【素材】《一次函数》教案1(人教版)
- 格式:doc
- 大小:306.50 KB
- 文档页数:8
一次函数教案一次函数教案人教版一次函数是初中数学常考的内容之一,可以说是重点,下面是小编整理的一次函数教案人教版,欢迎阅读参考!一次函数教案人教版一教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点1、一次函数、正比例函数的概念及两者之间的关系。
2、会根据已知信息写出一次函数的表达式。
教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习1、做一做。
让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。
2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x 是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。
一次函数第1课时教学目标1. 初步掌握函数概念,能判断两个变量间的关系是否可看做函数.2. 能举出生活中函数的实例,并能初步形成利用函数的观点认识现实世界的意识和能力.3. 经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力和从图象中获取信息的能力.教学重点难点了解函数的意义,会求函数值.函数概念的抽象性.一、导入新课上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?二、实例探究例1 汽车油箱中有汽油50 L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x (单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少汽油?解:(1)行驶路程x 是自变量,油箱中的油量y是x 的函数,它们的关系为:y=50-0.1x.(2)仅从式子y=50-0.1x 看,x 可以取任意实数.但是考虑到x 代表的实际意义为行驶路程,因此x 不能取负数.行驶中的耗油量为0.1x,它不能超过油箱中现有汽油量50,即 0.1x ≤50.因此,自变量狓的取值范围是:0≤x≤500.(3)汽车行驶200 km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值.将x=200代入y=50-0.1x ,得:y=50-0.1×200=30.汽车行驶200 km时,油箱中还有30 L汽油.像y=50-0.1x这样,关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的解析式.三、拓展应用例2 自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.解:(1)y=0.3x+0.5×(3500―x) =―0.2x+1750(x是正整数,0≤x≤3500) .(2)若变速车的辆次不小于25%,但不大于40%,则3500×(1―40%)≤x≤3500×(1―25%).∴y max=―0.2×3500×(1―40%) +1750=1330. y min=―0.2×3500×(1―25%) +1750=1225.∴该保管站这个星期日收入保管费总数的范围在1225元至1330元之间.总结:对于实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.四、课堂练习1. 学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.2. 迎接新年,班委计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.3.100na,n是函数,a是自变量.五、布置作业:习题第19.2第4、5题.教学反思:。
一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义教学目标:1. 理解一次函数的概念;2. 掌握一次函数的表示方法。
教学内容:1. 引入函数的概念;2. 介绍一次函数的定义及表示方法;3. 分析一次函数的图像特征。
