橄榄油中羟基酪醇的测定
- 格式:pdf
- 大小:1.01 MB
- 文档页数:6
油橄榄叶橄榄苦苷酶解制备羟基酪醇的研究概述说明1. 引言1.1 概述油橄榄叶是一种常见的植物资源,具有广泛的应用价值。
其中的苦苷酶在油橄榄叶中扮演着重要角色,具有使羟基酪醇合成的能力。
羟基酪醇作为一种重要的化合物,具有多种生物活性和药理作用。
因此,研究如何利用油橄榄叶中的苦苷酶来制备羟基酪醇具有重要意义。
1.2 文章结构本文将分为五个部分进行讨论。
首先,在引言部分我们将介绍本研究的背景和研究目的。
然后,在第二部分我们将详细探讨油橄榄叶及其苦苷酶解制备羟基酪醇的相关知识。
接下来,在第三部分我们将回顾羟基酪醇的化学性质和生物活性方面的最新研究进展。
在第四部分,我们将详细介绍实验方法,并对结果进行全面的分析与讨论。
最后,在第五部分我们将总结研究结论,并展望未来的研究方向。
1.3 目的本文旨在探究利用油橄榄叶中的苦苷酶解制备羟基酪醇的方法,并对其化学性质和生物活性进行深入研究。
通过实验方法的设计和结果分析,我们将为制备高纯度羟基酪醇提供理论依据和技术支持。
同时,我们也将探讨羟基酪醇在药物领域和其他相关领域的应用前景,并指出当前研究所面临的问题和未来研究的方向。
这些研究成果对于进一步推动油橄榄叶资源开发和羟基酪醇应用具有重要意义。
2. 油橄榄叶及其苦苷酶解制备羟基酪醇:2.1 油橄榄叶的特性和应用:油橄榄叶(botanical name: Olea europaea)是一种常见的果树,也是地中海地区最具代表性的农作物之一。
它具有浓绿色的长而狭窄的叶子,通常被人们用于食用油的生产。
油橄榄叶具有丰富的多酚类物质、苦味物质和其他生物活性成分。
油橄榄叶在医药和保健品行业中得到广泛应用。
其提取物被认为具有抗氧化、抗菌、抗炎、降血压等多种生理活性功效,并且已经被证实对心血管健康十分有益。
此外,油橄榄叶还可以作为天然食品防腐剂和美容产品中重要成分。
2.2 苦苷酶在油橄榄叶中的作用和属性:苦苷酶是一种特殊的酶,在许多植物中都存在。
文章编号:1004-5422(2013)04-0328-04超声辅助磷酸提取油橄榄叶中羟基酪醇工艺研究李春燕,颜军,刘嵬,苟小军(成都大学药食同源植物资源开发四川省高校重点实验室,四川成都610106)摘要:建立HPLC 测定羟基酪醇的方法,通过单因素实验和正交实验优化,以羟基酪醇的含量为考察指标,确定超声辅助磷酸提取羟基酪醇的最佳工艺,研究超声辅助磷酸提取油橄榄叶中羟基酪醇的工艺.实验结果显示:羟基酪醇在3.75 120μg /mL 范围内线性关系良好;超声辅助磷酸提取羟基酪醇的最佳条件为,磷酸浓度为2mol /L ,液料比为40ʒ1(mLʒg ),超声时间为60min ,此条件下羟基酪醇的含量为5.13mg /g.该方法工艺简单,处理量大,可为油橄榄叶中羟基酪醇的提取提供依据.关键词:油橄榄叶;羟基酪醇;磷酸;高效液相色谱法中图分类号:TS201文献标志码:A0引言羟基酪醇,又名3,4-二羟基苯乙醇,最早是从橄榄油中提取得到的酚类化合物[1],天然羟基酪醇主要产自于橄榄树,尤其是其叶子和果实,羟基酪醇主要是以酯化物橄榄苦苷的形式存在于油橄榄叶中.橄榄苦苷的性质不稳定,在酸、碱和酶的作用下易降解为羟基酪醇和榄香酸[2].相关研究表明,羟基酪醇具有抗癌、抗血栓、抗菌、抗病毒等功能,能够预防肿瘤,降低心血管疾病的发病率,并且羟基酪醇具有刺激线粒体的合成和促进脂肪细胞线粒体的功能[3-7].目前,天然羟基酪醇的生产方法主要是从橄榄压榨后的废水和橄榄果汁中提取,但有研究发现,油橄榄叶中的橄榄苦苷和羟基酪醇含量明显高于果实[8].基于此,本研究采用正交试验优化羟基酪醇的提取条件,以羟基酪醇的含量为指标,以磷酸浓度、液料比、提取时间和提取温度为因素,通过超声辅助提取来确定油橄榄叶中羟基酪醇的最佳提取工艺,拟为油橄榄工业化生产提供基础实验依据,为油橄榄叶的综合利用开辟新的途径.1材料、仪器与方法1.1材料实验所用的材料包括:油橄榄叶(四川天源油橄榄有限公司,干燥粉碎),羟基酪醇标准品、甲醇(色谱纯)、磷酸、盐酸、冰乙酸(成都科龙化工有限公司),实验所用溶剂除用作HPLC 测定为色谱纯外,其余均为分析纯.1.2仪器实验所用仪器包括:微型高速万能试样粉碎机(北京中兴伟业仪器有限公司),KQ3200超声波清洗仪(昆山市超声仪器有限公司),L -2000高效液相色谱仪、二极管阵列检测器(日立仪器设备公司),FA10004B 分析天平(上海越平科学仪器有限公司).1.3方法1.3.1羟基酪醇的测定.