(1)知:f (A )=sin(2A -π6)+2. 当x ∈[0,π2]时,-π6≤2x -π6≤5π6,由正弦函数图象可知,当2x -π6=π2时f (x )取得最大值3. 所以2A -π6=π2,A =π3,由余弦定理,a 2=b 2+c 2-2bc cos A ,∴12=b 2+16-2×4b ×12,∴b =2,从而S =12bc sin A =12×2×4sin 60°=2 3. 综上,A =π3,b =2,S =2 3.11. 解:(1)设D (t,0)(0≤t ≤1),当x =3π4时,可得C ⎝⎛⎭⎫-22,22,所以OC ―→+OD ―→=⎝⎛⎭⎫-22+t ,22,所以|OC ―→+OD ―→|2=⎝⎛⎭⎫t -222+12(0≤t ≤1),所以当t =22时,|OC ―→+OD ―→|2取得最小值为12,故|OC ―→+OD ―→|最小值为22. (2)由题意得C (cos x ,sin x ),m =BC ―→=(cos x +1,sin x ),则m ·n =1-cos 2x +sin 2x -2sin x cos x =1-cos 2x -sin 2x =1-2sin ⎝⎛⎭⎫2x +π4. 因为x ∈⎣⎡⎦⎤0,π2,所以π4≤2x +π4≤5π4. 所以当2x +π4=π2,即x =π8时, m ·n =1-2sin ⎝⎛⎭⎫2x +π4取得最小值1-2, 所以m ·n 的最小值为1-2,此时x =π8.12. 解 (1)函数f (x )=a ·b =4sin(ωx +2π3)cos ωx =[4×(-12)sin ωx +4×32cos ωx ]cos ωx=23cos 2ωx -sin 2ωx =3(1+cos 2ωx )-sin 2ωx =2cos(2ωx +π6)+3,由题意得T =π,∴2π2ω=π,∴ω=1,故f (x )=2cos(2x +π6)+ 3.令2k π-π≤2x +π6≤2k π(k ∈Z),得k π-7π12≤x ≤k π-π12(k ∈Z),∴y =2cos(2x +π6)+3的单调递增区间为[k π-7π12,k π-π12](k ∈Z).当k =1时,函数的单调递增区间为[5π12,11π12].当k =2时,函数的单调递增区间为[17π12,23π12].∴函数f (x )在[0,2π]上的单调递增区间为[5π12,11π12],[17π12,23π12].(2)将函数f (x )的图象向右平移π12个单位,得到函数y =g (x )=2cos 2x +3的图象.令g (x )=0,得x =k π+5π12或x =k π+7π12,k ∈Z ,∴函数g (x )在每个周期内恰好有两个零点,若y =g (x )在[0,b ](b >0)上至少含有10个零点,则b 不小于第10个零点的横坐标即可,∴b 的最小值为4π+7π12=55π12.。
高考类型经典题及答案一、选择题1 .若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ= ( )A .35 B .45C.4D .342 .已知,(0,π),则=( )A . 1B .C .D .13.若tan +=4,则sin2= ( )A .B .C .D .4.已知α为第二象限角,sin cos αα+=,则cos 2α= ( )A.B.CD5.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.152 6.设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( ) A .1 B .2 C .3D .57.[2014·广东韶关一模] 已知向量AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( )A.37 B .13 C .6 D.1278. 记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y .设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2sin cos αα-=α∈tan α-2-2θ1tan θθ151413129.如图X191所示,在三角形ABC 中,BD =2CD .若AB →=a ,AC →=b ,则AD →=( )图X191A.13a +23b B.23a +13b C.23a -13b D.23a -23b10.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是=( ).A. 7 +1B. 7 -1C. 7D. 2711. 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.71212.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A .2 B .3 C.1728D.10二、填空题13.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____. 14.函数f(x)=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.若6πϕ=,点P 的坐标为(0,2),则ω=______ ; 15. 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.16.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.三、解答题17. (本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域(Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.18.函数2()6cos3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.19.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.20.在中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求的值;(Ⅱ)边a ,b ,c 成等比数列,求的值.21. 在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长;ABC ∆cos B sin sin A C(2)当k =-115时,求(AB →-kOC →)·OC →的值.22.已知△ABC 中,角A 为锐角,内角A ,B ,C 所对的边分别为a ,b ,c .设向量m =(cos A ,sin A ),n =(cos A ,-sin A ),且m 与n 的夹角为π3.(1)计算m ·n 的值并求角A 的大小;(2)若a =7,c =3,求△ABC 的面积S .答案一、选择1. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.2. 【答案】A【解析一】,故选A【解析二】,故选A【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中.3. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 4. 