教学步骤:1. 引导学生回顾函数的概念;2. 引入一次函数的定义,解释自变量、因变量和函数值的关系;3. 介绍一次函数的表示方法,如y = kx + b;4. 分析一次函数的图像特征,如直线、斜率、截距等;5. 举例说明一次函数的应用。
1.2 一次函数的性质教学目标:1. 掌握一次函数的斜率;2. 理解一次函数的图像特点。
教学内容:1. 介绍一次函数的斜率概念;2. 讲解一次函数的图像特点;3. 分析一次函数的增减性、平行线等性质。
教学步骤:1. 回顾一次函数的定义;2. 引入斜率的概念,讲解斜率的计算方法;3. 分析一次函数的图像特点,如直线、斜率、截距等;4. 讲解一次函数的增减性,即斜率的正负与函数值的变化关系;5. 探讨一次函数的平行线性质,如斜率相等、截距不等等;6. 举例说明一次函数性质的应用。
第二章:一次函数的图像与方程2.1 一次函数的图像教学目标:1. 学会绘制一次函数的图像;2. 理解一次函数图像与斜率、截距的关系。
教学内容:1. 介绍一次函数图像的绘制方法;2. 分析一次函数图像与斜率、截距的关系。
教学步骤:1. 回顾一次函数的定义和性质;2. 讲解一次函数图像的绘制方法,如描点法、直线方程等;3. 分析一次函数图像与斜率、截距的关系,如斜率的正负与图像的倾斜方向、截距的大小与图像与y轴的交点等;4. 举例说明一次函数图像的绘制和分析方法。
2.2 一次函数的方程教学目标:1. 学会求解一次函数的方程;2. 掌握一次函数方程的解法。
教学内容:1. 介绍一次函数方程的定义;2. 讲解一次函数方程的解法。
教学步骤:1. 回顾一次函数的定义和性质;2. 引入一次函数方程的定义,即求解y = kx + b的未知数x或y;3. 讲解一次函数方程的解法,如代入法、消元法等;4. 举例说明一次函数方程的求解方法。
一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义教学目标:让学生理解一次函数的概念,掌握一次函数的表示方法。
教学内容:引入函数的概念,引导学生理解函数的表示方法。
介绍一次函数的定义,让学生掌握一次函数的表达式。
教学步骤:1. 引入函数的概念,引导学生理解函数的表示方法。
2. 介绍一次函数的定义,让学生掌握一次函数的表达式。
3. 通过实例让学生理解一次函数的实际应用。
1.2 一次函数的性质教学目标:让学生理解一次函数的性质,包括斜率和截距的概念。
教学内容:介绍一次函数的斜率和截距的概念。
引导学生理解斜率和截距对一次函数图象的影响。
教学步骤:1. 介绍一次函数的斜率和截距的概念。
2. 通过实例让学生理解斜率和截距对一次函数图象的影响。
3. 引导学生运用斜率和截距的性质解决实际问题。
第二章:一次函数的图象与解析式2.1 一次函数的图象教学目标:让学生理解一次函数图象的特点,掌握一次函数图象的画法。
教学内容:介绍一次函数图象的特点,引导学生掌握一次函数图象的画法。
教学步骤:1. 介绍一次函数图象的特点,让学生理解一次函数图象是一条直线。
2. 引导学生掌握一次函数图象的画法,包括确定直线的斜率和截距。
2.2 一次函数的解析式教学目标:让学生理解一次函数的解析式,掌握解析式与图象之间的关系。
教学内容:介绍一次函数的解析式,引导学生掌握解析式与图象之间的关系。
教学步骤:1. 介绍一次函数的解析式,让学生理解解析式与图象之间的关系。
2. 通过实例让学生掌握解析式与图象之间的转换。
第三章:一次函数的应用3.1 线性方程的解法教学目标:让学生掌握线性方程的解法,包括代入法和消元法。
教学内容:介绍线性方程的解法,包括代入法和消元法。
教学步骤:1. 介绍线性方程的解法,让学生掌握代入法和消元法。
2. 通过实例让学生运用代入法和消元法解决实际问题。
3.2 线性方程组的解法教学目标:让学生掌握线性方程组的解法,包括代入法和消元法。
人教版一次函数教案教案标题:人教版一次函数教案教学目标:1. 理解一次函数的定义和特征。
2. 掌握一次函数的图像、表达式和性质。
3. 能够在实际问题中应用一次函数进行解决。
教学重点:1. 一次函数的定义和特征。
2. 一次函数的图像、表达式和性质。
教学难点:1. 能够在实际问题中应用一次函数进行解决。
教学准备:1. 教师准备:教学课件、黑板、彩色粉笔。
2. 学生准备:课本、笔记本。
教学过程:一、导入(5分钟)1. 教师通过提问引出一次函数的概念,如:你们知道什么是一次函数吗?它有什么特点?2. 学生回答后,教师进行简要解释,确保学生对一次函数的定义和特征有初步了解。
二、概念讲解(15分钟)1. 教师通过课件展示一次函数的定义,并解释其中的关键词汇。
