专题05、推理证明与概率统计小题-冲刺高考最后一个月之2019高考数学(文)名师押题高端精品
- 格式:doc
- 大小:1.48 MB
- 文档页数:11
2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。
2023年高考英语必考题型终极预测(最新名校模拟题)专题05 应用文写作1.(2022·广东实验中学模拟预测)假如你是李华,是红星中学学生会主席。
近日你校收到美国友好交流学校Roger Manverz School学生会主席John的邮件,希望你校捐赠一批中国传统文化书籍,供该校对此有兴趣的同学阅读。
请你代表学校给John回复一封邮件,邮件中需要包含以下内容:1. 拟捐赠图书的信息;2. 询问对方的收件地址和联系信息。
注意:1.词数80左右;2.可以适当增加细节,以使行文连贯。
______________________________________________________________________________________ ______________________________________________________________________________________ ______________________________________________________________________________________ ______________________________________________________________________________________ ______________________________________________________________________________________ ______________________________________________________________________________________ _____________________________________________________________________________________2.(2022·江苏南京·模拟预测)假设你是李华,最近你要参加主题为“My Dream University”的英语演讲比赛。
【考向解读】1.以客观题形式考查算法的基本逻辑结构,会与函数、数列、不等式、统计、概率等知识结合命题.2.以客观题形式考查复数的运算、复数的相等、共轭复数和复数及其代数运算的几何意义,与其他知识较少结合,应注意和三角函数结合的练习.3.推理与证明在选择、填空、解答题中都有体现,但很少单独命题,若单独命题,一般以客观题形式考查归纳与类比.4.通常是以数列、三角、函数、解析几何、立体几何等知识为载体,考查对推理与证明的掌握情况,把推理思路的探求、推理过程的严谨,推理方法的合理作为考查重点.【命题热点突破一】程序框图例1、(2018年北京卷)执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】初始化数值循环结果执行如下:第一次:不成立; 第二次:成立, 循环结束,输出,故选B. 【变式探究】(1)观察下列各式:C 01=40;C 03+C 13=41;C 05+C 15+C 25=42;C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.(2)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法可以求出过点A(-2,3),且法向量为n =(-1,2)的直线方程为(-1)×(x +2)+2×(y -3)=0,化简得x -2y +8=0.类比上述方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为n =(-1,2,-3)的平面的方程为________.【答案】(1)4n -1 (2)x -2y +3z -6=0【感悟提升】由特殊结论得出一般结论的推理是归纳推理,归纳出的一般性结论要包含已知的特殊结论;根据已有结论推断相似对象具有相应结论的推理就是类比推理.归纳和类比得出的结论未必正确,其正确性需要通过演绎推理进行证明.合情推理和演绎推理在解决数学问题中是相辅相成的.【变式探究】已知cos π3=12,cos π5c os 2π5=14,cos π7cos 2π7·cos 3π7=18,……根据以上等式,可猜想的一般结论是________________.【答案】cos π2n +1cos 2π2n +1…cos n π2n +1=12n (n ∈N *)【解析】从已知等式的左边来看,3,5,7,…是通项为2n+1的等差数列,等式的右边是通项为12n的等比数列.由以上分析可以猜想出一般结论为cos π2n+1cos 2π2n+1…cos nπ2n+1=12n(n∈N*).4. (2018年天津卷)阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4【答案】B1. 【2017山东,文6】执行右侧的程序框图,当输入的x值为4时,输出的y的值为2,则空白判断框中的条件可能为A.3x >B.4x >C.4x ≤D.5x ≤【答案】B【解析】由题意得4x = 时判断框中的条件应为不满足,所以选B.【考点】程序框图2.【2017课标1,文10】如图是为了求出满足的最小偶数nA .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D3.【2017课标3,文8】执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D【解析】若2N =,第一次进入循环,12≤成立,,2i =2≤成立,第二次进入循环,此时,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D. 7.【2017北京,文14】某学习小组由学生和【答案】C4.(2015·新课标全国Ⅱ,8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .14【答案】B5.(2015·山东,13)执行如图所示的程序框图,输出的T 的值为________.【解析】当n =1时,T =1+⎠⎛01x 1d x =1+21102x =1+12=32; 当n =2时,T =32+⎠⎛01x 2d x =32+31103x =32+13=116; 当n =3时,结束循环,输出T =116.【答案】116。