答案A【解析】sin cos αα+=, 两边平方可得121sin 2sin 233αα+=⇒=- sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=-,2sin cos (sin cos )2,sin 21,ααααα-∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=-α是第二象限角,因此sin 0,cos 0αα><,所以cos sin αα-===22cos 2cos sin (cos sin )(cos sin )3ααααααα∴=-=+-=-法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .5. [解析] ∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.6.A [解析] 由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1.7.D [解析] 由AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λ(AB →)2+(AC →)2-AC →·AB →=0,得-3λ-4λ+9+3=0,解得λ=127.8.D [解析] 对于A ,当a =0,b ≠0时,不等式不成立;对于B ,当a =b ≠0时,不等式不成立; 对于C ,D ,设OA →=a ,OB →=b ,构造平行四边形OACB ,根据平行四边形法则,∠AOB 与∠OBC 至少有一个大于或等于90°,根据余弦定理,max{|a +b |2,|a -b |2}≥|a |2+|b |2成立,故选D.9.A [解析] ∵BC →=AC →-AB →=b -a ,∴BD →=23BC →=23b -23a ,∴AD →=AB →+BD →=a +23b -23a =13a+23b . 10.A [解析] 由|CD →|=1,得动点D 在以C 为圆心,半径为1的圆上,故可设D(3+cos α,sin α),所以OA +OB +OD =(2+cos α,3+sin α),所以|OA +OB +OD|2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin (α+φ),所以(|OA →+OB →+OD →|2)max=8+27,即|OA →+OB →+OD →|max =7 +1.11.C [解析] 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,①CE →·CF →=(λ-1, 3(λ-1))·(μ-1,3(1-μ))=-23.②①-②得λ+μ=56.12.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2, 解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 二、填空13 【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++.∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭2427217==2252550-14. 【答案】(1)3;(2)4π 【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为时 cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . 设曲线段ABC 与x 轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.15.90° [解析] 由题易知点O 为BC 的中点,即BC 为圆O 的直径,故在△ABC 中,BC 对应的角A 为直角,即AC 与AB 的夹角为90°.16 . 12 [解析] 因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.三、解答题17. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值. 解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x xx ωωωωω=++- 21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 18. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567= [点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.19.解析:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期为T π= ∴2ω=,故函数()f x 的解析式为sin(2)16y x π=-+(2)∵()2sin()1226f απα=-+=即1sin()62πα-=∵02πα<<,∴663πππα-<-<∴66ππα-=,故3πα=20. 【答案及解析】(1)由已知 (2)解法一:,由正弦定理得 解法二:,,由此得得所以, 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果.21.解:(1)由题意,得AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).故所求两条对角线的长分别为4 2,2 10. (2)∵OC →=(-2,-1),AB →-kOC →=(3+2k ,5+k ),12=+,++=,=,cos =32B AC A B C B B ππ∴2=b ac 23sin sin =sin =4A CB 2=b ac 222221+-+-=cos ==222a c b a c ac B ac ac22+-=,a c ac ac =a c ===3A B C π3sin sin =4A C∴(AB →-kOC →)·OC →=(3+2k ,5+k )·(-2,-1)=-11-5k .∵k =-115,∴(AB →-kOC →)·OC →=-11-5k =0. 22.解:(1)∵|m |=cos 2A +sin 2A =1,|n |=cos 2A +(-sin A )2=1,∴=||·cos π3=12. ∵m ·n =cos 2A -sin 2A =cos 2A ,∴cos 2A =12. ∵0<A <π2,∴0<2A <π,∴2A =π3,∴A =π6. (2)方法一:∵a =7,c =3,A =π6,且a 2=b 2+c 2-2bc cos A , ∴7=b 2+3-3b ,解得b =-1(舍去)或b =4,故S =12bc sin A = 3. 方法二:∵a =7,c =3,A =π6,且a sin A =c sin C, ∴sin C =c sin A a =32 7. ∵a >c , ∴0<C <π6,∴cos C =1-sin 2C =52 7. ∵sin B =sin(π-A -C )=sin π6+C =12cos C +32sin C =27, ∴b =a sin B sin A =4,故S =12bc sin A = 3.。
一.选择题1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC MB AD C .;-+BM AD MB D .;+-CD OA OC 3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563 B .65 C .513D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4) 10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅ (A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.若),4,3(=A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是_________________。
