佛山市顺德区2018-2019学年七年级下期末考试数学试题(有答案)
- 格式:doc
- 大小:911.50 KB
- 文档页数:9
广东省佛山市顺德区2018-2019学年七年级(下)期末数学试卷一、选择题(10个题,每题3分,共30分)1.(3分)下列图形不是轴对称图形的是()A.线段B.角C.直角三角形D.等腰三角形2.(3分)数0.000075用科学记数法表示为()A.7.5×105B.75×10﹣4C.7.5×10﹣5D.75×10﹣53.(3分)下列运算正确的是()A.m2•m3=m5B.(mn)2=mn2C.(m3)2=m9D.m6÷m2=m34.(3分)已知∠A=40°,那么∠A的补角的度数等于()A.50°B.60°C.140°D.1505.(3分)整式的乘法计算正确的是()A.(x+3)(x﹣3)=x2+3B.(x+y)2=x2+y2C.6x2•x3=3x6D.(2x+y)(x﹣y)=2x2﹣xy﹣y26.(3分)以每组数为线段的长度,可以构成三角形三边的是()A.13、12、20B.7、8、15C.7、2、4D.5、5、117.(3分)下列变形正确的是()A.10a4b3÷5a2b=2a2b3B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.(3xy+y)÷y=3x+yD.a﹣p=(a≠0,P是正整数)8.(3分)直线a、b被c、d所截.若∠1=80°,∠2=100°,下列结论不正确的是()A.a∥b B.∠3+∠4=180°C.∠3=∠4D.∠5=80°9.(3分)如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C10.(3分)如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.从3分到12分,汽车行驶的路程是150千米C.时间每增加1分钟,汽车的速度增加10千米/时D.第3分钟时汽车的速度是30千米/时二、填空题(6个题,每题4分,共24分)11.(4分)计算:(﹣2)2×23=.12.(4分)计算:(x﹣1)2=.13.(4分)对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数n1020501002005001000优等品数m7164381164414824优等品率0.70.80.860.810.820.8280.824当n越大时,优等品率趋近于概率.(精确到0.01)14.(4分)在一次实验中,A同学把一根弹簧的上端固定,在其下端悬挂物体,测弹簧长度y(cm)随所挂物体的质量x(kg)变化关系如下表:x(kg)012345y(cm)81012141618根据表格中数据写出y与x关系式:.15.(4分)在直角三角形中,一个锐角比另一个锐角的3倍还多10°,则较小的锐角度数是.16.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分线,折叠△ACD使得点C落在AB边上的E处,连接DE、CE.下列结论:①∠CAD=∠EAD;②△CDE是等腰三角形;③AD⊥CE;④AB=AC+CD,其中正确的结论是.(填写序号)三、解答题(一)(3个题,每题6分,共18分)17.(6分)计算:(﹣1)2009+()﹣1﹣(3.14﹣π)0+|﹣4|18.(6分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=,y=﹣2.19.(6分)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.四、解答题(二)(3个题,每题7分,共21分)20.(7分)某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?21.(7分)如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有一根电线杆,但利用皮尺无法直接量出A、B间的距离.请设计一个方案测出A、B间的距离,要求画出方案的几何图形,并说明理由.22.(7分)如图,AC与BD相交于点E,AB=CD,∠A=∠D.(1)试说明△ABE≌△DCE;(2)连接AD,判断AD与BC的位置关系,并说明理由.五、解答题(三)(3个题,每题9分,共27分)23.(9分)已知A=x3÷x2+x•x2,B=(x+1)2﹣(x﹣1)2(1)求A•B;(2)若变量y满足4A÷B﹣2y=0,用x表示变量y,并求出x=﹣2时y的值;(3)若A=B+1,求x5﹣x2﹣9x+5的值.24.(9分)如图,在△ABC中,AB=AC,AD是中线,作AD关于AC的轴对称图形AE.(1)直接写出AC和DE的位置关系.(2)连接CE,写出BD和CE的数量关系,并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积.25.(9分)已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以AP、BP为边在AB的同侧作正方形.设点P的运动时间为t.(1)如图1,若两个正方形的面积之和S,当t=6时,求出S的大小;(2)如图2,当t取不同值时,判断直线AE和BC的位置关系,说明理由;(3)如图3,用t表示出四边形EDBF的面积y.参考答案一、选择题(10个题,每题3分,共30分)1.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.2.【解答】解:0.000075=7.5×10﹣5.故选:C.3.【解答】解:A、m2•m3=m5,正确;B、(mn)2=m2n2,错误;C、(m3)2=m6,错误;D、m6÷m2=m4,错误;故选:A.4.【解答】解:根据互为补角的概念,得∠A的补角为:180°﹣40°=140°.故选:C.5.【解答】解:A.(x+3)(x﹣3)=x2﹣9,故A错误;B.(x+y)2=x2+y2+2xy,故B错误;C.6x2•x3=3x5,故C错误;D.(2x+y)(x﹣y)=2x2﹣xy﹣y2,故D正确.故选:D.6.【解答】解:A、13+12=25>20,能构成三角形;B、7+8=15,不能构成三角形;C、2+4<7,不能构成三角形;D、5+5<11,不能构成三角形.故选:A.7.【解答】解:A.10a4b3÷5a2b=2a2b2,此选项计算错误;B.(﹣bc)4÷(﹣bc)2=b2c2,此选项计算错误;C.(3xy+y)÷y=3x+1,此选项计算错误;D.a﹣p=(a≠0,p是正整数),此选项计算正确;故选:D.8.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b,∴∠3=∠4,∠5=∠1=80°,而∠3+∠4=180°不成立,故选:B.9.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当AB=CD时,根据“SAS”可判断△ABD≌△CDB;当∠A=∠C时,根据“AAS”可判断△ABD≌△CDB;当∠ADB=∠CBD或AD∥BC时,根据“ASA”可判断△ABD≌△CDB.