本研究对羟基酪醇的测定按照文献[9]所建立的HPLC 方法并做适当改进.实验色谱条件为:色谱柱为Akasil C 18(5μm ,4.6mm ˑ250mm ),流动相为12%甲醇—磷酸溶液,检测波长为230nm ,柱温为35ħ,流速为1mL /min ,进样量为80μL.1.3.2羟基酪醇标准品溶液的配制.精密称取羟基酪醇标准品溶液1.20mg ,置于10mL 容量瓶中,用12%甲醇—磷酸溶液溶解并定容,摇匀后,配成浓度为120μg /mL 的溶液.按对半稀释法,依次配制浓度为60μg /mL 、30μg /mL 、15μg /mL 、7.5μg /mL 和3.75μg /mL 的溶液.1.3.3提取剂的选择.精密称取油橄榄叶1g ,共3份,依次将1mol /L的磷酸、盐酸和冰乙酸各30mL 加入三角瓶中与油收稿日期:2013-09-26.作者简介:李春燕(1986—),女,硕士研究生,从事功能性食品与药食同源植物资源开发研究.橄榄叶混合,常温下,超声60min,提取完全后,用0.45μm的微孔滤膜过滤后做HPLC分析.1.3.4羟基酪醇超声提取单因素试验.在实验中,首先对磷酸浓度、液料比、提取时间和提取温度进行单因素试验.其中:磷酸浓度分别为0.1 mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L和4mol/ L;液料比(mLʒg)分别为5ʒ1、10ʒ1、20ʒ1、30ʒ1、40ʒ1和50ʒ1;提取时间分别为10、20、30、40、50、60、80 min;提取温度分别为20、25、30、35、40、45、50ħ.1.3.5羟基酪醇超声提取正交试验.根据单因素试验结果,选取磷酸浓度、液料比和提取时间3个因素,采用L9(33)正交试验,以此优化油橄榄叶中羟基酪醇超声提取的最佳条件.2结果与讨论2.1羟基酪醇标准曲线的绘制将“1.2.2”项下配制的羟基酪醇标准品溶液按浓度由小到大依次进样,每个体积重复进样3次,取其HPLC峰面积的平均值,记录保留时间和峰面积,以HPLC峰面积为纵坐标,羟基酪醇浓度(μg/mL)为横坐标,绘制HPLC标准曲线(见图1),得HPLC 线性回归方程为:y=26829x-66676,r=0.9999.图1羟基酪醇标准曲线2.2提取剂的确定3种酸提取羟基酪醇的HPLC分析测定结果如图2所示.(a)羟基酪醇标准品溶液的HPLC色谱图(b)磷酸提取羟基酪醇的HPLC色谱图(c)盐酸提取羟基酪醇的HPLC色谱图(d)冰乙酸提取羟基酪醇的HPLC色谱图图23种酸提取羟基酪醇的HPLC色谱图由图2可以看出,盐酸和冰乙酸提取羟基酪醇,峰分不开且杂质峰较多,因此本实验选择磷酸来提取羟基酪醇.2.3羟基酪醇超声提取单因素试验2.3.1磷酸浓度对羟基酪醇含量的影响.精密称取已阴干粉碎的油橄榄叶粉末1g,采用0.1mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L和4 mol/L的磷酸溶液进行超声提取,液料比为30ʒ1,常温下超声提取60min,实验结果如图3所示.图3磷酸浓度对羟基酪醇含量的影响·923·第4期李春燕,等:超声辅助磷酸提取油橄榄叶中羟基酪醇工艺研究由图3可知,随着磷酸浓度的增加,羟基酪醇的含量也随着增大,在磷酸浓度为2mol/L时达到最大,故磷酸浓度按2mol/L选取.2.3.2液料比对羟基酪醇含量的影响.磷酸浓度选取2mol/L,其他条件同“2.3.1”项,改变液料比,实验结果如图4所示.图4液料比对羟基酪醇含量的影响由图4可知,随着磷酸用量的增加,羟基酪醇的含量也随着增大,当液料比为40ʒ1时,提取效果最佳,液料比再增加时,羟基酪醇无明显变化,故液料比确定为40ʒ1.2.3.3提取时间对羟基酪醇含量的影响.磷酸浓度选取2mol/L,液料比为40ʒ1,其他条件同“2.3.1”项,改变提取时间,实验结果如图5所示.图5提取时间对羟基酪醇含量的影响由图5可知,随着时间的延长,羟基酪醇的含量也随着增大,提取时间为60min时,羟基酪醇的含量最高,时间继续延长,羟基酪醇含量的变化趋于平缓,故提取时间以60min为宜.2.3.4提取温度对羟基酪醇含量的影响.