三角函数与向量题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的值依次为 ( )A .π12,-3B .π3,3C .π3,-3D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C. 【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,B =-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(sinA -cosA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值.【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=-(cosA +sinA)(cosA -sinA),则sin 2A =34, 又A 为锐角,所以sinA =32,则A =π3. (Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tan α的值;(Ⅱ)求cos(α2+π3)的值. 【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果. 【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43. (Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π). 由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255, ∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法. 题型四 三角函数与平面向量的模的综合此类题型主要是利用向量模的性质|→a |2=→a 2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例4】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cos αcos β+sin αsin β)+12=45,∴cos(α-β)=35. (Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=45, 又sin β=-513,∴cos β=1213, ∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=3365. 点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|→a -→b |为向量运算|→a -→b |2=(→a -→b )2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx ,由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1. (Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1, 当sin(x +π4)=-1时,f(x)的最小值为1- 2. 点评:平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,其解法都差不多,首先都是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.题型六 解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的,说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标,要求根据向量的关系解答相关的问题.【例6】 已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),a =23,且→m·→n =12. (Ⅰ)若△ABC 的面积S =3,求b +c 的值.(Ⅱ)求b +c 的取值范围.【分析】 第(Ⅰ)小题利用数量积公式建立关于角A 的三角函数方程,再利用二倍角公式求得A 角,然后通过三角形的面积公式及余弦定理建立关于b 、c 的方程组求取b +c 的值;第(Ⅱ)小题正弦定理及三角形内角和定理建立关于B 的三角函数式,进而求得b +c 的范围.【解】 (Ⅰ)∵→m =(-cos A 2,sin A 2),→n =(cos A 2,sin A 2),且→m·→n =12, ∴-cos 2A 2+sin 2A 2=12,即-cosA =12, 又A ∈(0,π),∴A =2π3. 又由S △ABC =12bcsinA =3,所以bc =4, 由余弦定理得:a 2=b 2+c 2-2bc·cos 2π3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4.(Ⅱ)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π3), ∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π3)≤1,即b +c 的取值范围是(23,4]. [点评] 本题解答主要考查平面向量的数量积、三角恒等变换及三角形中的正弦定理、余弦定理、面积公式、三角形内角和定理等.解答本题主要有两处要注意:第(Ⅰ)小题中求b +c 没有利用分别求出b 、c 的值为解,而是利用整体的思想,使问题得到简捷的解答;(2)第(Ⅱ)小题的求解中特别要注意确定角B 的范围.三角函数(结合向量)练习题1. 已知向量a = (3,2),b =()cos ,2sin 2x x ωω-,()0>ω。
三角函数与平面向量复习试题1.时钟的分针经过40分钟时间旋转的角度是 ( )A 、π34B 、π92C 、 π92-D 、π34- 2.在平行四边形ABCD 中,M 为AB 上任一点,则AM DM DB-+等于 ( )(A )BC (B )AB (C )AC (D )AD3.设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为( )A .-9B .-6C .9D .64.下面给出四个命题:① 对于实数m 和向量a 、b ,恒有()m a b ma mb -=-;② 对于实数m 、n 和向量a ,恒有()m n a ma na -=-;③ 若(,0)ma mb m R m =∈≠,则a b =;④ 若(0)ma na a =≠,则m n =.其中正确的命题个数是( )(A ) 1 (B ) 2 (C )3 (D )45.已知123()AB e e =+,12CB e e =-,122CD e e =+,则下列关系一定成立的是( )(A )A ,B ,C 三点共线 (B )A ,B ,D 三点共线(C )A ,C ,D 三点共线 (D )B ,C ,D 三点共线6.已知53)sin(=+απ且α是第三象限的角,则)2cos(πα-的值是( )A .54-B .54C .54±D .53 7.若函数)cos(3)(ϕω+=x x f 对任意x 都有)6()6(x f x f +=-ππ,则)6(πf 值为( ) A .3 B .3- C .3±D .08.已知若(k 2),3,(),1,2(+==∥(-2 则k 的___________________.9. 函数)3cos(π+-=x y 的增区间________________________。
10.把函数)42sin(π+=x y 的图象向右平移8π,再把所得图象上各点的横坐标缩短到原来的21,则所得图象的函数是 .11.在△ABC 中,,4=且,8=⋅AC AB 则这个三角形的形状是 .12.给出下列命题:①若a 2+b 2=0,则a =b =0;②已知A ),,(11y x B ),(22y x ,则);2,2(212121y y x x ++= ③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线;⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 .13.已知ABC ∆中,(3,1),(7,),(5,7)A B y C -,且重心(,4)G x ,,x y R ∈。