2. 教师通过例题演示一次函数的图像和表达式的关系,帮助学生理解一次函数的图像特征。
3. 教师讲解一次函数的性质,如斜率、截距等,并通过实例进行说明。
三、练习与巩固(20分钟)1. 学生在课本上完成相关练习题,巩固一次函数的概念和性质。
2. 教师在黑板上出示一些实际问题,并引导学生运用一次函数进行解决,让学生体会一次函数在实际问题中的应用。
四、拓展与应用(15分钟)1. 教师提供一些拓展问题,让学生思考并运用一次函数进行解决。
2. 学生分组进行讨论,展示自己的解决思路和方法。
五、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调一次函数的重要性和应用范围。
2. 学生进行自我评价,思考本节课的收获和不足之处。
教学延伸:1. 学生可以通过自主学习,进一步了解一次函数的应用领域和相关知识。
2. 学生可以通过查阅资料,了解一次函数在实际问题中的具体应用案例。
教学评估:1. 教师通过课堂练习和讨论的表现,对学生的掌握情况进行评估。
2. 学生可以通过小组展示和个人总结,展示对一次函数的理解和应用能力。
教学反思:本节课通过引导学生思考和运用一次函数解决实际问题,培养了学生的数学思维和应用能力。
一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义引入:通过生活中的问题,引导学生思考数学模型的表达方式。
讲解:定义一次函数的概念,解释自变量和因变量的关系。
例题:解析一些实际问题,展示一次函数的应用。
1.2 一次函数的性质讲解:一次函数的图像是一条直线,讨论斜率和截距对直线图像的影响。
练习:通过绘制图形,观察一次函数的性质。
第二章:一次函数的图像2.1 一次函数图像的画法讲解:介绍一次函数图像的画法,包括斜率和截距的确定。
练习:学生自主绘制一次函数图像,加深对函数图像的理解。
2.2 一次函数图像与坐标轴的交点讲解:讨论一次函数图像与坐标轴的交点情况,分析交点坐标的求法。
例题:解析一些与坐标轴交点相关的问题。
第三章:一次函数的应用3.1 实际问题中的一次函数引入:通过实际问题,引导学生思考一次函数的应用。
讲解:分析实际问题中的一次函数关系,解释如何建立数学模型。
例题:解析一些实际问题,展示一次函数的应用。
3.2 一次函数图像的应用讲解:讨论一次函数图像在实际问题中的应用,如最大值和最小值的求解。
练习:学生自主分析一些实际问题,运用一次函数图像解决问题。
第四章:一次函数的性质的应用4.1 斜率和截距的应用讲解:分析一次函数中斜率和截距的含义,解释它们在实际问题中的应用。
例题:解析一些与斜率和截距相关的问题。
4.2 一次函数图像的交点的应用讲解:讨论一次函数图像与坐标轴交点在实际问题中的应用。
练习:学生自主分析一些实际问题,运用一次函数图像的交点解决问题。
第五章:一次函数的综合应用5.1 一次函数图像的绘制与分析讲解:介绍一次函数图像的绘制和分析方法,包括图像的斜率和截距的确定。
练习:学生自主绘制和分析一次函数图像,加深对函数图像的理解。
5.2 一次函数在实际问题中的应用引入:通过实际问题,引导学生思考一次函数的综合应用。
讲解:分析实际问题中的一次函数关系,解释如何建立数学模型并解决问题。
一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
⼀次函数学案⼈教版(优秀教案)⼀次函数(⼀)学习⽬标.知道⼀次函数与正⽐例函数的意义;.会写出实际问题中正⽐例关系与⼀次函数关系的解析式;.体会由特殊互⼀般再到特殊的数学思想⽅法。
⼀、复习练习.设在⼀个变化过程中有两个变量与,如果对每⼀个的值,都有唯⼀的值与它对应,那么是⾃变量,————是的函数。
————.今有⼩李带⼈民币元去买笔记本,已知笔记本每本售价元,问:⑴所花的钱(元)与买笔记本的数量⽂之间的关系是————关系,可⽤式⼦表⽰为:————(1)所花的钱(元)与买笔记本的数量之间的关系可⽤式⼦表⽰为:————————(1)⼩李剩下的钱(元)与买笔记本的数量之间的关系可⽤式⼦表⽰为:————————。
.在教师指导下核对以上练习结果。
(投影)⼆、学习新课.观察⽐较、发现本质:以下四式:;;;⑴、这些函数中⾃变量是————,————是、的函数。
⑵、这些函数中,表⽰函数的⾃变量的式⼦是————、————、————、————,其中的指数是————,它们都是⾃变量的————次式。