2018年高考数学走出题海之黄金系列051.已知集合,,则A. B. C. D.【答案】D【解析】分析:先化简集合B,再求得解.详解:由题得,所以,所以答案为:D.点睛:本题主要考查集合的交集运算,意在考查集合的基础知识和基本的运算能力.2.已知实数满足,则的最大值为()A. B. 2 C. 4 D.【答案】D详解:画出表示的可行域,如图,由,得,变为,平行直线,当直线经过时,的最大值为,故选D.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.抛物线的焦点坐标是()A. B. C. D.【答案】D点睛:求抛物线的焦点坐标时,可先将抛物线方程化为标准形式后求解,注意焦点在方程中的一次项对应的坐标轴上,正(负)半轴由一次项的符号确定.4.下图是一个空间几何体的三视图,则该几何体的表面三角形中为直角三角形的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】分析:由三视图可知,该几何体为一个三棱锥,其中底面,底面直角三角形,线面垂直的判定定理以及线面垂直的性质可得结论.详解:点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5.已知复数z满足(i为虚数单位),则的虚部为A. B. C. D.【答案】C【解析】分析:先根据已知求复数z,再求复数z的虚部得解.详解:由题得所以复数z的虚部为.故答案为:C.点睛:(1)本题主要考查复数的除法运算和复数的虚部概念,意在考查复数的基础知识的掌握能力和基本的运算能力.(2)复数a+bi的实部是a,虚部是b,不是bi.6.某高中在今年的期末考试历史成绩中随机抽取名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在中的学生有1名,若从成绩在和两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在中的概率为( )A. B. C. D. 【答案】C【解析】分析:先利用已知条件计算出n=20,再计算出成绩在的有4人,再利用古典概型的概率公式求所求的概率.点睛:本题主要考查频率分布直方图和古典概型,属于基础题. 7.下列命题中正确命题的个数是( )①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”; ②“0a ≠”是“20a a +≠”的必要不充分条件;③若p q ∧为假命题,则p , q 均为假命题;④若命题p : 0x R ∃∈, 20010x x ++<,则p ⌝: x R ∀∈, 210x x ++≥;A. 1B. 2C. 3D. 4 【答案】C【解析】①正确;②由20a a +≠得0a ≠且1a ≠-,“0a ≠”是“20a a +≠”的必要不充分条件,故②正确;③若p q ∧为假命题,则,p q 至少有一个为假命题,故③错误;④正确;故正确的是①②④. 故选:C8.如图所示的程序中,如果输入的等于2018,程序运行后输出的结果是( )A. 2018B. -2018C. 2019D. -2019 【答案】D【解析】分析:利用算法语句求解即可. 详解:由算法语句,得.点睛:本题考查算法语句的功能,意在考查学生的逻辑思维能力. 9.平面直角坐标系中,分别是与轴、轴正方向同向的单位向量,向量,以下说法正确的是( ) A. B.C.D.【答案】C【解析】分析:首先利用向量的坐标表示方法写出的坐标表示,然后结合选项逐一考查其是否正确即可. 详解:由题意可设,则:,考查所给的选项:,选项A 错误;,故,选项B 错误;,故,即,选项C 正确;不存在实数满足,则不成立,选项D 错误.本题选择C 选项.点睛:本题主要考查平面向量的坐标运算,平面向量的垂直、平行的判定方法等知识,意在考查学生的转化能力和计算求解能力.10.已知复数在复平面上对应的点为,则( )A.是实数 B.是纯虚数 C.是实数 D.是纯虚数【答案】C点睛:本题主要考查复数的几何意义和复数的分类等基础知识,属于基础题. 11.已知全集,集合,,则( )A.B.C.D.【答案】B【解析】分析:由全集及,求出补集,找出集合的补集与集合的交集即可. 详解:,集合,,又,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性. 研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合或不属于集合的元素的集合. 12.在区间22ππ⎡⎤-⎢⎥⎣⎦,上随机取一个实数x,则事件“1sin 262x π⎛⎫-≤+≤⎪⎝⎭”发生的概率是( ) A.13 B. 14 C. 712 D. 512【答案】D【解析】由于1πsin 262x ⎛⎫-≤+≤ ⎪⎝⎭,所以πππππ,664312x x -≤+≤-≤≤,故概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭,故选D.13.设双曲线的左、右焦点分别为,过的直线交双曲线右支于两点,则的最小值为()A. 16B. 12C. 11D.【答案】C点睛:(1)在处理涉及椭圆或双曲线的点和焦点问题时,往往利用椭圆或双曲线的定义进行转化,可起到事半功倍的效果;(2)过椭圆或双曲线的焦点与长轴(或虚轴)垂直的弦是椭圆或双曲线的通径,是过焦点的最短弦.14.在公差为2的等差数列中,,则()A. B. C. D.【答案】B【解析】分析:根据等差数列中的基本量间的关系,借助于进行计算.详解:由题意得.故选B.点睛:等差数列中关于项的计算问题,要注意的变化与运用,对于条件求值的问题,还要注意整体代换的运用.15.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.【答案】D点睛:题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.16.已知1cos0,72παα⎛⎫=∈ ⎪⎝⎭,,则cos3πα⎛⎫-=⎪⎝⎭( )A.1114- D.1314【答案】D点睛:在应用同角间的三角函数关系特别是平方关系求函数值时,一定要先确定角的象限,这样才能确定sin α(或cos α)的正负,否则易出现错误结论.17.若1012a ⎛⎫= ⎪⎝⎭, 1215b -⎛⎫= ⎪⎝⎭, 15log 10c =,则,,a b c 大小关系为( ) A .a b c >> B .a c b >> C .c b a >> D .b a c >> 【答案】D18.如果执行下面的程序框图,且输入4n =, 3m =,则输出的p =( )A . 6B . 24C . 120D . 720 【答案】B【解析】第一次循环,可得122p =⨯=,第二次循环,可得236p =⨯=, 第三次循环,可得6424p =⨯=,退出循环体,输出24p =.故选B . 19.2cossincos121212πππ+=__________.【解析】21cos 12136cos sincossin 121212226444πππππ++=+=+= . 20.已知向量()3,4a =,(),1b x =,若()a b a -⊥,则实数x 等于_________. 【答案】7【解析】()22234340a b a a a b x -⋅=-⋅=+--= ,整理为7x =,故填7. 21.