5狭义相对论
- 格式:doc
- 大小:148.50 KB
- 文档页数:2
第一节 狭义相对论的基本原理第二节 时空相对性的科学探究思想和逻辑推理方法.一、伽利略相对性原理:力学规律在任何惯性系中都是相同的. 二、狭义相对论的两个基本假设: 1.狭义相对性原理在不同的惯性参考系中,一切物理规律都是相同的; 2.光速不变原理真空中的光速在不同的惯性参考系中是相同的,光速与光源、观察者间的相对运动没有关系.三、时间和空间的相对性 1.“同时”的相对性 “同时”是相对的.在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”的.2.长度的相对性一条沿自身长度方向运动的杆,其长度总比静止时的长度小.即l ′=l 01-(v c)2式中l 是沿杆运动方向的长度,l 0是杆静止时的长度.3.时间间隔的相对性 从地面上观察,高速运动的飞船上时间进程变慢,飞船上的人则感觉地面上的时间进程变慢.Δt ′=Δt1-(v c)2式中Δt ′是运动的参考系中测得的两事件的时间间隔,Δt 是静止的参考系中测得的两事件的时间间隔.四、相对论的时空观 1.经典物理学的时空观经典物理学认为时间和空间是脱离物质而存在的,是绝对的,时间和空间之间也是没有联系的.2.相对论的时空观相对论认为有物质才有时间和空间,时间和空间与物质的运动状态有关,因而时间与空间并不是相互独立的.预习交流学生讨论:什么是惯性系?什么是非惯性系?答案:牛顿运动定律能够成立的参考系叫惯性系,匀速运动的汽车、轮船等作为参考系就是惯性系.牛顿运动定律不成立的参考系称为非惯性系,例如我们坐在加速的车厢里,以车厢为参考系观察路边的树木、房屋向后方加速运动,根据牛顿运动定律,房屋、树木应该受到不为零的合外力作用,但事实上没有,也就是牛顿运动定律不成立,这里加速的车厢就是非惯性系.相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系.一、对狭义相对论的两个基本假设的理解1.如何理解经典相对性原理?答案:(1)惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.(2)这里的力学规律是指“经典力学规律”.(3)本原理可以有不同表示,比如:在一个惯性系内进行的任何力学实验都不能判断这个惯性系是否对于另一个惯性系做匀速直线运动;或者说,任何惯性参考系都是平权的.2.对光速不变原理如何理解?答案:我们经常讲速度是相对的,参考系选取不同,速度也不同,这是经典力学中速度的概念,但是1887年迈克耳孙—莫雷实验中证明的结论是:不论取怎样的参考系,光速都是一样的,也就是说光速的大小与选取的参考系无关,光的速度是从麦克斯韦方程组中推导出来的,它没有任何前提条件,所以这个速度不是指相对某个参考系的速度.3.学生讨论:试述当经典力学时空观遇到光速不变的实验事实这一困难时,爱因斯坦是如何解决的,它的意义如何.答案:爱因斯坦提出了两条基本假设即爱因斯坦相对性原理:在不同的惯性参考系中,一切物理规律都是相同的.“光速不变原理”:不管在哪个惯性系中,测得的真空中的光速都相同.两条基本假设的提出解决了光速不变的困难.同时为狭义相对论的建立奠定了基础,使得人们的时空观发生了重大的变革,使得看似毫无联系的时间与空间紧密地联系在了一起.分析下列几种说法:(1)所有惯性系统对物理基本规律都是等价的.(2)在真空中,光的速度与光的频率、光源的运动状态无关.(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同.关于上述说法().A.只有(1)(2)是正确的B.只有(1)(3)是正确的C.只有(2)(3)是正确的D.三种说法都是正确的答案:D解析:狭义相对论认为:物体所具有的一些物理量可以因所选参考系的不同而不同,但它们在不同的参考系中所遵从的物理规律却是相同的,即(1)(2)都是正确的.“光速不变原理”认为:在不同的惯性参考系中,光在真空中沿任何方向的传播速度都是相同的.(3)正确.对两个基本原理的正确理解:1.自然规律不仅包括力学规律,还包括电磁学规律等其他所有的物理学规律.2.强调真空中的光速不变,指大小既不依赖于光源或观察者的运动,也不依赖于光的传播方向.3.几十年来科学家采用各种先进的物理技术测量光速,结果都不违背光速不变原理.二、对“同时”相对性的理解1.怎样理解同时的相对性?答案:同时是指两个事件发生的时刻是相同的,“相同”是观察者得出的结论,不同的观察者观察到的结果是不“相同”的.2.怎样理解时间间隔的相对性?答案:运动的时钟变慢:时钟相对于观察者静止时,走得快;相对于观察者运动时,观察者会看到它变慢了,运动速度越快,效果越明显,即运动着的时钟变慢.3.