.归纳概括、得出概念:⑴、⼀般地,如果(、是常数、≠),那么叫做的————。
⑵、特别地,当时,⼀次函数就成为————(是常数,≠),这时,叫做的————————。
⑶、注意事项:Ⅰ、⼀次函数有两个特征:①⾃变量的指数是————,②⾃变量的系数————零。
函数、、都————具备这两个特征、故它们————⼀次函数。
Ⅱ、⼀次函数与正⽐例函数的关系:正⽐例函数中、(≠)————(填具备或不具备)⼀次函数的两个特征,且常数项为,因此它是函数的特殊形式。
但⼀般的⼀次函数(当≠时)————正⽐例函数。
.在教师指导下核对以上练习结果。
例题、①依题意填写下表:由上表可知:速度与时间是————关系,因此与之间的函数关系式是。
————————②求秒时⼩球的速度,那是求当秒时,函数的值。
即当时,————————————。
例题、分析:耗油量′与⼯作时间之间的关系是′————,依题意知:余油量—————耗油量。
一次函数教案人教版一、教学目标1. 知识与技能:理解一次函数的概念,掌握一次函数的定义和性质。
学会用图像表示一次函数,并能解读图像。
能够运用一次函数解决实际问题。
2. 过程与方法:通过观察和实验,培养学生的观察能力和实验能力。
利用图形计算器或计算机软件,帮助学生直观地理解一次函数的图像。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
培养学生运用数学知识解决实际问题的能力,提高学生的应用意识。
二、教学内容1. 一次函数的定义和性质引入一次函数的概念,解释一次函数的定义。
讲解一次函数的性质,如斜率和截距。
2. 一次函数的图像利用图形计算器或计算机软件,展示一次函数的图像。
引导学生观察图像,理解图像与一次函数的关系。
3. 解决实际问题给出实际问题,引导学生运用一次函数的知识解决问题。
引导学生总结解题过程,提高学生的应用能力。
三、教学资源1. 图形计算器或计算机软件2. 教学PPT或黑板3. 教学素材和练习题四、教学过程1. 引入一次函数的概念,解释一次函数的定义。
2. 讲解一次函数的性质,如斜率和截距。
3. 利用图形计算器或计算机软件,展示一次函数的图像。
4. 引导学生观察图像,理解图像与一次函数的关系。
5. 给出实际问题,引导学生运用一次函数的知识解决问题。
6. 学生总结解题过程,教师进行点评和讲解。
五、作业与评价1. 布置练习题,巩固学生对一次函数的理解和应用能力。
2. 学生完成作业,教师进行批改和评价。
3. 学生进行自我评价,反思学习过程中的优点和不足。
4. 教师进行总结性评价,对学生的学习情况进行分析和指导。
六、教学目标1. 知识与技能:学会一次函数的表示方法,包括解析式和表格法。
能够分析一次函数的增减性质和比例关系。
掌握一次函数的图像与解析式之间的关系。
2. 过程与方法:通过小组合作,培养学生的团队协作能力。
利用数学软件绘制一次函数图像,提高学生的信息技术能力。
3. 情感态度价值观:培养学生在解决问题时的批判性思维。
《一次函数》教案一、教学目标1.掌握一次函数的概念、性质和图像特点,能够根据给定条件求出一次函数的表达式。
2.理解并掌握一次函数的单调性,能够利用单调性解决实际问题。
3.通过实例分析和小组讨论,培养学生分析和解决问题的能力,发展学生的创新思维。
4.通过与同伴合作、交流,培养积极参与和良好的学习习惯。
二、教学重点与难点重点:一次函数的概念、性质和图像特点,以及一次函数的单调性。
难点:根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。
三、教学方法与手段1.借助实例引入一次函数的概念,通过小组讨论和教师点拨,帮助学生理解并掌握一次函数的概念和性质。
2.利用多媒体技术展示一次函数的图像,通过直观的图像帮助学生理解一次函数的单调性。
3.通过小组讨论和教师点拨,引导学生利用一次函数的单调性解决实际问题。
四、教学环节设计1.导入新课:通过实例引入一次函数的概念,引导学生理解一次函数的意义和实际应用。
2.新课学习:通过小组讨论和教师点拨,帮助学生掌握一次函数的概念、性质和图像特点,并通过实例分析帮助学生理解一次函数的单调性及其应用。
3.练习巩固:通过小组活动和教师点拨,引导学生根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。
4.归纳小结:总结本节课所学的知识点,强调重点和难点内容。