高中数学三角函数与向量试题及详细答案一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.6.已知tanα=a,(a>1),求的值.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.23.在平行四边形ABCD中,设边AB、BC、CD的中点分别为E、F、G,设DF与AG、EG的交点分别为H、K,设=,=,试用、表示、.24.正方形ABCD的边长为1,记=(1)求作,(2)求|,|25.如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°.且||=1,||=1,||=2,若+,求λ+μ的值.26.例3.已知27.设动点M的坐标为(x,y)(x、y∈R),向量=(x﹣2,y),=(x+2,y),且|a|+|b|=8,(I)求动点M(x,y)的轨迹C的方程;(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.28.在福建省第14届运动会(2010•莆田)开幕式上,主会场中央有一块边长为a米的正方形地面全彩LED显示屏如图所示,点E、F分虽为BC、CD边上异于点C的动点,现在顶点A处有视角∠EAF设置为45°的摄像机,正录制形如△ECF的移动区域内表演的某个文艺节目,设DF=x米,BE=y米.(Ⅰ)试将y表示为x的函数;(Ⅱ)求证:△ECF周长p为定值;(Ⅲ)求△ECF面积S的最大值.29.如图所示,ABCD是一块边长为7米的正方形铁皮,其中A TN是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮PQCR,其中P是上一点.设∠TAP=θ,长方形PQCR的面积为S平方米.(1)求S关于θ的函数解析式;(2)设sinθ+cosθ=t,求S关于t的表达式以及S的最大值.30.如图,某市拟在长为16km的道路OP的一侧修建一条自行车赛道,赛道的前一部分为曲线OSM,该曲线段为函数y=Asinωx(A>0,ω>0,x∈[0,8]的图象,且图象的最高点为S(6,4).赛道的后一段为折线段MNP,为保证参赛队员的安全,限定∠MNP=120°.(1)求实数A和ω的值以及M、P两点之间的距离;(2)连接MP,设∠NPM=θ,y=MN+NP,试求出用θ表示y的解析式;(3)(理科)应如何设计,才能使折线段MNP最长?(文科)求函数y的最大值.参考答案与试题解析一.解答题(共30小题)1.设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.考点:三角函数的周期性及其求法;函数y=Asin(ωx+φ)的图象变换;三角函数的最值.专题:计算题;综合题.分析:(I)先利用诱导公式,二倍角公式与和角公式将函数解析式化简整理,然后利用周期公式可求得函数的最小正周期.(II)由(I)得函数y=f(x),利用函数图象的变换可得函数y=g(x)的解析式,通过探讨角的范围,即可的函数g(x)的最大值.解答:解:(I)∵f(x)=sinxcosx﹣cos(x+π)cosx=sinxcosx+cosxcosx=sin2x+cos2x+=sin(2x+)+∴f(x)的最小正周期T==π(II)∵函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,∴g(x)=sin(2x+﹣)++=sin(2x﹣)+∵0<x≤∴<2x﹣≤,∴y=g(x)在(0,]上的最大值为:.点评:本题考查了三角函数的周期及其求法,函数图象的变换及三角函数的最值,各公式的熟练应用是解决问题的根本,体现了整体意识,是个中档题.2.设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.专题:计算题.分析:利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x ﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.解答:解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.3.已知函数,(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)设,若,求α的大小.考点:正切函数的周期性;同角三角函数基本关系的运用;二倍角的余弦;正切函数的定义域.专题:计算题.分析:(Ⅰ)利用正切函数的定义域求出函数的定义域,利用周期公式求出最小正周期;(Ⅱ)通过,化简表达式,结合α∈(0,),求出α的大小.解答:解:(Ⅰ)由2x+≠+kπ,k∈Z.所以x≠,k∈Z.所以f(x)的定义域为:f (x)的最小正周期为:.(Ⅱ)由得tan()=2cos2α,整理得因为α∈(0,),所以sinα+cosα≠0 因此(cosα﹣sinα)2=即sin2α=因为α∈(0,),所以α=点评:本题考查两角和的正弦函数、余弦函数、正切函数公式,同角三角函数的基本关系式,二倍角公式等基本知识,考查基本运算能力.4.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.考点:任意角的三角函数的定义;二元一次不等式(组)与平面区域;三角函数的最值.专题:综合题;压轴题;转化思想.分析:(I)由已知中函数f(θ)=,我们将点P的坐标代入函数解析式,即可求出结果.(II)画出满足约束条件的平面区域,数形结合易判断出θ角的取值范围,结合正弦型函数的性质我们即可求出函数f(θ)的最小值和最大值.解答:解(I)由点P的坐标和三角函数的定义可得:于是f(θ)===2(II)作出平面区域Ω(即感触区域ABC)如图所示其中A(1,0),B(1,1),C(0,1)于是0≤θ≤∴f(θ)==且故当,即时,f(θ)取得最大值2当,即θ=0时,f(θ)取得最小值1点评:本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.5.已知函数f(x)=(1+cotx)sin2x+msin(x+)sin(x﹣).(1)当m=0时,求f(x)在区间上的取值范围;(2)当tana=2时,,求m的值.考点:弦切互化;同角三角函数间的基本关系.专题:综合题.分析:(1)把m=0代入到f(x)中,然后分别利用同角三角函数间的基本关系、二倍角的正弦、余弦函数公式以及特殊角的三角函数值把f(x)化为一个角的正弦函数,利用x的范围求出此正弦函数角的范围,根据角的范围,利用正弦函数的图象即可得到f(x)的值域;(2)把f(x)的解析式利用二倍角的正弦、余弦函数公式及积化和差公式化简得到关于sin2x和cos2x的式子,把x换成α,根据tanα的值,利用同角三角函数间的基本关系以及二倍角的正弦函数公式化简求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=中得到关于m的方程,求出m的值即可.解答:解:(1)当m=0时,=,由已知,得sin(2x﹣)∈[﹣,1],从而得:f(x)的值域为.(2)因为=sin2x+sinxcosx+=+﹣=所以=①当tanα=2,得:,,代入①式,解得m=﹣2.点评:考查三角函数的化简、三角函数的图象和性质、已知三角函数值求值问题.依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中档题.6.已知tanα=a,(a>1),求的值.考点:两角和与差的正弦函数;弦切互化;二倍角的正切.专题:计算题.分析:利用两角和与差的正弦函数,以及二倍角的正切,化简,代入tanα=a,求出结果即可.解答:解:原式===.即:=.点评:本题是基础题,考查弦切互化,二倍角的正切,考查计算能力,常考题型.7.已知函数f(x)=cosx(sinx+cosx),x∈R.(1)请指出函数f(x)的奇偶性,并给予证明;(2)当时,求f(x)的取值范围.考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)先化简函数得出的表达式,通过f(﹣)≠±f(﹣),直接证明即可.(2)先得出,然后根据正弦函数的单调性求出取值范围.解答:解:(3分)(1)∵,∴f(x)是非奇非偶函数.(3分)注:本题可分别证明非奇或非偶函数,如∵f(0)=1≠0,∴f(x)不是奇函数.(2)由,得,.(4分)所以.即.(2分)点评:本题考查三角函数中的恒等变换应用,正弦函数的奇偶性的判断,考查计算能力.8.已知函数f(x)=sin2x+acos2x,a,a为常数,a∈R,且.