故选:B.10.【解答】解:速度是因变量,时间是自变量,故选项A不合题意;从3分到12分,汽车行驶的路程是30×(8﹣3)+30=180千米,故选项B不合题意;从汽车出发到第3分钟,时间每增加1分钟,汽车的速度增加10千米/时,第3分钟到第8分钟,汽车匀速行驶,故选项C不合题意;第3分钟时汽车的速度是30千米/时,正确,故选项D符合题意.故选:D.二、填空题(6个题,每题4分,共24分)11.【解答】解:(﹣2)2×23=4×8=32.故答案为:3212.【解答】解:(x﹣1)2=x2﹣2x+1.故答案为:x2﹣2x+1.13.【解答】解:当n越大时,优等品率趋近于概率0.82,故答案为:0.82.14.【解答】解:由表格中的数据,得物体每增加1千克,弹簧伸长2厘米,y=2x+8.故答案为:y=2x+8.15.【解答】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°,其中较小的锐角度数是20°.故答案是:20°.16.【解答】解:∵AC=BC,∠C=90°,∴∠ABC=45°∵折叠△ACD使得点C落在AB边上的E处∴△ACD≌△AED∴AC=AE,CD=DE,∠CAD=∠EAD,∠DEA=∠ACD=90°∴△CDE是等腰三角形,AD⊥CE,∠B=∠EDB=45°∴DE=BE=CD,∴AB=AE+BE=AC+CD,故正确的结论有①②③④故答案为:①②③④三、解答题(一)(3个题,每题6分,共18分)17.【解答】解:(﹣1)2009+()﹣1﹣(3.14﹣π)0+|﹣4|=﹣1+2﹣1+4=418.【解答】解:原式=(x2+4xy+4y2﹣x2+y2)÷2y=(5y2+4xy)÷2y=y+2x,当x=,y=﹣2时,原式=1﹣5=﹣4.19.【解答】解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.四、解答题(二)(3个题,每题7分,共21分)20.【解答】解:(1)∵红灯40s、绿灯60s、黄灯3s.∴他遇到绿灯的概率大;(2)遇到绿灯的概率=,故遇到绿灯的概率是.21.【解答】解:测量出DE的长度即为AB的长.理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=ED.22.【解答】证明:(1)∵AB=CD,∠A=∠D,∠AEB=∠DEC ∴△ABE≌△DCE(AAS)(2)AD∥BC理由如下:如图,连接AD∵△ABE≌△DCE;∴AE=DE,BE=CE,∴∠ADE=∠DAE,∠BCE=∠CBE∵∠AEB=∠ADE+∠DAE=∠BCE+∠CBE∴∠ADE=∠EBC∴AD∥BC五、解答题(三)(3个题,每题9分,共27分)23.【解答】解:(1)∵A=x3÷x2+x•x2=x+x3,B=(x+1)2﹣(x﹣1)2=4x,∴A•B=(x+x3)×4x=4x2+4x4.(2)由4A÷B﹣2y=0得4(x3÷x2+x•x2)÷4x﹣2y=0,则y=,当x=﹣2时,y=;(3)∵A=B+1,∴x+x3=4x+1,即x3﹣3x=1,x3﹣1=﹣3x,∴x5﹣x2﹣9x+5=x2(x3﹣1)﹣9x+5=x2×3x﹣9x+5=3x3﹣9x+5=3(x3﹣3x)+5=3+5=8∴x5﹣x2﹣9x+5的值为8.24.【解答】解:(1)∵AD,AE关于AC对称,∴DE⊥AC,故答案为DE⊥AC.(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE.(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴PA=PD=2,∵PD⊥BC,∴S △BCP =×4×2=4.25.【解答】解:(1)当t =6时,PA =6,PB =18﹣6=12, ∴S =62+122=180.(2)如图2中,结论:AE ⊥BC .理由:延长BC 交AE 于K .∵四边形APCD ,四边形PEFB 都是正方形,∴PA =PC ,PE =PB ,∠APE =∠BPC =90°,∴△APE ≌△CPB (SAS ),∴∠AEP =∠CBP ,∵∠CBP +∠BCP =90°,∠BCP =∠ECK ,∴∠AEP +∠ECK =90°,∴∠EKC =90°,∴AE ⊥BC .(3)如图3中,连接PD ,PE .∵四边形APCD ,四边形PEFB 都是正方形,∴∠APD =∠ABE =45°,∴PD ∥BE ,∴S △BED =S △BEP ,∴S 四边形DEFB =S 正方形PEFB ,∴y =(18﹣t )2=t 2﹣36t +324(0<t <18).。
顺德区2017—2018学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( ①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡 钳).若测得 A B ''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷第10题图图119. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图, 保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;第20题图第22题图(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.25. 已知点A 、D 在直线l 的同侧.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置); (2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;② 如图3,若点M 、 N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由.图2。
顺德区第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2m=m9()mn=mn2 C. 32()D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x 2+mx+4=(x+2)2成立,那么m 的值是( )A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B处,然后记录 AB 的长度,这样做的理由是( )A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( ) A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º9.将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F ①∠ADE =∠ADC ;②△CDE 是等腰三角形;第6题图第7题图③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:则买48元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第10题图17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;(2)求∠BCE 的度数.第20题图第22题图图1五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 形”.如图1,平行四边形MNPQ 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.图225. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。