5.作业布置:布置相关练习题,帮助学生巩固所学知识。
五、教学反思1.通过本节课的教学,要达到的教学目标是否达到?对于哪些学生需要加强指导?哪些学生需要给予更多的关注?2.在教学过程中,哪些环节处理得比较好?哪些地方需要改进?如何改进?3.在教学过程中,是否有效地运用了多媒体技术?是否有助于提高教学效果?如果有所改进,效果会更好吗?。
《一次函数》教学教案《一次函数》教学教案(通用11篇)14.1.1变量与函数【学习目标】1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定学习过程:【前置自学】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________ 1.请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
一次函数教案人教版一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的定义和性质。
2. 培养学生利用一次函数解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索一次函数的图象和性质。
二、教学内容1. 一次函数的定义与表达式2. 一次函数的图象与性质3. 一次函数的应用三、教学重点与难点1. 一次函数的定义与表达式2. 一次函数的图象与性质3. 一次函数的应用四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数的定义和性质。
2. 利用数形结合法,让学生直观地理解一次函数的图象和性质。
3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学过程1. 导入:通过生活实例,引导学生认识一次函数,激发学生学习兴趣。
2. 新课导入:介绍一次函数的定义与表达式,让学生理解一次函数的基本概念。
3. 实例分析:分析一次函数在实际生活中的应用,让学生感受一次函数的意义。
5. 练习巩固:布置相关练习题,让学生巩固所学知识。
7. 课后作业:布置适量作业,让学生进一步巩固所学知识。
六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用有哪些?2. 分析实际问题:如何将实际问题转化为一次函数问题?3. 利用一次函数解决实际问题:如身高与年龄的关系、商品价格与数量的关系等。
七、课堂互动1. 小组讨论:让学生分组讨论一次函数的图象和性质,分享彼此的发现。
2. 提问回答:教师提问,学生回答,加深对一次函数的理解。
3. 案例分析:教师展示实际案例,学生运用一次函数解决问题。
八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习作业:评估学生作业完成情况,检查学生对一次函数知识的掌握。
3. 小组讨论:评价学生在小组讨论中的表现,了解学生的合作能力。
九、教学反思2. 学生反馈:听取学生意见,了解学生在一次函数学习中的困惑和需求。
3. 教学改进:根据教学反思,调整教学方法和完善教学内容。
一次函数教案人教版一、教学目标1. 知识与技能:(1)理解一次函数的概念,掌握一次函数的定义条件。
(2)能够列出简单的一次函数,并会利用待定系数法求解一次函数的解析式。
(3)学会一次函数的图像特征,能够绘制一次函数的图像。
2. 过程与方法:(1)通过实际问题,引导学生认识一次函数,培养学生的实际问题解决能力。
(2)利用信息技术,让学生学会利用函数图像处理器绘制一次函数的图像,培养学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性。
(2)培养学生团队协作精神,让学生在合作交流中共同成长。
二、教学重点与难点1. 教学重点:(1)一次函数的概念及定义条件。
(2)一次函数的图像特征。
(3)一次函数的解析式求解方法。
2. 教学难点:(1)一次函数的图像特征的理解与应用。
(2)待定系数法求解一次函数解析式的灵活运用。
三、教学过程1. 导入新课:(1)利用生活中的实际问题,引导学生认识一次函数。
(2)通过分析实际问题,引出一次函数的概念。
2. 知识讲解:(1)讲解一次函数的定义及定义条件。
(2)讲解一次函数的图像特征。
(3)讲解待定系数法求解一次函数解析式的方法。
3. 例题解析:(1)利用例题,让学生理解一次函数的图像特征。