怎样理解经典时空观与相对论时空观的区别?答案:经典力学时空观:绝对的真实的数学时间,就其本质而言,是永远均匀地流逝,与任何外界无关;绝对空间就其本质而言是与任何外界事物无关的,它从不运动,并且永远不变.经典力学时空观的几个具体结论:(1)同时的绝对性:在一个参考系中的观察者在某一时刻观测到两个事件.对另一参考系中的观察者来说是同时发生的,即同时性与观察者做匀速直线运动的状态无关.(2)时间间隔的绝对性:任何事件所经历的时间,在不同的参考系中测量都是相同的,而与参考系的运动无关.(3)空间距离的绝对性:如果各个参考系中用来测量长度的标准相同,那么空间两点的距离也就有绝对不变的量值,而与参考系的选择无关.相对论时空观:空间的大小、时间流逝的快慢都与物体运动的速度有关.4.如图所示:车厢长为L,正以速度v匀速向右运动,车厢底面光滑,两只完全相同的小球,从车厢中点以相同的速率v0相对于车厢分别向前后匀速运动.(1)在车厢内的观察者看来,两球是否同时到达两壁?(2)在地面上的观察者看来,两球是否同时到达两壁?答案:(1)在车厢内的观察者看来,两球同时到达两壁.(2)在地面上的观察者看来,两球不同时到达两壁.解析:(1)在车上的观察者看来,A球经时间t A=L 2v0=L2v0到达后壁,B球经时间t B=L2v0=L2v0到达前壁,因此两球同时到达前后壁.(2)在地面上的观察者看来,A球经时间t A′=L 2v0+v =L2(v0+v)到达后壁,B球经时间t B′=L2v0-v=L2(v0-v)到达前壁,因此两球不同时到达前后壁.如图所示,在地面上M点固定一光源,在离光源等距离的A、B两点上固定有两个光接收器,今使光源发出一闪光,问:(1)在地面参考系中观测,谁先接收到光信号?(2)在沿AB方向高速运动的火车参考系中观测,谁先接收到光信号?答案:(1)同时收到(2)B先接收到解析:(1)因光源离A、B两点等距,光向A、B两点传播的速度相等,则光到达A、B 两点,所需要的时间相等,即在地面参考系中观测,两接收器同时收到光信号.(2)对于火车参考系来说,光源和A、B两接收器都沿BA方向运动,当光源发出的光向A、B传播时,A和B都沿BA方向运动了一段距离到达A′,B′,如图所示,所以光到达A′的距离长,到达B′的距离短,即在火车参考系中观测,B比A先收到光信号.1.经典物理学认为,同时发生的两件事在任何参考系中观察,结果都是同时的.2.相对论观点认为,“同时”是相对的,在一个参考系中看来是“同时”的,在另一个参考系中却可能是“不同时”的.三、长度的相对性如图所示,地面上的人看到杆的M 、N 两端发出的光同时到达他的眼睛,他读出N 、M 的坐标之差为l ,即地面上的观察者测得杆的长度为l 0,若在向右匀速运动的车上的观察者测得的杆长为l ,则l 和l 0是否相等?为什么?答案:不相等,l 0>l ,因为车上的观察者看到N 端先发光,而M 端后发光,车上的观察者测得的长度l 比地上的观察者测得的长度l 0小,这是因为同时的相对性导致了长度的相对性.严格的数学推导告诉我们l 0和l 之间的关系为l =l 01-(vc)2,可见总有l <l 0.在一飞船上测得飞船的长度为100 m ,高度为10 m .当飞船以0.60c 的速度从你身边经过时,按你的测量,飞船有多高、多长?答案:10 m 80 m解析:因为长度收缩只发生在运动的方向上,与运动垂直的方向上没有这种效应,故测得的飞船的高度仍为原来高度10 m .设飞船原长为l 0,观测到飞船的长度为l ,则根据尺缩效应有l =l 01-(v c )2=100×1-(0.6c c)2m =80 m所以观测到飞船的高度和长度分别为10 m 、80 m .1.在垂直于运动方向上,杆的长度没有变化.2.这种长度的变化是相对的,如果两条平行的杆在沿自己的长度方向上做相对运动,与它们一起运动的两位观察者都会认为对方的杆缩短了.3.由l =l 01-(v c)2知v 越小长度的变化越小.四、时间间隔的相对性一列高速火车上发生两个事件:假定车厢上安装着一个墨水罐,它每隔一定时间滴出一滴墨水.墨水在t 1、t 2两个时刻在地上形成P 、Q 两个墨点,设车上的观察者测得两事件间隔为Δt ,地面上的观察者测得两事件间隔为Δt ′,车厢匀速前进的速度为v ,试比较Δt ′和Δt 的大小.答案:Δt >Δt ′解析:车上观察者认为两个事件的时间间隔:Δt =t 2-t 1地面观察者认为两个事件的时间间隔:Δt ′=t 2′-t 1′ 根据公式l =l 01-(v c)2,通过一定的数学推导可以得出:Δt ′=Δt1-(v c)2,即Δt >Δt ′一对孪生兄弟,出生后甲乘高速飞船去旅行,测量出自己飞行30年回到地面上,乙在地面上生活,问甲回来时30岁,乙这时是多少岁?