磷酸浓度选取2mol/L,液料比为40ʒ1,提取时间为60min,其他条件同“2.3.1”项,改变提取温度,实验结果如图6所示.由图6可以看出,温度对磷酸提取羟基酪醇的影响很小,故在常温下提取即可.2.4羟基酪醇超声提取正交试验由于提取温度对羟基酪醇的含量基本没影响,本研究选取磷酸浓度、液料比和提取时间3个因素图6提取温度对羟基酪醇含量的影响进行正交优化,并设计3因素3水平L9(33)正交试验,以羟基酪醇的含量为指标考察提取工艺,试验结果如表1所示.表1正交试验结果表试验号因素磷酸浓度/(mol/L)液料比/mLʒg提取时间/min羟基酪醇含量/(mg/g)1130ʒ150 4.682140ʒ160 5.073150ʒ170 4.964230ʒ160 4.855240ʒ170 5.136250ʒ150 5.097330ʒ170 4.778340ʒ150 5.129350ʒ160 5.04K114.7114.3014.89K215.0715.3214.96K314.9315.0914.86k1 4.90 4.77 4.96k2 5.02 5.11 4.99k3 4.98 5.03 4.95R0.120.340.04由表1数据可以看出,3种因素对羟基酪醇含量的影响大小依次为:液料比>磷酸浓度>提取时间.因此,本研究确定油橄榄叶中羟基酪醇的最佳提取工艺条件为:磷酸浓度为2mol/L,液料比为40ʒ1,提取时间为60min.在此条件下,油橄榄叶提取液中羟基酪醇的含量为5.13mg/g.3结论本研究通过实验确定了提取油橄榄叶中的羟基酪醇用磷酸提取效果最好,单因素试验和正交试验优化确定了最佳提取工艺条件为:磷酸浓度为2 mol/L,液料比为40ʒ1,超声提取60min.在此工艺条件下得到的羟基酪醇含量为5.13mg/g.参考文献:[1]Ilavarasi K,Kiruthiga P V,Karutha S,et al.Hydroxytyrosol,·033·成都大学学报(自然科学版)第32卷the phenolic compound of olive oil protects human PBMC a-gainst oxidative stress and DNA damage mediated by2,3,7,8-TCDD[J].Chemosphere,2011,84(7):888-893.[2]卜文文,刘常金,田仕夫.盐酸法和β-葡萄糖苷酶法水解橄榄叶提取制备羟基酪醇的比较[J].食品工业科技,2011,33(7):228-232.[3]SirianniR,Chimento A,De Luca A,et al.Oleuropein and hydroxytyrosol inhibit MCF-7breast cancer cell proliferation interfering with ERK1/2activation[J].Molecular Nutrition FoodResearch,2010,54(6):833-840.[4]González-Santiago M,Martín-Bautista E,Carrero J J,et al.One-month administration of hydroxytyrosol,a phenolic an-tioxidant present in olive oil,to hyperlipemic rabbits improves blood lipid profile,antioxidant status and reduces atherosclero-sis development[J].Atherosclerosis,2006,188(1):35-42.[5]Romero C,Medina E,Vargas J,et al.In vitro activity of olive oil polyphenols against helicobacter pylori[J].Journal of Agri-cultural and Food Chemistry,2007,55(3):680-686.