(2)利用例题,让学生学会待定系数法求解一次函数解析式。
四、课堂练习1. 完成课后练习第1-3题,巩固一次函数的概念及解析式的求解方法。
2. 利用信息技术,绘制一次函数的图像,加深对一次函数图像特征的理解。
五、课后作业1. 完成课后练习第4-6题,巩固所学知识。
2. 结合生活实际,自主探究一次函数的应用,提高实际问题解决能力。
六、教学评价1. 课堂讲解评价:(1)学生对一次函数概念的理解程度。
(2)学生对一次函数解析式求解方法的掌握情况。
(3)学生对一次函数图像特征的认识。
2. 课堂练习评价:(1)学生完成练习的情况。
(2)学生对练习题目的理解程度。
人教版数学八年级下册19.2.2《一次函数》教学设计1一. 教材分析人教版数学八年级下册19.2.2《一次函数》是初中数学的重要内容,主要让学生了解一次函数的定义、性质及图象,能运用一次函数解决实际问题。
本节课的内容在学生学习了代数知识、平面直角坐标系的基础上进行,为后续学习二次函数、反比例函数等函数知识打下基础。
二. 学情分析八年级的学生已经掌握了代数基础知识,对平面直角坐标系有一定的了解。
但学生在学习过程中,可能对一次函数的图象与系数之间的关系理解不够深入,需要通过实例让学生感受一次函数的实际应用,提高学生的学习兴趣。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质及其图象特点。
2.学会用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的团队协作精神,提高学生的表达能力和解决问题的能力。
四. 教学重难点1.一次函数的定义及其性质。
2.一次函数图象的特点。
3.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生探究一次函数的定义、性质及应用。
2.利用数形结合法,让学生直观地理解一次函数的图象与系数之间的关系。
3.运用实例分析法,培养学生解决实际问题的能力。
4.小组讨论,培养学生的团队协作精神。
六. 教学准备1.准备相关的一次函数教学素材,如PPT、例题、练习题等。
2.准备一次函数的图象展示工具,如黑板、白板笔等。
3.准备一次函数的实际应用案例,如购物、出行等问题。
七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用案例,引导学生思考一次函数的意义,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质及图象特点,让学生初步了解一次函数的基本概念。
3.操练(10分钟)让学生自主探究一次函数的性质,通过PPT展示典型例题,引导学生运用所学知识解决问题。
4.巩固(10分钟)学生进行小组讨论,分享各自在探究过程中总结的一次函数的性质,加深学生对一次函数的理解。
初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。
第十九章一次函数教案19.1.1变量教具;课件, 直尺, 三角板教学目标知识与技能: 理解变量与函数的概念以与相互之间的关系。
增强对变量的理解过程与方法: 师生互动, 讲练结合情感态度世界观:渗透事物是运动的, 运动是有规律的辨证思想重点: 变量与常量难点: 对变量的判断教学媒体: 多媒体电脑, 绳圈,教学说明:本节渗透找变量之间的简单关系, 试列简单关系式教学设计:引入:新课:问题: (1)每张电影票的售价为10元, 如果早场售出票150张, 日场售出票205张, 晚场售出票310张, 三场电影的票房收入各多少元?设一场电影受出票x张, 票房收入为y元, 怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物, 改变并记录重物的质量, 观察并记录弹簧长度的变化规律, 如果弹簧原长10cm, 每1kg重物使弹簧伸长0.5cm, 怎样用含重物质量 m(单位: kg)的式子表示受力后弹簧长度l(单位: cm)?(3)要画一个面积为10cm2的圆, 圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形, 试改变长方形的长度, 观察长方形的面积怎样变化。
记积的值, 探索它们的变化规律, 设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中, 我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