(已知飞船速度v =32c )答案:60岁解析:飞船中的甲经时间Δt ′=30年,地面上的乙经过的时间为Δt =Δt ′1-(v c)2=301-(32c c)2年=60年,可见乙这时60岁了. 1.由“同时”的相对性引起了长度的相对性.从而引起了时间的相对性.2.由Δt ′=Δt1-(v c)2知,v 越大,Δt ′越短.1.某地发生洪涝灾害,灾情紧急,特派一飞机前往,飞机在某高度做匀速直线运动,投放一包救急品,灾民看到物品做曲线运动,飞行员看到物品做自由落体运动,物品刚好落到灾民救济处,根据经典时空观,则下列说法正确的是( ).A .飞机为非惯性参考系B .飞机为惯性参考系C .灾民为非惯性参考系D .灾民为惯性参考系 答案:BD解析:物品投放后,仅受重力作用,飞行员是初速度为零的自由落体运动,符合牛顿运动定律,故飞机为惯性参考系,B 对;而地面上的人员看物品做初速度不为零的抛体运动,也符合牛顿运动定律,D 也对.2.如图所示,强强乘速度为0.9c (c 为真空中的光速)的宇宙飞船追赶正前方的壮壮,壮壮的飞行速度为0.5c ,强强向壮壮发出一束光进行联络,则壮壮观测到该光束的传播速度为( ).A .0.4cB .0.5cC .0.9cD .1.0c答案:D解析:根据爱因斯坦的狭义相对论,在一切惯性系中,光在真空中的传播速度都等于c .故选项D 正确.3.麦克耳孙—莫雷实验说明了以下哪些结论( ). A .以太不存在B .光速的合成满足经典力学法则C .光速不变D .光速是相对的,与参考系的选取有关答案:AC解析:麦克耳孙—莫雷实验证明了光速不变的原理,同时也说明以太是不存在的. 4.假设地面上有一火车以接近光速的速度运行,车内站立着一个中等身材的人,站在路旁的人观察车里的人,观察的结果是( ).A .这个人是一个矮胖子B .这个人是一个瘦高个子C .这个人矮但不胖D .这个人瘦但不高 答案:D解析:取路旁的人为惯性系,车上的人相对于路旁的人高速运动,根据尺缩效应,人在运动方向上将变窄,但在垂直于运动方向上没有发生变化,故选D .5.以8 km/s 的速度运行的人造卫星上一只完好的手表走过了1 min ,地面上的人认为它走过这1 min“实际”上花了多少时间?答案:(1+3.6×10-10)min解析:卫星上观测到的时间为Δt ′=1 min ,卫星运动的速度v =8×103m/s ,所以地面上观测到的时间为Δt =Δt ′1-v 2c 2=11-(8×1033×108)2min=(1+3.6×10-10)min .。
1 第5章狭义相对论习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。
在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。
2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。
3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。
解在相对论中,不是一切都是相对的,也有绝对性存在的方面。
如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。
4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点;(2)两事件发生于S 系的不同地点。
解由洛伦兹变化2()vt t x c g ¢D =D -D 知,第一种情况,0x D =,0t D =,故'S 系中0t ¢D =,即两事件同时发生;第二种情况,0x D ¹,0t D =,故'S 系中0t ¢D ¹,两事件不同时发生。
5-5飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。
第5单元 狭义相对论
序号 学号 姓名 专业、班级
一 选择题
[ B ]1. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是
(A )21v v L + (B )2v L (C )12v v L - (D )211)
/(1c v v L
-
[ D ]2. 下列几种说法:
(1) 所有惯性系对物理基本规律都是等价的。
(2) 在真空中,光的速率与光的频率、光源的运动状态无关。
(3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。
其中哪些说法是正确的?