已知ABC ∆三内角,,A B C 对应的边长分别为,,a b c ,且23B π=,又边长3b c =,那么sin C =_______.【解析】根据正弦定理变形3sin 3sin b c B C =⇔=,所以sin sin 3B C ==. 22.小明忘记了微信登陆密码的后两位,只记得最后一位是字母,,,A a B b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是__________.【答案】11223.已知函数()2cos sin f x x x x =+. (Ⅰ)求函数()f x 的递增区间;(Ⅱ)ABC ∆的角,,A B C 所对边分别是,,a b c ,角A 的平分线交BC 于D , ()32f A =,2AD ==,求cos C .【答案】(1)递增区间是(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)4【解析】(Ⅰ)()2cos sin f x x x x =+111cos2sin 22262x x x π⎛⎫=-+=-+ ⎪⎝⎭ 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k Z ππππ-≤≤+∈,所以递增区间是(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;24.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB =点E 是棱AD 的中点,点F 在棱SC 上,且SFSCλ=, SA //平面BEF . (Ⅰ)求实数λ的值;(Ⅱ)求三棱锥F EBC -的体积.【答案】(1)13λ=(2【解析】(Ⅰ)连接AC ,设AC BE G ⋂=,则平面SAC ⋂平面EFB FG =,SA //平面EFB , SA ∴// FG , GEA ∆∽GBC ∆, 12AG AE GC BC ∴==, 1123SF AG SF SC FC GC ∴==⇒=, 13λ∴=.(Ⅱ),2SA SD SE AD SE =⊥=,又2,60,AB AD BAD BE ==∠=︒∴=222SE BE SB ∴+=, SE BE ∴⊥,SE ∴⊥平面ABCD ,所以211122sin6023333F BCE S EBC S ABCD V V V ---===⨯⨯⨯︒⨯=25.在等差数列{}n a 中, 1122,20a a =-=.(1)求数列{}n a 的通项n a ; (2)若12...n n a a a b n+++=,求数列{}3n b的前n 项和.【答案】(1) 24n a n =-;(2) 3118n n S -=.26.在平面直角坐标系xOy 中,直线l的参数方程为2{2x y ==(t 为参数),圆C 的方程为224240x y x y +--+=.以O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求l 的普通方程与C 的极坐标方程; (2)已知l 与C 交于,P Q ,求PQ .【答案】(1)2cos 3πρθ⎛⎫=-⎪⎝⎭(2)sin 13πρθ⎛⎫-=⎪⎝⎭27.如图,三棱柱ABF DCE -中, 120ABC ∠=, 2BC CD =, AD AF =, AF ⊥平面ABCD .(1)求证: BD EC ⊥;(2)若1AB =,求四棱锥B ADEF -的体积.【答案】(Ⅰ)见解析;(Ⅱ)3.28.为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如表:(Ⅰ)求关于的线性回归方程;(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(保留两位小数)参考公式:,【答案】(1) ;(2) .【解析】(Ⅰ),,,,∴,,所以关于的线性回归方程是.(Ⅱ)年利润,所以当时,年利润最大.29.如图,在长方体中,,,点是线段中点.(Ⅰ)求证:;(Ⅱ)求点到平面的距离.【答案】(1)详见解析;(2) .30.为了丰富退休生活,老王坚持每天健步走,并用计步器记录每天健步走的步数.他从某月中随机抽取20天的健步走步数(老王每天健步走的步数都在之间,单位:千步),绘制出频率分布直方图(不完整)如图所示.(1)完成频率分布直方图,并估计该月老王每天健步走的平均步数(每组数据可用区间中点值代替;(2)某健康组织对健步走步数的评价标准如下表:现从这20天中评价级别是“及格”或“良好”的天数里随机抽取2天,求这2天的健步走结果属于同一评价级别的概率.【答案】(1)见解析;(2).所抽取的2天属于同一评价级别的结果共4种:.所以,从这20天中评价级别是“及格”和“良好”的天数里随机抽取2天,属于同一评价级别的概率.。
重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
专题一 集合与简易逻辑小题一.集合小题(一)命题特点和预测:分析近8年的高考题发现,8年6考,每年1题,多数是与一元二次不等式解法、指数不等式、对数不等式、简单函数定义域与值域结合考查集合交并补运算与集合间的关系、集合的意义,位置多为第1题,难度为容易题,2019年高考中,仍将与不等式解法、函数定义域值域结合考查集合运算与集合间关系、集合意义,难度仍为送分题. (二)历年试题比较:,则A.B =R.B =∅)设集合,则AB = ( )3(1,) D )3(,3)2,则=B ( )已知集合 【解析与点睛】(2018年)【解析】解不等式得,所以,所以可以求得,故选B.(2017年)【解析】由31x <可得033x <,则0x <,即,所以{|0}x x =<,,故选A.(2016年)【解析】因为所以故选D.(2014年)【解析】由已知得,或}3x ≥,故,选A .(2013年)【解析】∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.(2012年)【解析】由x ∈A ,y ∈A 得x -y ∈A ,则(x ,y )可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B 中所含元素的个数为10个.(三)命题专家押题设集合,则集合,若,则,,则.,设集合,,则集合已知集合,,则.设集合,,则.已知集合,集合,则集合已知集合,,则实数.若集合Z中有且只有一个元素,则正实数【详细解析】1.【答案】C【解析】由题意,集合,又,全集,所以,所以,故选C.2.【答案】D【解析】由题意知∵,∴且,∴即,又∵,∴,即,∴,故选D.3.【答案】C【解析】由题知,,故选C.4.【答案】A【解析】由,即,图中阴影部分表示的集合为:,又,5.【答案】C【解析】因为集合,∴集合={1,,},∴真子集个数为23﹣1=7个,故选C.6.【答案】D【解析】由题知,∴,故A错误,∵,故B错误,∵,故C错,D正确,故选D.7.【答案】B【解析】因为,或,,故选.8.【答案】B【解析】,,,,当时,,当时,,当时,,即,即共有个元素,故选9.