(1)范例: 写出下列各问题中所满足的关系式, 并指出各个关系式中, 哪些量是变量, 哪些量是常量?(2)用总长为60m的篱笆围成矩形场地, 求矩形的面积S (m2)与一边长x(m)之间的关系式;(3)购买单价是0.4元的铅笔, 总金额y(元)与购买的铅笔的数量n(支)的关系;运动员在4000m一圈的跑道上训练, 他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;银行规定: 五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义引入:通过日常生活实例,如购物时计算总价,引出一次函数的概念。
讲解:一次函数是指函数表达式为y=kx+b(k、b为常数,k≠0,x 为自变量)的函数。
例题:解析生活中的实例,求出一次函数的表达式。
1.2 一次函数的性质讲解:一次函数的图像是一条直线,且斜率为k,截距为b。
性质1:当k>0时,函数图像从左下到右上递增;当k<0时,函数图像从左上到右下递增。
性质2:当b>0时,函数图像在y轴上方与y轴相交;当b<0时,函数图像在y轴下方与y轴相交。
例题:根据函数的性质,判断函数图像的走势及与y轴的交点位置。
第二章:一次函数的图像与解析式2.1 一次函数图像的画法讲解:通过直角坐标系,讲解如何画出一次函数的图像。
方法:先确定两个点,连接这两个点,即为一次函数的图像。
例题:给定一次函数,求出其图像上的两个点,并画出图像。
2.2 一次函数解析式的求法讲解:通过图像,反求出一次函数的解析式。
方法:已知图像上的两个点,求出斜率k和截距b。
例题:已知一次函数图像上的两个点,求出其解析式。
第三章:一次函数的应用3.1 线性方程的应用讲解:通过实际问题,引入线性方程的解法。
方法:将实际问题转化为线性方程,求解得到答案。
例题:已知某商品的原价和折扣后价格,求折扣率。
3.2 线性方程组的应用讲解:当实际问题中有两个未知数时,可转化为线性方程组求解。
方法:利用消元法或代入法,求解线性方程组。
例题:已知某商品的原价、折扣率及折后价格,求原价和折扣率。
第四章:一次函数的图象与几何变换4.1 一次函数图象的平移讲解:讲解一次函数图象如何进行平移变换。
方法:上下平移不变斜率,左右平移改变截距。
例题:给出一次函数,进行上下或左右平移,求新函数的解析式。
4.2 一次函数图象的缩放讲解:讲解一次函数图象如何进行缩放变换。
方法:横坐标缩放改变斜率,纵坐标缩放改变截距。
一次函数教案12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!一次函数教案12篇一次函数教案1一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
19.2.2 函数图象(1)
教学目标
1.学会用列表、描点、连线画函数图象.
2.学会观察、分析函数图象信息.
3.提高识图能力、分析函数图象信息能力.
4.体会数形结合思想,并利用它解决问题,提高解决问题能力.
教学重点
1.函数图象的画法.
2.观察分析图象信息.
教学难点
分析概括图象中的信息.
教学过程
Ⅰ.提出问题,创设情境
我们在前面学习了函数意义,并掌握了函数关系式的确立.但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映.例如用心电图表示心脏生物电流与时间的关系.
即使对于能列式表示的函数关系,如果也能画图表示则会使函数关系更清晰.
我们这节课就来解决如何画函数图象的问题及解读函数图象信息.
Ⅱ.导入新课
问题1在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.
先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?
分析图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温.这
一气温曲线实质上给出了某日的气温T (℃)与时间t(时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t=10时,对应的函数值T=2.气温曲线上每一个点的坐标(t,T),表示时间为t时的气温是T.