(I)求函数f(x)的最小正周期.(Ⅱ)当时,求函数f(x)的最大值和最小值.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:(I)由,代入f(x)中即可求出a的值,然后把求出a的值代入然后把求出a的值代入f(x)中,然后利用二倍角的余弦函数公式及两角差的正弦函数公式和特殊角的三角函数值化为一个角的正弦函数,根据公式求出结果.(II)根据x的范围求出2x﹣的范围,根据正弦函数的图象求出sin(2x﹣)的值域即可得到f(x)的最值.解答:解:(Ⅰ)由已知得即,所以a=﹣2所以f(x)=sin2x﹣2cos2x=sin2x﹣cos2x﹣1=所以函数f(x)的最小正周期为π(Ⅱ)由,得则所以所以函数y=f(x)的最大值为;最小值为点评:本题三角函数周期的求法,又考查学生会求正弦函数的在某一范围内的最值以及会求正弦函数的值域.是一道综合题.9.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点.(Ⅰ)求sin2α﹣tanα的值;(Ⅱ)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数的最大值及对应的x的值.考点:两角和与差的正弦函数;任意角的三角函数的定义;同角三角函数间的基本关系.专题:三角函数的图像与性质.分析:(I)利用三角函数的定义求出sinα、cosα和tanα的值,利用两角和与差正弦公式化简sin2α﹣tanα并求出其值.(II)首先化简函数f(x),然后利用诱导公式以及两角和与差公式得出y=2sin(2x﹣)﹣1,进而求正弦函数的特点求出结果.解答:解:(Ⅰ)因为角α终边经过点,所以,,…(3分)(Ⅱ)∵f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cosx,x∈R…(7分)∴y max=2﹣1=1,…(12分)此时,即…(13分)点评:此题考查了二倍角的正弦、三角函数定义、同角三角函数间的基本关系、诱导公式,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.10.已知函数.(1)设ω>0为常数,若上是增函数,求ω的取值范围;(2)设集合,若A⊂B恒成立,求实数m的取值范围.考点:二倍角的余弦;集合关系中的参数取值问题;二次函数的性质;正弦函数的单调性.专题:计算题.分析:(1)利用三角函数的降幂公式将化为f(x)=2sinx,从而f (ωx)=2sinωx,利用f(ωx)在[,]是增函数,可得到,从而可求ω的取值范围;(2)由于f(x)=2sinx,将化为sin2x﹣2msinx+m2+m﹣1>0,令sinx=t,则t2﹣2mt+m2+m﹣1>0,t∈[,1],记f(t)=t2﹣2mt+m2+m﹣1,问题转化为上式在t∈[,1]上恒成立问题,根据区间[,1]在对称轴t=m的左侧,右侧,对称轴穿过区间[,1]三种情况结合二次函数的单调性即可解决.解答:(本小题满分14分)解:(1)=2sinx(1+sinx)﹣2sin2x=2sinx.∵是增函数,∴,∴(2)=sin2x﹣2msinx+m2+m﹣1>0因为,设sinx=t,则t∈[,1]上式化为t2﹣2mt+m2+m﹣1>0由题意,上式在t∈[,1]上恒成立.记f(t)=t2﹣2mt+m2+m﹣1,这是一条开口向上抛物线,则或或解得:.点评:本题考查二倍角的余弦,二次函数的性质,难点在于转化与构造函数,利用f(t)=t2﹣2mt+m2+m﹣1>0恒成立,t∈[,1]来解决,属于难题.11.已知函数f(x)=(Ⅰ)把f(x)解析式化为f(x)=Asin(ωx+ϕ)+b的形式,并用五点法作出函数f(x)在一个周期上的简图;(Ⅱ)计算f(1)+f(2)+…+f(2012)的值.考点:二倍角的余弦;五点法作函数y=Asin(ωx+φ)的图象.专题:综合题.分析:(Ⅰ)利用倍角公式和诱导公式对函数解析式进行化简,再利用正弦函数的五个关键点进行列表、描点、连线;(Ⅱ)根据函数解析式先求出周期,再求出一个周期内的函数值的和,进而判断出2012与周期的关系,再求出式子和的值.解答:解:(Ⅰ)由题意知,列表:x 0 1 2 3 40 π2π1 2 1 0 1描点画图,如图所示:(Ⅱ)∵f(1)+f(2)+f(3)+f(4)=2+1+0+1=4,而y=f(x)的周期为4,且2012=4×503,∴f(1)+f(2)+…+f(2012)=4×503=2012.点评:本题是关于三角函数的综合题,涉及了倍角公式、诱导公式的应用,“五点作图法”的步骤,函数周期性的应用求式子的值,考查了分析、解决问题能力和作图能力.12.已知α为锐角,且,函数,数列{a n}的首项.(1)求函数f(x)的表达式;(2)求证:a n+1>a n;(3)求证:.考点:二倍角的正切;不等式比较大小;不等式的证明.专题:综合题.分析:(1)根据二倍角的正切函数公式,由tanα的值求出tan2α的值,根据特殊角的三角函数值以及α的范围即可求出2α的值,即可求出sin(2α+)的值,把求出的tan2α和sin2α的值代入f(x)中即可确定出f(x);(2)a n+1=f(a n),把a n代入(1)中求出的f(x)的解析式,移项后,根据a n2大于0,即可得证;(3)把a n代入(1)中求出的f(x)的解析式中化简后,求出,然后把等号右边的式子利用拆项相减的方法,得到,移项后得到,然后从n=1列举到n,抵消后得到所要证明的式子等于2﹣,根据题意分别求出a2和a3的值,根据(2)所证明的结论即可得证.解答:解:(1),又∵α为锐角,所以2α=,∴,则f(x)=x2+x;(2)∵a n+1=f(a n)=a n2+a n,∴a n+1﹣a n=a n2>0,∴a n+1>a n;(3)∵,且a1=,∴,则=,∵,,又n≥2时,∴a n+1>a n,∴a n+1≥a3>1,∴,∴.点评:此题考查学生灵活运用二倍角的正切函数公式化简求值,会利用不等式比较大小以及会进行不等式的证明,是一道综合题.13.已知tan2θ=﹣,且3π<2θ<4π.求:(1)tanθ;(2).考点:二倍角的正切.专题:计算题.分析:(1)由题意,可先判断角θ的取值范围,得出其是第四象限角从而确定出角的正切值的符号,再由正切的二倍角公式得到角的正切的方程,解此方程求出正切值;(2)由题意,先化简,再将tanθ=代入计算出答案.解答:解:(1)由题意3π<2θ<4π,得<θ<2π是第四象限角又tan2θ=﹣,∴=﹣,解得tanθ=(2)由题,将tanθ=代入得=点评:本题考查二倍角的正切,二倍角的余弦,同角三角函数的基本关系等,解题的关键是利用公式灵活变形,计算求值,本题中有一易错点,即没有判断角所在的象限,导致解出的正切值有两个答案,切记!三角函数化简求值题,公式较多,要注意选择公式使得解题的过程简捷.本题考查了利用公式变形计算的能力.14.在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值.考点:向量在几何中的应用;直线与圆锥曲线的综合问题.专题:计算题;综合题;函数思想;整体思想.分析:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,,=•,即可求得M 点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.解答:解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.点评:此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.15.已知,①若向量.且∥,求f(x)的值;②在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围.考点:平面向量的综合题.专题:计算题.分析:①利用向量共线的充要条件,可求x的值,从而可求f(x)的值;②利用余弦定理求出B的值,确定出<A+<π,然后求出函数f(A)的取值范围.解答:解:①由∥,得,∴或,∴x=2kπ+π或,∴②∵(2a﹣c)cosB=bcosC,由正弦定理得(2sinA﹣sinC)cosB=sinBcosC.