【答案】B【解析】∵3x﹣a0,∴,∴A=,∵log2(x﹣2)≤1=log22,∴0<x﹣2≤2,∴2<x≤4,∴B=(2,4],∵B⊆A,∴≤2,∴a≤6,故选B.10.【答案】【解析】∵f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得,∴,解得a二.简易逻辑小题(一)命题特点和预测:分析近8年的高考题发现,8年5考,每年1题,多数与不等式、复数等数学知识结合考查命题的判断、特称命题与全称命题的否定,难度为容易题或中档题,在19年的高考中,仍将不等式、复数等数学知识结合考查命题的判断、特称命题与全称命题的否定、充要条件的判断与应用,难度仍为基础题或中档题.(二)历年试题比较:,则,【解析与点睛】(2017年)【解析】1:p 设z a bi =+,则,得到0b =,所以z ∈R .故1p 正确;2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;故选B6(2015年)【解析】p ⌝:,故选C.(2014年)【解析】作出可行域如图中阴影部分所示,作出直线0l :20x y +=,平移0l ,由图可知,当直线:2x y z +=过()2,1A -时,,∴0z ≥,∴命题1p 、2p 真命题,选C.(2012年)【解析】∵z =21i-+=1i --,∴|z ,22z i =,z 的共轭复数为1i -+,虚部为-1,故2p ,4p 是真命题,故选C.(2011年)【解析】由||1+>a b 得,,即∙a b >12-,即c o s θ=||||∙a b a b >12-, ∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,,即∙a b <12,即c o s θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A. (三)命题专家押题已知命题,总有,则.,使得 ,使得.,使得,总有若函数.对于任意的,都有且.存在,使且.存在,使且.对于任意的,都有或,,则命题““,则”“”已知命题,命题:双曲线的离心率,则已知命题;命题,则..对任意的正整数,不等式..或①;,则使得是定义在上的单调递减函数,能说明一定存在使得_____【详细解析】1.【答案】B【解析】因为全称命题的否定是特称命题,∴,使得,故选B.2.【答案】C【解析】根据奇函数与偶函数的定义:对任意,,函数是偶函数;对任意,,函数是奇函数,所以,若存在,使,则函数不是奇函数;若存在,使,则函数不是偶函数;由此,函数为非奇非偶函数,则有存在,使且,故选C.3.【答案】B【解析】对于A,命题,,则命题,正确;对于B,时,成立,所以“”是“”的充分条件,B错误;对于C,命题“若,则”的逆命题是“若,则”,它是真命,此时,∴C正确;对于D,根据复合命题的真假性知,“”为假命题时,p与q均为假命题,D正确,故选B.4.【答案】A【解析】由,得或,化为或,等价于,因为命题,所以能推出,不能推出,是的充分不必要条件,故选A.5.【答案】B【解析】命题:命题是真命题,那就是假命题;命题:只有当时,才能有,即,所以命题是假命题,那是真命题。
1.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11【解析】选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.2.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.233.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )A.f(x) B.-f(x)C.g(x) D.-g(x)【解析】选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).8.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A .k ≥16B .k <8C .k <16D .k ≥89.如图所示的程序框图中,输出S =( )A .45B .-55C .-66D .66【解析】选B.由程序框图知,第一次运行T =(-1)2·12=1,S =0+1=1,n =1+1=2;第二次运行T =(-1)3·22=-4,S =1-4=-3,n =2+1=3;第三次运行T =(-1)4·32=9,S =-3+9=6,n =3+1=4…直到n =9+1=10时,满足条件n >9,运行终止,此时T =(-1)10·92,S =1-4+9-16+…+92-102=1+(2+3)+(4+5)+(6+7)+(8+9)-100=1+92×9-100=-55.故选B.10.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 018∈[3];②-2∈[2];③Z=[0]∪[1]∪[2]∪[3]∪[4];④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中正确结论的个数为( )A.1 B.2C.3 D.411.请仔细观察1,1,2,3,5,( ),13,运用合情推理,可知写在括号里的数最可能是( ) A.8 B.9C.10 D.11【解析】选A.观察题中所给各数可知,2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,∴括号中的数为8.故选A.12.下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数【解析】选B.对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C 和D,均为大前提错误,故选B.13.阅读如图所示的程序框图,运行相应程序,则输出的i的值为( )A.3 B.4C.5 D.614.执行如图所示的程序框图,若输入的x的值为2,则输出的y的值为( )A.2 B.5C.11 D.23【解析】选D.x=2,y=5,|2-5|=3<8;x=5,y=11,|5-11|=6<8;x=11,y=23,|11-23|=12>8.满足条件,输出的y的值为23,故选D.15.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )A.f(x) B.-f(x)C.g(x) D.-g(x)【解析】选D.由所给等式知,偶函数的导数是奇函数.∵f(-x)=f(x),∴f(x)是偶函数,从而g(x)是奇函数.∴g(-x)=-g(x).16.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c.类比这个结论可知:四面体SABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体SABC 的体积为V,则R等于( )A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S417.