(A) 只有(1)、(2)是正确的; (B) 只有(1)、(3)是正确的; (C) 只有(2)、(3)是正确的; (D) 三种说法都是正确的。
[ A ]3. 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t ∆(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为
(A) t c ∆⋅
(B) t v ∆⋅
(C) 2
)/(1c v t c -⋅∆⋅ (D)
2
)/(1c v t c -∆⋅ (c 表示真空中光速)
[ C ]4. 一宇宙飞船相对于地以0.8c ( c 表示真空中光速 )的速度飞行。
一光脉冲从船尾传到船头,飞船上的观察者测得飞船长度为90m ,地球上的观察者测得光脉冲从船上尾发出和到达船头两事件的空间间隔为 (A) m 90 (B) m 54 (C)m 270
(D)m 150
[ A ]5. 在参考系S 中,有两个静止质量都是 0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量0M 的值为
(A) 02m
(B) 20
)(12c
v
m -
(C) 20)(12c
v m -
(D)
2
0)
/(12c v m - ( c 表示真空中光速 )
[ D ]6. 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于 (A) c 1.0 (B) c 5.0 (C) c 75.0 (D) c 85.0 ( c 表示真空中光速, 电子的静止能V e M 5.020=c m )
[ A ]7. 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的多少倍? (A )5 (B )6 (C )3 (D )8
二 填空题
1. 以速度v 相对地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为
____V_____。
2.狭义相对论的两条基本原理中,
相对性原理说的是 _ _____________________________________________. 光速不变原理说的是 _________________ _______________。
3.在S 系中的X 轴上相隔为x ∆处有两只同步的钟A 和B ,读数相同,在S '系的X '的轴上也有一只同样的钟A '。
若S '系相对于S 系的运动速度为v , 沿X 轴方向且当A '与A 相遇时,刚好两钟的读数均为零。
那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是v x /∆;此时在S '系中A '钟的读数是
2
)/(1)/(c v v x -∆ 。
5. 观察者甲以
c 5
4
的速度(c 为真空中光速)相对于观察者乙运动,若甲携带一长度为l 、截面积为S 、质量为m 的棒,这根棒安放在运动方向上,则
(1) 甲测得此棒的密度为 s l m
;
(2) 乙测得此棒的密度为
s l m ⋅925 。
三 计算题
1. 一根直杆在 S ′系中,其静止长度为 0l ,与x ′轴的夹角为θ′,试求它在 S 系 中的长度和它与x 轴的夹角(设 S 和S ′ 系沿x 方向发生相对运动的速度为v)。
解:参见《大学物理学习指导》
2. 观察者甲和乙分别静止于两个惯性参考系K 和K '中,甲测得在同一地点发生的两个事件的时间间隔为4s ,而乙测得这两个事件的时间间隔为5s ,求:
(1) K '相对于K 的运动速度;
(2) 乙测得这两个事件发生的地点的距离。
解:(1)甲测得同一地点发生的两个事件的时间间隔为固有时间:
s 4=∆t 乙测得两事件的时间间隔为观测时间:
s 5='∆t
由钟慢效应t t
'∆=∆-1
γ
,即:5
4
)(12='∆∆=-t t c u
可得K '相对于K 的速度: c u 5
3
=
(2)由洛仑兹变换
)(t u x x -='γ,乙测得两事件的坐标差为
)(t u x x ∆-∆='∆γ
由题意 0=∆x 有:
)
m (1093)5
3(14
6.0)(182
2
⨯-=-=-⨯-
=-∆-
='∆c c c u t u x
即两事件的距离为 )m (1098⨯='∆=x L
3. 一电子以0.99 c (c 为真空中光速)的速率运动。
试求:
(1) 电子的总能量是多少?
(2) 电子的经典力学动能与相对论动能之比是多少?(电子静止质量kg 101.931-⨯=e m ) 解:(1) 由相对论质能公式,电子的总能量为
)
J (1080.5)
99.0(1)103(101.9)/(1132
2
8312
22
2--⨯=-⨯⨯⨯=
-===c v c m c m m c E e e γ
(2) 电子的经典力学动能为22
1v m E e K
=
,相对论动能为22c m mc E e K -=',二者之比为 2
131********
8311004.810
99.41001.4)103(101.9108.5)10399.0(101.921
------⨯=⨯⨯=⨯⨯⨯-⨯⨯⨯⨯⨯⨯='K K E E
4. 设快速运动介子的能量约为MeV 3000=E ,而这种介子在静止时的能量为V e M 1000=E 。
若这种介子的固有寿命是s 10260-⨯=τ,求它运动的距离(真空中光速度-18s m 109979.2⋅⨯=c )。
解:先求出快速运动介子的运动速度,这个寿命乘以0τ即可。