∴2sinAcosB﹣cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=,B=,∴0<A<.∴<A+<π,0<sin(A+)≤1.又∵,∴故函数f(A)的取值范围是(0,2].点评:本题是中档题,考查三角函数的化简求值,考查向量共线的充要条件.16.已知O是线段AB外一点,若,.(1)设点A1、A2是线段AB的三等分点,△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示;(2)如果在线段AB上有若干个等分点,你能得到什么结论?请证明你的结论.考点:向量在几何中的应用.专题:计算题.分析:(1)由题意画出图形由于点A1、A2是线段AB的三等分点,又由于△OAA1、△OA1A2及△OA2B的重心依次为G1、G2、G3,利用重心的性质及向量的三角形法则求得用向量、表示;(2)由题意若在线段AB上有若干个等分点,有(1)的证明过程及结论可以逐渐得到结论,并且利用向量的加法及减法得到证明过程.解答:解:(1)如图:点A1、A2是线段AB的三等分点,,同理可得:,,则==(2)层次1:设A1是AB的二等分点,则;;设A1、A2、A3是AB的四等分点,则;或设A1,A2,,A n﹣1是AB的n等分点,则,层次2:设A1,A2,,A n﹣1是AB的n等分点,,层次3:设A1,A2,,A n﹣1是AB的n等分点,则;证:===点评:此题考查了三角形重心的定义,向量的加法和减法,还考查了学生对于新问题逐渐分析并合理联想的能力.17.已知向量=(1,2),=(cosα,sinα),设=+t(t为实数).(1)若,求当||取最小值时实数t的值;(2)若⊥,问:是否存在实数t,使得向量﹣和向量的夹角为,若存在,请求出t;若不存在,请说明理由.考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:(1)先把a=代入求出向量的坐标,再把转化为=,把所求结论以及已知条件代入得到关于实数t的二次函数,利用配方法求出的最小值以及实数t的值;(2)先利用向量垂直求出以及和()(),代入cos45°=,可得关于实数t的方程,解方程即可求出实数t.解答:解:(1)因为a=,所以=(),,则====所以当时,取到最小值,最小值为.(7分)(2)由条件得cos45°=,又因为==,==,()()=5﹣t,则有=,且t<5,整理得t2+5t﹣5=0,所以存在t=满足条件.(14分)点评:本题主要考查数量积表示两个向量的夹角以及向量的模.本题的易错点在于()()=5﹣t中的t<5,因为两个向量的夹角为锐角,所以向量的数量积为正得t<5.18.经过A(2,0),以(2cosθ﹣2,sinθ)为方向向量的直线与经过B(﹣2,0),以(2+2cosθ,sinθ)为方向向量的直线相交于点M(x,y),其中θ≠kπ.(I)求点M(x,y)的轨迹方程;(II)设(I)中轨迹为曲线C,,若曲线C内存在动点P,使得|PF1|、|OP|、|PF2|成等比数列(O为坐标原点),求的取值范围.考点:向量在几何中的应用;数列与解析几何的综合.专题:计算题.分析:(I)根据题意知,∥(2cosθ﹣2,sinθ),根据共线向量定理可得⇒(x﹣2)sinθ=y (2cosθ﹣2),同理(x+2)sinθ=y(2cosθ+2),两式相乘,即可得到点M(x,y)的轨迹方程;(II)设p(x0,y0)在曲线C内,得,再由|PF1|、|OP|、|PF2|成等比数列可得并代入求得,即可求得结果.解答:解:(I),(2﹣x)sinθ+y(2cosθ﹣2)=0⇒(x﹣2)sinθ=y(2cosθ﹣2)①同理(﹣2﹣x)sinθ+y(2cosθ+2)=0⇒(x+2)sinθ=y(2cosθ+2)②①×②得x2﹣4=﹣4y2即;(II)设p(x0,y0),则③化简得:④④代入③得点评:此题是个中档题.考查向量在几何中的应用,以及数列与解析几何的综合.同时考查学生灵活应用知识分析解决问题的能力.19.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.考点:数量积表示两个向量的夹角;数量积的坐标表达式;平面向量数量积的运算.专题:计算题;综合题.分析:(1)当时,求出向量、,利用数量积的坐标运算求出向量•,从而求出向量、的夹角θ;(2)向量,,代入函数,利用三角函数的诱导公式进行化简,转化为三角函数在定区间上的最值,即可求得结果.解答:解:(1)当时,,所以,因而;(2),,因为,所以,当λ>0时,,即,当λ<0时,,即,所以.点评:此题是个中档题.考查向量的数量积的坐标运算以及向量的夹角,和三角函数的诱导公式和三角函数在定区间上的最值等基础知识,同时也考查了学生灵活应用知识分析解决问题的能力.20.已知向量=(mcosα,msinα)(m≠0),=(﹣sinβ,cosβ.其中O为坐标原点.(I)若且m>0,求向量与的夹角;(II)当实数α,β变化时,求实数的最大值.考点:数量积表示两个向量的夹角;向量的模.专题:计算题;综合题.分析:(Ⅰ)设它们的夹角为θ,利用向量的数量积公式表示出cosθ,将已知条件代入,利用特殊角的三角函数值求出两个向量的夹角.(II)先将利用向量模的计算公式表示成,再利用三角函数的值域求出它的最大值即可.解答:解:(I)设它们的夹角为θ,则:=,故…(6分)(II)=…(10分)所以当m>0时,原式的最大值是m﹣1;当m<0时,原式的最大值是﹣m﹣1…(12分)点评:求向量的夹角问题,一般利用向量的数量积公式来解决;解决向量的模的最值问题,一般转化为函数的最值来解决.21.已知中心在原点,长轴在x轴上的椭圆的一个顶点是点(0,),离心率为,左、右焦点分别为F1和F2.(1)求椭圆方程;(2)点M在椭圆上,求△MF1F2面积的最大值;(3)试探究椭圆上是否存在一点P,使,若存在,请求出点P的坐标;若不存在,请说明理由.考点:向量在几何中的应用;椭圆的标准方程;椭圆的简单性质.专题:综合题;存在型;反证法.分析:(1)由题意设出椭圆标准方程,根据顶点的坐标和离心率得,根据a2=b2+c2求出a的值,即求出椭圆标准方程;(2)根据(1)求出的椭圆标准方程,求出点M纵坐标的范围,即求出三角形面积的最大值;(3)先假设存在点P满足条件,根据向量的数量积得,根据椭圆的焦距和椭圆的定义列出两个方程,求出的值,结合(2)中三角形面积的最大值,判断出是否存在点P.解答:解:(1)由题意设椭圆标准方程为.由已知得,.(2分)则,∴.解得a2=6(4分)∴所求椭圆方程为(5分)(2)令M(x1,y1),则(7分)∵点M在椭圆上,∴,故|y 1|的最大值为(8分)∴当时,的最大值为.(9分)(3)假设存在一点P,使,∵,∴,(10分)∴△PF1F2为直角三角形,∴|PF1|2+|PF2|2=|F1F2|2=4 ①(11分)又∵②(12分)∴②2﹣①,得2|PF1|•|PF2|=20,∴,(13分)即=5,由(1)得最大值为,故矛盾,∴不存在一点P,使.(14分)点评:本题考查了椭圆方程的求法以及椭圆的性质、向量数量积的几何意义,利用a、b、c、e几何意义和a2=b2+c2求出a和b的值,根据椭圆上点的坐标范围求出相应三角形的面积最值,即根据此范围判断点P是否存在,此题综合性强,涉及的知识多,考查了分析问题和解决问题的能力.22.已知△OFQ的面积为,且.(1)当时,求向量与的夹角θ的取值范围;(2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程.考点:数量积表示两个向量的夹角;双曲线的标准方程.专题:计算题.分析:(1)利用两个向量的数量积的定义和三角形面积公式,推出tanθ的解析式,再根据m的范围,求得tanθ的范围,进而求得θ的取值范围.(2)设出双曲线的标准方程和点Q的坐标,有三角形的面积公式求出点Q的横坐标和纵坐标(用半焦距表示),用基本不等式求出||最小时点Q的坐标,从而得到双曲线方程中的待定系数.解答:解:(1)由已知得,∴tanθ=,∵<m<4,∴1<tanθ<4,∴<θ<arctan4.(2)设双曲线方程为﹣=1,(a>0,b>0),不妨设点Q的坐标为(m,n),n>0,则=(m﹣c,n),∵△OFQ的面积为||•n=2,∴n=.又由•=(c,0)•(m﹣c,n)=c(m﹣c)=(﹣1)c2,∴m=,||==≥,当且仅当c=4时,||有最小值,此时,点Q的坐标为(,),由此可得,解得,故所求的方程为:=1.点评:本题考查两个向量的数量积的定义,三角形的面积公式以及基本不等式的应用,用待定系数法求双曲线的方程.。