按照如图所示的程序框图执行,若输出的结果为15,则M处的条件为( )A .k ≥16B .k <8C .k <16D .k ≥8【解析】选A.根据框图的循环结构依次可得S =0+1=1,k =2×1=2;S =1+2=3,k =2×2=4;S =3+4=7,k =2×4=8;S =7+8=15,k =2×8=16,根据题意此时跳出循环,输出S =15.所以M处的条件应为k ≥16.故A 正确.18.执行如图所示的程序框图,若输出结果为3,则可输入的实数x 的值的个数为( )A .1B .2C .3D .4【解析】选C.由题意,知y =⎩⎪⎨⎪⎧x 2-1,x ≤2,log 2x ,x >2.当x ≤2时,由x 2-1=3,得x 2=4,解得x =±2.当x >2时,由log 2x =3,得x =8.所以可输入的实数x 的值的个数为3.19.如图给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )A.i>10 B.i<10C.i>20 D.i<2020.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2 018∈[3];②-2∈[2];③Z=[0]∪[1]∪[2]∪[3]∪[4];④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中正确结论的个数为( )A.1 B.2C.3 D.4【解析】选C.因为2 018=403×5+3,所以2 018∈[3],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a,b属于同一“类”,因为整数a,b被5除的余数相同,从而a-b被5除的余数为0,反之也成立,故整数a,b属于同一“类”的充要条件是“a-b∈[0]”,故④正确.所以正确的结论有3个,故选C.21.如图(1)是某县参加2016年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,则在流程图中的判断框内应填写( )A .i <6?B .i <7?C .i <8?D .i <9?【解析】选C.统计身高在160~180 cm 的学生人数,即求A 4+A 5+A 6+A 7的值.当4≤i ≤7时,符合要求.22.对于函数f (x ),若存在非零常数a ,使得当x 取定义域内的每一个值时,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos(x +1)23.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据上述规律,第n 个不等式应该为________.【解析】不等式的左边为连续自然数的平方的倒数和,即1+122+…+1n +12,不等式的右边为2n +1n +1. 【答案】1+122+…+1n +12<2n +1n +124.执行如图所示的流程图,则输出的k 的值为________.【答案】425.阅读如图所示的程序框图,运行相应的程序,输出的结果S =________.【解析】由程序框图知,S 可看成一个数列{a n }的前2 015项和,其中a n =1nn +1(n ∈N *,n ≤2 015),∴S =11×2+12×3+…+12 015×2 016=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 015-12 016=1-12 016=2 0152 016.故输出的是2 0152 016. 【答案】2 0152 01626.观察下列等式:1=1,1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,……,由以上可推测出一个一般性结论:对于n ∈N *,1+2+…+n +…+2+1=________.【解析】∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,……,∴归纳可得1+2+…+n+…+2+1=n2.【答案】n227.执行如图所示的程序框图,若输出的结果是8,则输入的数是________.28.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的________两人说对了.【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确.故答案为乙,丙.。
阶段检测六 概率、统计、算法、复数、推理与证明一、选择题1.C z=2-3i 1+i =(2-3i )(1-i )(1+i )(1-i )=-1-5i 2=-12-52i,z 在复平面内对应的点的坐标为 -12,-52 ,在第三象限.故选C.2.B 由题意可知,样本容量n=605×(2+3+5)=120.3.C 从这4张卡片中随机抽取2张,共有6种抽取方法,其中2张卡片上的数字之和为奇数的有(5,6),(5,8),(6,7),(7,8),共4种抽法,因此所求概率P=46=23.故选C.4.D 设AC=x cm,则BC=(18-x)cm,矩形的面积S=x(18-x)cm,由x(18-x)>32,得2<x<16,根据几何概型的概率计算公式得P=16-218=79.故选D. 5.C ∵2-i a+i =(2-i )(a-i )(a+i )(a-i )=(2a-1)-(a+2)ia +1为纯虚数,∴2a -1=0且a+2≠0,∴a=12.故选C. 6.C 对35名运动员进行编号:00,01,02,…,34,分成七组:00~04,05~09,10~14,15~19,20~24,25~29,30~34,用系统抽样的方法抽7人,则第三组到第六组中占4人,即其中成绩在区间[139,151]上的运动员人数为4,故选C.7.D 由题意知x =0+1+4+5+6+86=4, y =1.3+m+5.6+6.1+7.4+9.36=29.7+m 6, 将 4,29.7+m 6 代入y ^=0.95x+1.45中,得29.7+m 6=0.95×4+1.45,解得m=1.8. 8.B 记第k 次计算结果为S k ,则有S 1=11-2=-1,S 2=11-(-1)=12,S 3=11-12=2,S 4=11-2=-1=S 1,…,因此{S k }是周期数列,周期为3,输出结果为S 2 015=S 3×671+2=S 2=12,故选B.9.A 设不等式组 0≤x ≤1,1≤y ≤2表示的平面区域为D,其面积为1,如图,满足条件的点P 对应的区域为△ABC 及其内部,△ABC 的面积S=12×12×1=14,所以在区域D 内任取一点P(x,y),其坐标满足y ≤2x 的概率为14.故选A.10.A由频率分布直方图得(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,所以样本数据在各组的频率分别为0.04,0.19,0.22,0.25,0.15,0.10,0.05,因为0.04+0.19+0.22=0.45<0.5,所以样本数据的中位数在[220,240)内,设中位数为a,由0.04+0.19+0.22+0.012 5×(a-220)=0.5,得a=224.