顺德区2017—2018学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l 的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( ①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤ B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 AB''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-第10题图图1四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图, 保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;第20题图第22题图(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.25. 已知点A 、D 在直线l 的同侧.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置); (2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由; ② 如图3,若点M 、 N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由.图2。
顺德区2018—2019学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2m=m9()mn=mn2 C. 32()D. m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有 85% 的地区下雨B. 明天将有 85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -2A CBFED6. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B 处,然后记录 AB 的长度,这样做的理由是( )A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( ) A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④第6题图第7题图C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为 厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)0.51.01.52.0则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;(2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”.第20题图第22题图图1NMQ P(1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ 的一边作左右平移,图2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm 1815126325. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、 N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。
用科学计数法表示为(的补角为(答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.、、B.、、C.、、D.、、7.直角、被、所截.若,,下列结论错误的是()A. B.C. D.8.如图,在四边形中,.不能判定的条件是()A. B. C. D.9.如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.从分到分,汽车行驶的路程是千米C.时间每增加分钟,汽车的速度增加千米时D.第分钟时汽车的速度是千米/时10.下列变形正确的是()A. B.C.D.(,是正整数)第Ⅱ卷主观题变化关系如下表:与关系式:中,落在;答案第4页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分三、解答题(共1题)9.如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有根电线杆,但利用皮尺无法直接量出A、B间的距离,请设计一个方案测出A、B间的距离,要求面出方案的几何图形,并说明理由.评卷人得分四、综合题(共6题)10.如图,,.(1)用尺规作图法作,与边交于点(保留作题痕迹,不用写作法);(2)在(1)的条件下,当时,求的度数.11.某路口南北方向红绿灯的设置时间为:红灯、绿灯、黄灯,司机随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?12.如图,与相交于点,,,.第5页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)试说明;(2)连接,判断与的位置关系,并说明理由.13.已知,.(1)求;(2)若变量满足,用表示变量,并求出时的值;(3)若,求的值.14.如图,在中,,是中线,作关于的轴对称图形.(1)直接写出和的位置关系;(2)连接,写出和的数量关系,并说明理由;(3)当,时,在上找一点,使得点到点与到点的距离之和最下小,求的面积.15.已知,AB=18,动点P 从点A 出发,以每秒1个单位的速度向点B 运动,分别以AP 、BP 为边在AB 的同侧作正方形。