平面向量部分常见的题型练习类型(一):向量的夹角问题1.平面向量b a ,41==且满足2.=,则与的夹角为2.已知非零向量,(2-⊥=,则与的夹角为3.已知平面向量b a ,满足424)2.(==-=+-(且,则b a 与的夹角为4.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,5.与求,732=+==6.若非零向量,,0).2(=+=则与的夹角为类型(二):向量共线问题1. 已知平面向量),(x a 32=,平面向量),,(182--=若∥b ,则实数x 2. 设向量),(,(3212==若向量b a +λ与向量)74(--=,共线,则=λ3.已知向量),(,(x 211==若24-+与平行,则实数x 的值是( ) A .-2 B .0 C .1 D .2_____)10,(),54(),12,(.4=-===k C B A k k 则三点共线,,,,且,已知向量5.已知),(),,(),,(73231x C B A --,设a AB =,b BC =且a ∥b ,则x 的值为 ( )(A) 0 (B) 3 (C) 15 (D) 186.已知=(1,2),b =(-3,2)若k a +2b 与2a -4b 共线,求实数k 的值;7.已知,是同一平面内的两个向量,其中a =(1,252=,且a ∥,求的坐标8.n 为何值时,向量),(1n =与),4(n b =共线且方向相同?9.且),2,1(,3==b a ∥b ,求a 的坐标。
10.已知向量)2,1(,112-=-=-=m ),(,(,若(+)∥,则m=11.已知,不共线,k -=+=,,如果∥,那么k= ,与的方向关系是12. 已知向量且),(,(,221m -==∥,则=+32类型(三): 向量的垂直问题1.已知向量x ⊥==且),()6,3(,1,则实数x 的值为2.已知向量=--==n n 与),若,(,(2113.已知=(1,2),=(-3,2)若k +2与2-4垂直,求实数k 的值442==,且与的夹角为3π,若的值垂直,求与k k k 22-+。
(数学4必修)第一章 三角函数(上)[基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( )A .①B .②C .③D .④3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A .43-B .34-C .43D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( ) A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________。
3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。
4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。
5.与02002-终边相同的最小正角是_______________。
三、解答题1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2.已知2tan =x ,求xx xx sin cos sin cos -+的值。
三角函数与平面向量图象是函数个个个个)上是增函数的个数是,(,且在其中周期在四个函数个单位右移个单位左移个单位右移个单位左移的图象的图象,只需将要得到函数的是下列各式中值为一、选择题)2,230(cos |tan |.44.3.2.1.20|,|sin )4(2cos 2tan )3(|sin |)2(sin )1(.34.4.8.8.2sin )42cos(.25.22tan 15.22tan .26cos 1.12sin 12cos .15cos 15sin .21.12222ππππππππππππ≠<≤⋅===-====-=︒-︒--︒︒x x x x y D C B A T x y x x y x y x y D C B A x y x y D C B A)22,2.()2,2.()22,22.()22,232.(0)(,cos )(],0[),()()(.7},434|.{},44|.{},45242|.{},42432|.{,cos sin .63.3.6..)3sin()3cos(3)(.522ππππππππππππππππππππππππππππππππππππππππθθθ+++-+->=∈-=+∈+<<+∈+<<-∈+<<+∈+<<->-++---=k k D k k C k k B k k A x f x x f x x f x f x f R Z k k x k x D Z k k x k x C Z k k x k x B Z k k x k x A x x x k D k C k B k A x x x f 集是的解则时解析为若满足上的偶函数定义在的取值范围是则若等于是奇函数,则函数的值、,求常数,若函数值域为函数已知的值域求函数三、解答题垂直,则与,要使的夹角为与,若则,的边长为已知正方形的最小正周期是④函数是奇函数③函数的单调增区间是②函数,的最大值是则①若下列命题正确的是则若二、填空题等于,那么夹角为均为单位向量,它们的、已知夹角为与∥则已知其他等于则已知b a x b a x a x a y a x x y k a a kb b a b a c b a c b a AB x x y x x xx x f Z k k k x y x y y x D C B A b a b a b a D ba Cb a b a B b a A b a D C B A b a b a b a ]15[],2,0[,22sin 32cos ,0.1633.1545,2||2||.14||,,,1.13sin 12tan cos sin 1cos sin 1)()](83,8[)24sin(34cos sin ,31sin sin .122cos ,53)2sin(.114.7.10.13.|3|60.10..)().(.),sin ,(cos )sin ,(cos .9.6563.6563.6563.cos ),16,8(),8,2(.82-∈++--=≠-+==-︒===++===-=++-+=∈+--=-=+==++︒+-⊥+⊥==±->⋅<-=--=+πππππππααπβαββαα。
三角函数与平面向量高考试题
一、选择题
1、(2012江西文4)若
sin cos 1
sin cos 2
αααα+=-,则tan2α=
A. -34
B. 34
C. -43
D. 43
2、(2012重庆理5)设tan ,tan αβ是方程2
320x x -+=的两个根,则tan()αβ+的值为
(A )-3 (B )-1 (C )1 (D )3 3、(2012浙江理科4)把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )
4、(2012浙江理科5)设,是两个非零向量( )
A .若||||||-=+,则⊥
B .若⊥,则||||||-=+
C .若||||||-=+,则存在实数λ,使得λ=
D .若存在实数λ,使得λ=,则||||||-=+
5、(2012山东7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=
8θ,则sin θ=
(A )
35(B )45(C )4
(D )34 6、(2012全国新课标9)已知0ω>,函数()sin()4f x x π
ω=+
在(,)2
π
π上单调递减。
则ω的取值范围是
()A 15[,]24 ()B 13[,]24
()C 1
(0,]2 ()D (0,2
] 7、(2012重庆文科5)=︒-︒
︒
︒17
cos 30cos 17sin 47sin
A. B 、12- C. 12 D.
8、(2012重庆文科6)设x ∈R,向量()()21,1,-==x ,且b a ⊥,则=+||
A.