样本数据的平均数为x=170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.10+290×0.05=225.6≈226,所以样本数据的中位数及平均数分别为224,226,故选A.11.B运行该程序,S=10+sinπ2+lo g11=11,n=2;S=11+sinπ+lo g12=11+lo g12,n=3;S=11+lo g12+sin3π2+lo g13=10+lo g16,n=4;S=10+lo g16+sin2π+lo g14=10+lo g124=9+lo g18,n=5.故输出的S=9-log38,故选B.12.D由题意可知第n行有(2n-1)个数,则前n行的数的个数为1+3+5+…+(2n-1)=n2,因为442=1 936, 452=2 025,且1 936<2 016<2 025,所以2 016在第45行,又2 016-1 936=80,故2 016在第45行第80列.故选D.二、填空题13.答案16解析小王与小郑要从铜锣湾、迪士尼乐园、维多利亚港、大屿山这四个景点中分别选取两个景点,共有36种选法,他们选择的两个景点都不相同时,小王可以先选两个景点,剩余两个景点由小郑选,共有6种选法,所以他们选择的两个景点都不相同的概率为636=1 6 .14.答案 1解析∵i-21+i =(i-2)(1-i)(1+i)(1-i)=-12+32i=a+bi,∴a=-12,b=32,∴a+b=1.15.答案甲解析假设甲去过,则甲、乙、丙说的都是假话,丁说的是真话,符合题意.16.答案 4解析由已知可得输出的S=1+11×2+…+1a(a+1)=1+1-1a+1=2-1a+1.若该程序运行后输出的值是95,则2-1 a+1=95,∴a=4.三、解答题17.解析(1)这6条道路的平均得分为16×(5+6+7+8+9+10)=7.5,∴该市的总体交通状况等级为合格.(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过1”.从这6条道路中抽取2条的得分组成的所有基本事件为{5,6},{5,7},{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},{8,10},{9,10},共15个基本事件,事件A包括{5,8},{5,9},{5,10},{6,7},{6,8},{6,9},{6,10},{7,8},{7,9},{7,10},{8,9},共11个基本事件.∴P(A)=1115.故该样本的平均数与总体的平均数之差的绝对值不超过1的概率为1115.18.解析(1)小陈这8天竞走步数的平均数为16×3+17×2+18×1+19×28=17.25(千步).(2)将步数为16千步的3天分别记为A,B,C;步数为17千步的2天分别记为D,E;步数为18千步的1天记为F.则从A,B,C,D,E,F这6天中任选2天,所含的基本事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15个.其中小陈这2天通过竞走消耗的能量和为840卡路里所含的基本事件有{A,D},{A,E},{B,D},{B,E},{C,D},{C,E},共6个,所以小陈这2天通过竞走消耗的能量和为840卡路里的概率P=615=25.19.解析 (1)1-(0.005+0.01+0.02+0.03)×10=0.35,0.02×10=0.2,所以被采访的人恰好在第2组或第4组的概率为P 1=0.35+0.2=0.55.(2)设第1组[20,30)的频数为n 1,则n 1=120×0.005×10=6,记第1组中的男性为x 1,x 2,女性为y 1,y 2,y 3,y 4,则随机抽取3名群众的基本事件有:(x 1,x 2,y 1),(x 1,x 2,y 2),(x 1,x 2,y 3),(x 1,x 2,y 4),(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共20个.其中至少有2名女性的基本事件有:(x 1,y 1,y 2),(x 1,y 1,y 3),(x 1,y 1,y 4),(x 1,y 2,y 3),(x 1,y 2,y 4),(x 1,y 3,y 4),(x 2,y 1,y 2),(x 2,y 1,y 3),(x 2,y 1,y 4),(x 2,y 2,y 3),(x 2,y 2,y 4),(x 2,y 3,y 4),(y 1,y 2,y 3),(y 1,y 2,y 4),(y 1,y 3,y 4),(y 2,y 3,y 4),共16个.所以至少有2名女性的概率为P 2=1620=45. 20.解析 (1)因为x =1+2+3+4+55=3,y =5+6+7+8+105=7.2,∑i =15x i 2-5x 2=55-5×32=10,∑i =15x i y i -5xy =120-5×3×7.2=12, 所以b ^=1210=1.2,a ^=y -b ^x =7.2-1.2×3=3.6,所以y 关于x 的回归方程为y ^=1.2x+3.6.(2)将x=7代入y ^=1.2x+3.6,得y ^=1.2×7+3.6=12(千亿元),所以可预测该地区2016年的人民币储蓄存款为12千亿元.21.解析(1)由茎叶图和频率分布直方图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,所以该班的学生人数为40.08=50,故分数在[70,80)之间的人数为50-(4+14+8+4)=20.(2)按分层抽样原理,三个分数段抽样之比等于相应频率之比,又[70,80),[80,90)和[90,100]分数段的频率之比等于5∶2∶1,由此可得抽出的样本中分数在[70,80)的有5人,记为A,B,C,D,E,分数在[80,90)的有2人,记为F,G,分数在[90,100]的有1人,记为H.现从中抽取2人的所有可能情况有{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{A,H},{B,C},{B,D},{B,E},{B,F},{B,G},{B,H},{C,D},{C,E},{C,F},{C, G},{C,H},{D,E},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},{F,G},{F,H},{G,H},共28个基本事件,设事件M为“交流的2名学生中,恰有1名成绩位于[70,80)分数段”,则事件M包含{A,F},{A,G},{A,H},{B,F},{B,G},{B,H},{C,F},{C,G},{C,H},{D,F},{D,G},{D,H},{E,F},{E,G},{E,H},共15个基本事件,所以P(M)=1528.22.解析(1)依题意,抽出的100名且消费金额在[800,1 000](单位:元)的网购者中有3名女性,记为A,B,C;2名男性,记为a,b.从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10个;设“选出的2名网购者恰好是同性”为事件M,则事件M包含的基本事件有:(A,B),(A,C),(B,C),(a,b),共4个.∴P(M)=410=2 5 .(2)2×2列联表如下所示:≈9.091,则K2=100×(50×15-30×5)280×20×55×45因为9.091>7.879,故能在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”.。