顺德区七年级第二学期期末教学质量检测数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B 处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()第6题图ACB FEDA. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()A. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第7题图第10题图17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边第20题图第22题图形”.如图1,平行四边形MNPQ的一边作左右平移,图2反映它的边NP的长度l(cm)随时间t(s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ向左平移前,边NP的长度是____________cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式.25. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.图2PQ边的运动时间/s8 9 10 11 12 13 14 NP的长度/cm 18 15 12 6 3 0。
AC B FE D佛山顺德区2018-2019学度初一下年末考试数学试题(含解析)七年级数学试卷说明:本试卷共4页,总分值120分,考试时间100分钟、本卷须知1、所有解答全部写〔涂〕在答题卡相应的位置上,不能答在试卷上、2、用铅笔进行画线、绘图时,要求痕迹清晰、【一】选择题〔每题3分,共30分〕1、以下是轴对称图形的是〔〕A 、B 、C 、D 、2、人体内的淋巴细胞直径约是0、0000051米,将0、0000051用科学记数法表示为〔〕A 、0、51×10-5B 、0、51×105C 、5、1×10-6D 、0、51×1063、以下运算正确的选项是〔〕A 、m 2•m 3=m 5B 、2()mn =mn 2C 、32()m =m 9D 、m 6÷m 2=m 34、气象台预报“明天下雨的概率是85%”、对此信息,以下说法正确的选项是〔〕A 、明天将有85%的地区下雨B 、明天将有85%的时间下雨C 、明天下雨的可能性比较大D 、明天肯定下雨5、要使x 2+mx+4=〔x+2〕2成立,那么m 的值是〔〕A 、4B 、-4C 、2D 、-26、如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线l 的点B 处,然后记录AB 的长度,这样做的理由是〔〕A 、两点之间,线段最短B 、过两点有且只有一条直线C 、垂线段最短D 、过一点可以作无数条直线 7、如图,把一块三角板的直角顶点放在直尺的一边上、如果∠2=58º,那么∠1的大小是〔〕A 、58ºB 、48ºC 、42ºD 、32º8、等腰△ABC 中,∠A =40º,那么的大小为〔〕A 、40ºB 、70ºC 、100ºD 、40º或70º9、将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用以下图象近似刻画的是〔〕A 、B 、C 、D 、10、如图,AD 是△ABC 的角平分线,点E 是AB 边上一点, 第6题图 第7题图AE =AC ,EF ∥BC ,交AC 于点F 、以下结论正确的选项是〔〕①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分∠DEF ;④AD 垂直平分CE ;⑤AD =CE 、A 、①②⑤B 、①②③④C 、②④⑤D 、①③④⑤【二】填空题〔每题4分,共24分〕11、计算:()3222-⨯=、12、计算:(25)(3)a a +-=、13、如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具〔卡钳〕、假设测得A B ''=8厘米,那么工件内槽AB 宽为厘米、第13题图第16题图14、2019m n +=,20182019m n -=,那么22m n -的值为、 15、下表是某种数学报纸的销售份数x 〔份〕与价钱y 〔元〕的统计表,观察下表:份数x 〔份〕 1 2 3 4 价钱y 〔元〕 0、5 1、0 1、5 2、0那么买48份这种报纸应付元、16、如图,AD 是等腰△ABC 底边BC 上的中线,BC =,AD =,点E 、F 是AD 的三等分点,那么阴影部分的面积为、【三】解答题〔一〕〔每题6分,共18分〕 17、计算:()011||220182π----18、计算:4234102(3)a a a a a a --⋅⋅-÷19、先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==- 【四】解答题〔二〕〔每题7分,共21分〕20、如图,AC ∥BD 、〔1〕作BAC ∠的平分线,交BD 于点M 〔尺规作图,保留作图痕迹,不用写作法〕;〔2〕在〔1〕的条件下,试说明BAM AMB ∠=∠、21、一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有个,白球有3个,其它均为黄球、现小李从盒子里随机摸出一个球,假设是红球,那么小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,假设为黄球,那么小马获胜、〔1〕当m =4时,求小李摸到红球的概率是多少?〔2〕当m 为何值时,游戏对双方是公平的?22、如图,BC 是△ABD 的角平分线,BC =DC ,∠A =∠E =30°,∠D =50°、〔1〕写出AB =DE 的理由;〔2〕求∠BCE 的度数、 【五】解答题〔三〕〔每题9分,共27分〕第10题图第20题图 第22题图图1N M Q P 23、某公司技术人员用“沿直线AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”、 〔1〕如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;〔2〕如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由;〔3〕如图3,假设要使a ∥b ,那么∠1与∠2应该满足什么关系式?请说明理由、24、我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”、如图1,平行四边形MNPQ 的一边作左右平移,图2反映它的边NP 的长度l 〔cm 〕随时间t 〔s 〕变化而变化的情况、请解答以下问题: 〔1〕在这个变化过程中,自变量是______,因变量是_______; 〔2〕观察图2,PQ 向左平移前,边NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;〔3〕填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式、25、点A 、D 在直线l 的同侧、〔1〕如图1,在直线l 上找一点C ,使得线段AC+DC 最小〔请通过画图指出点C 的位置〕;〔2〕如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形、M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F 、①当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;②如图3,假设点M 、N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由、图2。