B. C. D.10 9、(2012全国卷大纲6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,
则AD =( ) (A )1133a b - (B )2233a b - (C )3355a b - (D )44
55
a b -
10、(2012全国卷大纲7)已知α
为第二象限角,sin cos αα+=
,则cos 2α= (A
) (B
) (C
(D
11、(2011全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,
则cos 2θ=( )(A ) 45- (B )35- (C ) 35 (D )4
5
12、(2012广东理科3)若向量(2,3)BA =,(4,7)CA =,则BC = A .(2,4)-- B .(3,4) C .(6,10) D .(6,10)--
13、(2009全国卷Ⅰ理)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫
⎪⎝⎭
,0中心对称,那么||ϕ的最小值
为( )(A )6π (B )4π (C )3π (D) 2
π
14、(2012安徽理科8)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34
π
后,得向量OQ
则点Q 的坐标是( )
()
A (2
)- ()B
(- ()C
(2)-- ()
D (- 二、填空题
15、(2012江苏9)如图,在矩形ABCD 中,22AB BC ==,点E 为BC 的中点, 点F 在边CD 上,若2AB AF =,则AE BF ⋅的值是 .
16、(2012全国新课标13)已知向量,a b 夹角为45︒
,且1,210a a b =-=;则
_____b =
17、(2012
安徽理科14)若平面向量,a b 满足:23a b -≤;则a b ⋅的最小值是_____ 18、(2012全国大纲14)当函数sin (02)y x x x π=≤<取得最大值时,x =___________ 19、(2011辽宁理16)已知函数)(x f =A tan (ωx +ϕ)(2
||,0πϕω<
>)
,y =)
(x f 的部分图像如下图,则=)24
(
π
f .
20、(2012江苏11)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛
⎫+ ⎪⎝
⎭的值
为 . 三、计算题
21
、(
2012
山
东
卷
)
已
知
向
量
()1,s i n
x =,()02cos 2,cos 3>⎪⎭
⎫
⎝⎛=A x A x A ,函数()x f ⋅=的最大值为6.(Ⅰ)求A ;
(Ⅱ)将函数()x f y =的图象像左平移12
π个单位,再将所得图象各点的横坐标缩短为原来的1
2倍,纵坐
标不变,得到函数()x g y =的图象。
求()x g 在⎥
⎦
⎤
⎢⎣⎡245,0π上的值域。
22、(2012天津15)已知函数2()=sin (2+)+sin(2)+2cos 13
3
f x x x x π
π
-
-,x R ∈.
(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,
]44ππ
-上的最大值和最小值.
23、(2012重庆理科)设()()πωωπω+-⎪⎭
⎫
⎝
⎛-=x x x x f 2cos sin 6cos 4,其中.0>ω (Ⅰ)求函数()x f y = 的值域 (Ⅱ)若()x f 在区间⎥⎦
⎤
⎢⎣⎡-2,23ππ上为增函数,求 ω的最大值。
24、(2012四川文18)、已知函数2
1()cos sin cos 2222
x x x f x =--。
(Ⅰ)求函数()f x 的最小正周期和值域;
(Ⅱ)若()10
f α=,求sin 2α的值。
25、(2012湖北理科17)已知向量)sin sin (cos x x x ωωω,-=,)cos 32sin cos (x x x ωωω,--=,
设函数()()R x x f ∈+⋅=λ的图像关于直线π=x 对称,其中λω,为常数,且)(1,2
1
∈ω
(1) 求函数()f x 的最小正周期;
(2) 若()f x 的图像经过点)(0,4π
求函数()f x 在区间⎥⎦
⎤⎢⎣⎡5
30π,上的取值范围。
26、(2012湖南文18)已知函数()()⎪⎭
⎫
⎝
⎛<<>∈+=20,0,sin πϕωϕωR x x A x f 的
部分图像如图5所示。
(Ⅰ)求函数()x f 的解析式; (Ⅱ)求函数()⎪⎭⎫ ⎝
⎛
+-⎪⎭⎫
⎝
⎛-=1212ππx f x f x g 的单调递增区间。
27、(2012陕西理科16)函数()sin()16
f x A x π
ω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条
对称轴之间的距离为
2
π
, (Ⅰ)求函数()f x 的解析式;
(Ⅱ)设(0,)2πα∈,则()22
f α
=,求α的值。
28、(2012福建理科)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)0
0020217cos 13sin 17cos 13sin -+; (2)0
2
2
15cos 15sin 15cos 15sin -+; (3)0
2
2
12cos 18sin 12cos 18sin -+; (4)00020248cos )18sin(48cos )13(sin --+-;
(5)00020255cos )25sin(55cos )25(sin --+-。
(I )试从上述五个式子中选择一个,求出这个常数;
(II )根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论。
29、设函数()()1cos sin cos 2-+=x x x x f ,将函数()x f 的图象向左平移α个单位,得到函数的图象. (1)求函数()x f 的最小正周期; (2)若2
0π
α<
< ,且()x g 是偶函数,求α的值.
30、(2010江苏卷)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(t -)·OC =0,求t 的值。
31、(2010湖北文数)已经函数22cos sin 11
(),()sin 2.224
x x f x g x x -=
=- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?
(Ⅱ)求函数()()()h x f x g x =-的最小值,并求使用()h x 取得最小值的x 的集合。