问题2 如图,这是2004年3月23日上证指数走势图,你是如何从图上找到各个时刻的上证指数的?
分析图中,有一个直角坐标系,它的横轴表示时间;它的纵轴表示上证指数.这一指数曲线实质上给出了3月23日的指数与时间的函数关系.例如,下午14:30时的指数是1746.26,表现在指数曲线上,就是可以找到这样的对应点,它的坐标是(14:30, 1746.26).实质上也就是说,当时间是14:30时,对应的函数值是1746.26.
上面气温曲线和指数走势图是用图象表示函数的两个实际例子.
一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph).•上图中的曲线即为函数S=x2(x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利.
[活动一]
下图是自动测温仪记录的图象,•它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?
引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….
结论:
1.一天中每时刻t都有唯一的气温T与之对应.可以认为,气温T是时间t的函数.2.这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.
3.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.
4.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.
[活动二]
下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.•其中x表示时间,y表示小明离他家的距离.
根据图象回答下列问题:
1.菜地离小明家多远?小明走到菜地用了多少时间?
2.小明给菜地浇水用了多少时间?
3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
4.小明给玉米地锄草用了多长时间?
5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?
引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x•轴的线段的意义.
结论:
1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,•小明走到菜地用了15分钟.
2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.
3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,•小明从菜地到玉米地用了12分钟.
4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.
5.由纵坐标看出,玉米地离小明家2千米.由横坐标看出,•小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).
我们通过两个活动已学会了如何观察分析图象信息,那么已知函数关系式,怎样画出函数图象呢?
例1画出函数y=x+1的图象.
分析要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值.
解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:
由这一系列的对应值,可以得到一系列的有序实数对:
…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如图所示.
通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如图所示.
总结归纳一下描点法画函数图象的一般步骤
第一步:列表.在自变量取值范围内选定一些值.通过函数关系式求出对应函数值列成表格.
第二步:描点.在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点.
第三步:连线.按照坐标由小到大的顺序把所有点用平滑曲线连结起来.
练习:
(1)下图是一种古代计时器──“漏壶”的示意图,在壶内盛一定量的水,•水从壶下的小孔漏出,壶壁内画出刻度.人们根据壶中水面的位置计算时间.用x•表示时间,y表
示壶底到水面的高度.下面的哪个图象适合表示y与x的函数关系?
(2)a是自变量x取值范围内的任意一个值,过点(a,0)画y轴的平行线,•与图中曲线相交.下列哪个图中的曲线表示y是x的函数?为什么?
(提示:当x=a时,x的函数y只能有一个函数值)
解:1.由题意可知,开始时壶内有一定量水,最终漏完,即开始时间x=0•时,壶底水面高y≠0.最终漏完即时间x到某一值时y=0.
故(1)图错.
又因为壶内水面高低影响水的流速,开始漏得快,逐渐慢下来.
所以(3)图更适合表示这个函数关系.
2.图(1)曲线表示y是x的函数.
因为过(a,0)画y轴平行线与图形曲线只有一个交点,即x=a时,y有唯一的值与其对应,符合函数意义.
图(2)曲线不表示y是x的函数.
因为过点(a,0)画y轴平行线,与图中曲线有三个交点,即x=a时,y有三个值与其对应,不符合函数意义.
Ⅲ.随堂练习
1.在所给的直角坐标系中画出函数x y 2
1
=
的图象(先填写下表,再描点、连线)
.
2.画出函数x
y 6
-
=的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点).
3.画出下列函数的图象:
(1)y =4x -1; (2)y =4x +1. Ⅳ.课时小结
本节学会了分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想. Ⅴ.课后作业 习题5、6、7题. Ⅵ.活动与探究
某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 如下表表示.请你根据表中所提供的信息,列出售价y 与数量x 的函数关系式,并求出当数量为2.•5千克时的售时是多少元.
4
结果:由表中可以看出:y=(8+0.4)·x=8.4x 当x=2.5千克时 y=8.4×2.5=21(元).
板书设计
一、数形结合。