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
顺德区2018—2019学年度第二学期期末教学质量检测
七年级数学试卷
说明:本试卷共4页,满分120分,考试时间100分钟.
注意事项:
1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.
2. 用铅笔进行画线、绘图时,要求痕迹清晰.
一、选择题(每小题3分,共30分)
1. 下列是轴对称图形的是()
A. B. C. D.
2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()
A. 0.51×10-5
B. 0.51×105
C. 5.1×10-6
D. 0.51×
106
3. 下列运算正确的是()
A. m2•m3=m5
B.2
()
m=m9
mn=mn2 C. 32
()
D.m6 ÷m2=m3
4. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()
A. 明天将有85% 的地区下雨
B. 明天将有85% 的时间下雨
C. 明天下雨的可能性比较大
D. 明天肯定下雨
A C
B
F
E
5. 要使x 2+mx+4=(x+2)2成立,那么m 的值是( )
A. 4
B. -4
C. 2
D. -2
6. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B 处,然后记录 AB 的长度,这样做的理由是( )
A. 两点之间,线段最短
B. 过两点有且只有一条直线
C. 垂线段最短
D. 过一点可以作无数条直线
7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,
那么 ∠1 的大小是( ) A. 58º
B. 48º
C. 42º
D. 32º
8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )
A. 40º
B. 70º
C. 100º
D. 40º 或 70º
9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画
的是( )
A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )
①∠ADE =∠ADC ;②△CDE 是等腰三角形;
第6题图
第7题图
③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.
A. ①②⑤
B. ①②③④
C. ②④⑤
D. ①③④⑤
二、填空题(每小题4分,共24分)
11. 计算:()32
22
-⨯=.
12. 计算:(25)(3)
a a
+-=.
13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡
钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.
第13题图第16题图
14.已知2019
m n
+=,
2018
2019
m n
-=,则22
m n
-的值为.
15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:
份数x(份) 1 2 3 4
价钱y(元)0.5 1.0 1.5 2.0
则买48元.
16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等
分点,则阴影部分的面积为.
三、解答题(一)(每小题6分,共18分)
第10题图
17. 计算:()
11||220182π----
18. 计算:4234102(3)a a a a a a --⋅⋅-÷
19. 先化简,再求值:22
(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22
x y ==-
四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.
(1)作BAC ∠的平分线,交BD 于点M (尺规作图,
保留作图痕迹,不用写作法);
(2)在(1)的条件下,试说明BAM AMB ∠=∠.
21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3
个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,
则小马获胜.
(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?
22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,
∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;
(2)求∠BCE 的度数.
第20题图
第22题图
图1N M
Q P
五、解答题(三)(每小题9分,共27分)
23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;
(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.
24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边
形”.如图1,平行四边形MNPQ 的一边作左右平移,图
2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:
(1)在这个变化过程中,自变量是______,因变量是_______;
(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律
写出0至5秒间l 与t 的关系式;
(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.
图2
PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm
18
15
12
6
3
25. 已知点A、D在直线l的同侧.
(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.
①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;
②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,
当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。