专题 05 推理证明与概率统计小题(文)一.推理证明(一)命题特点和预测:分析近 8 年全国 1 卷试题,发现 8 年 1 考,主要考查合情推理,难度较低是送分题,2019 年高考可能考查一个推理证明试题,主要考查合情推理、演绎推理或反证法,难度为容易题.(二)历年试题比较:年份题目答案2014 年 (14)甲、乙、丙三位同学被问到是否去过 A 、 B 、 C 三个城市时,A甲说:我去过的城 市比乙多,但没去过 B 城市;乙说:我没去过 C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【解析与点睛】(2014 年)【解析】∵丙说:三人同去过同一个城市,甲说没去过 B 城市,乙说:我没去过 C 城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市 B,甲去过的城市至多两个,不可能比乙 多,∴可判断乙去过的城市为A.(三)命题专家押题题号 试题1.祖暅(公元前 5~6 世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。
这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。
设由椭圆所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于 ()A.B.C.D.2.利用反证法证明:若A. 都不为 0,则,假设为( ) B. 不都为 0C. 都不为 0,且D. 至少有一个为 03的三边长分别为 , 的面积为 ,则 的内切圆半径为.将此结论类比到空间四面体:设四面体 球半径为 ( )的四个面的面积分别为,体积为 ,则四面体的内切A.B.C.D.4在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中查出真正的嫌疑人,现有四条明确信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A.丙、丁B.乙、丙C.甲、乙D.甲、丁5如下分组的正整数对:第 1 组为 , ,第 2 组为 , ,第 3 组为 , ,, ,第 4 组为 , , , , ,则第 40 组第 21 个数对为______.6若等差数列 的公差为 ,前 项和为 ,则数列 为等差数列,公差为 ,类似地,若各项均为正数的等比数列 的公比为 ,前 项积为 ,则等比数列 的公比为( )A.B.C.D.7在实数的原有运算法则(“ ” “ ”仍为通常的乘法和减法)中,我们补充定义新运算 “ 如下:当 时,;当 时,,则当时,函数的最大值等于A.-1 B.1 C.6 D.128边长为 的等边三角形内任一点到三边距离之和为定值,这个定值等于 ;将这个结论推广到空间是:棱长为 的正四面体内任一点到各面距离之和等于________________.(具体数值)9已知各项均为正数的两个无穷数列和满足:,且 是等比数列,给定以下四个结论:①数列 的所有项都不大于;②数列 的所有项都大于 ;③数列 的公比等于 ;④数列 一定是等比数列。
其中正确结论的序号是____________.10我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数 ,则 的值为()A.B.C.D.【详细解析】1.【答案】A【解析】椭圆的长半轴长为 a,短半轴长为 b,先构造两个底面半径为 b,高为 a 的圆柱,然后在圆柱内挖 去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积为,故选 A。
2.【答案】B【解析】的否定为,即 , 不都为 0,选 B.3.【答案】C【解析】设四面体 S﹣ABC 的四个面的面积分别为 S1,S2,S3,S4,体积为 V,设四面体的内切球的球心为O,则球心 O 到四个面的距离都是 r,所以四面体的体积等于以 O 为顶点,分别以四个面为底面的 4 个三棱锥体积的和.则四面体的体积为:V (S1+S2+S3+S4)r,∴ r,故选 C.4.【答案】A【解析】假设参与此案的两名嫌疑人是丙、丁,符合题意,故 A 正确;假设参与此案的两名嫌疑人是乙、丙,则由乙参与此案,得丁一定参与,不合题意,故 B 错误;假设参与此案的两名嫌疑人是甲、乙,则由乙参与此案,得丁一定参与,不合题意,故 C 错误;假设参与此案的两名嫌疑人是甲、丁,则由甲参与此案,则丙一定没参与,丙没参与此案,则丁也一定没参与,不合题意,故 D 错误;故选 A.5.【答案】(22,20)【解析】由题意可得第一组的各个数和为 3,第二组各个数和为 4,第三组各个数和为 5,第四组各个数和为 6, ,第 n 组各个数和为 ,且各个数对无重复数字,可得第 40 组各个数和为 42,则第 40 组第21 个数对为.6.【答案】C【解析】∵在等差数列 中前 n 项的和为 的通项,且写成了 =a1+(n−1)× ,所以在等比数列{ }中应研究前 n 项的积为 的开 n 方的形式,类比可得7.【答案】C=b1( )n−1.其公比为 ,故选 C.【解析】由已知得所以,可求出:当 时,函 数最大值是-1;当时,函数最大值是 6;当 的最大值等于 6,选 C时,函数不存在最大值是;所以函数8.【答案】【解析】边长为 a 的等边三角形内任意一点到三边距离之和是由该三角形的面积相等得到的,由此可以推 测棱长为 a 的正四面体内任意一点到各个面的距离之和可由体积相等得到.方法如下,如图,在棱长为 a 的正四面体内任取一点 P,P 到四个面的距离分别为 h1,h2,h3,h4.四面体 A﹣BCD 的四个面的面积相等,均为 ,高为 ,由体积相等得:,所以.9.【答案】①③④【解析】因为,所以①,下证等比数列 的公比 .若 ,则,则当时,,此时,与①矛盾;若,则,则当时,此时,与①矛盾.故 ,故.下证,若,则,于是,由得,所以所以,所以,所以正确的序号是①③④.10.【答案】C【解析】第一行第一个数为:;第二行第一个数为:;第三行第一个数为:;第四行第一个数为:;,第 n 行第一个数为:;一共有 1010 行,∴第 1010 行仅有一个数:二.概率统计小题中至少有两项相同,矛盾. ;故选 C.(一)命题特点和预测:分析近 8 年的新课标 1 高考题发现,8 年 7 考,每年 1 题,主要考查抽样方法、古典概型、几何概型、总体估计、独立性检验、回归分析等概率统计问题,难度为容易题,2019 年高考仍将有 1 个小题,仍重点考查抽样方法、古典概型、几何概型、总体估计、独立性检验、回归分析等概率统计问题,难度为容易题.(二)历年试题比较:年份题目答案2018 年(3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好 A地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收 入构成比例.得到如下饼图:2017 年则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半(2)为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位:kg) B分别为 x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产 量稳定程度的 是A.x1,x2,…,xn 的平均数 C.x1,x2,…,xn 的最大值B.x1,x2,…,xn 的标准差 D.x1,x2,…,xn 的中位数(4)如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和 B白色部分关于正方形的中心成中心对称. 在正方形内随机取一点, 则此点取自黑色部分的概率是A. 1 4B. π 8C. 1 2D. π 42016 年 (3)为美化环境,从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中,余 C下的 2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是2015 年(A) 1 (B) 1 (C) 2 (D) 53236(4)如果 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股 C数,从1, 2,3, 4,5 中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为( )(A) 3 10(B) 1 5(C) 1 10(D) 1 202014 年 (13)将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概 2率为________.32013 年 (3)从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对值为 2 的概率是B2011 年1111A.B.C.D.2346(6)有 3 个兴趣小组,甲、乙两位同学各参加其中一个小组,每位同学参加各个小组的 A可能性相同,则这两位同学参加同一兴趣小组的概率为(A) 1 3【解析与点睛】12(B)(C)233(D)4(2018 年)(3)【解析】设新农村建设前的收入为 M,而新农村建设后的收入为 2M,则新农村建设前种植收入为 0.6M,而新农村建设后的种植收入为 0.74M,所以种植收入增加了,所以 A 项 不正确;新农村建设前其他收入我 0.04M,新农村建设后其他收入为 0.1M,故增加了一倍以上,所以 B 项正确;新农村建设前,养殖收入为 0.3M,新农村建设后为 0.6M,所以增加了一倍,所以 C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的 一半,所以 D 正确;故选 A.(2017 年)(2)【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选 B(4) 【解析】(2016 年)【解析】将 4 中颜色的花种任选两种种在一个花坛中,余下 2 种种在另一个花坛,有 6 种种法, 其中红色和紫色不在一个花坛的种数有 4 种,故概率为 2 ,故选 C.3 (2015 年)【解析】从 1,2,3,4,51, 2,3, 4,5 中任取 3 个 不同的数共有 10 种不同的取法,其中的勾股数只有3,4,5,故 3 个数构成一组勾股数的取法只有 1 种,故所求概率为 1 ,故选 C. 10(2014 年)【解析】设两本数学为 A,B,语文书为 C,则将 3 本书排除一排所有可能为 ABC,BAC,ACB,BCA,CAB,CBA,其中两本数学书相邻的所有可能有 ABC,BAC,CAB,CBA,故 2 本数学书相邻的概率为 4 = 2 . 63(2013 年)【解析】从 1,2,3,4 中任取两个有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6 种不同取法,其中取出的 2 个数之差的绝对值为 2 的由{1,3},{2,4}2 种,故其概率为 2 = 1 ,故选 B . 63(2011 年)【解析】[法 1]∵每位同学参加各个小组的可 能性相同,故某个同学参加某一小组的概率都为 1 , 3又∵甲、乙参加哪一小组之间没有相互影响,故甲、乙同在某一组的概率为 1 1 = 1 , 339又∵甲、乙同在 3 个兴趣小组的某一组的 3 个事件互斥,故甲、乙同在一组的概率为 1 + 1 + 1 = 1 ,故选 9993A. (法 2)设三个小组分别为 1、2、3,则甲、乙参加各小组的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共 9 种,其中在同一组有 3 种,故在同一组的概率为 1 = 1 . 93(三)命题专家押题题号 试题1.总体由编号为 00,01,02,…,48,49 的 50 个个体组成,利用下面的随机数表选取 6 个个体,选取方法是从随机数表第 6 行的第 9 列和第 10 列数字开始从左到右依次选取两个数字,则选出的第 3 个个体的编号为( )附:第 6 行至第 9 行的随机数表2635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 16207477 0111 1630 2404 2979 7991 9683 5125A.3B.16C.38D.202.某公司 2018 年在各个项目中总投资 500 万元,下图是几类项目的投资占比情况,已知在 1 万元以上的项目投资中,少于 3 万元的项目投资占 ,那么不少于 3 万元的项目投资共有A.56 万元B. 万元C. 万元D. 万元3某地气象局把当地某月(共 30 天)每一天的最低气温作了统计,并绘制了如下图所示的统计图,假设该月温度的中位数为 ,众数为 ,平均数为 ,则( )A.B.C.D.4为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:( )A.①③B.①④C.②③D.②④5为了研究某班学生的脚长 (单位:厘米)和身高 (单位:厘米)的关系,从该班随机抽取 10名学生,根据测量数据的散点图可以看出 与 之间有线性相关关系,设其回归直线方程为,已知,, .该班某学生的脚长为 23,据此估计其身高为( ).A.160B.166C.170D.17262018 年 12 月 1 日,贵阳市地铁一号线全线开通,在一定 程度上缓解了出行的拥堵状况。