[6]Yamada K,Ogawa H,Hara A,et al.Mechanism of the antivi-ral effect of hydroxytyrosol on influenza virus appears to involve morphological change of the virus[J].AntiviralResearch,2009,83(1):35-44.[7]Pereira-caro G,MateosR,Saha S,et al.Transepithelial trans-port and metabolism of new lipophilic ether derivalives of hydroxytyrosol by enterocyte-like caco-2/TC7cells[J].Journal of Agricultural and Food Chemistry,2010,58(6):11501-11509.[8]Hao Jiejie,Shen Weili,Yu Guangli,et al.Hydroxytyrosol pro-motes mitochondrial biogenesis and mitochondrial function in 3T3-L1adipocytes[J].Journal of Nutritional Biochemistry,2010,21(7):634-644.[9]王成章,高彩霞,姜成英.油橄榄的化学组成合加工利用[J].林业科技开发,2006,20(2):1-4.[10]叶建中,王成章,陈虹霞,等.油橄榄叶中羟基酪醇的含量变化规律研究[J].林产化学与工业,2011,31(2):69-74.Study on Ultrasound-assisted Phosphoric Acid Extraction Technology of Hydroxytyrosol from Olive LeavesLI Chunyan,YAN Jun,LIU Wei,GOU Xiaojun(The Key Laboratory of Medicinal and Edible PlantsResources Exploitation ofHigher Education Institutes of Sichuan Province,Chengdu University,Chengdu610106,China)Abstract:Optimized by single factor test and orthogonal test,taking the content of hydroxytyrosol as e-valuation index,the experiment was established to determine hydroxytyrosol by HPLC.The experimen-tal results showed that hydroxytyrosol had a good linear relationship with peak area in the range3.75 120μg/mL.When the optimized ultrasonic extraction conditions of hydroxytyrosol were2mol/L phosphoric acid,40ʒ1liquid-solid ratio(mLʒg)and extraction for60min at normal temperature,the hydroxytyrosol content was5.13mg/g.We conclude that the method is simple,and has large ca-pacity,and can provide the basis for extraction of hydroxytyrosol from olive leaves.Key words:olive leaves;hydroxytyrosol;phosphoric acid;HPLC·133·第4期李春燕,等:超声辅助磷酸提取油橄榄叶中羟基酪醇工艺研究。
第31卷第1期2011年2月林 产 化 学 与 工 业Che m istry and Industry of Forest ProductsV o.l 31N o .1Feb .2011油橄榄叶中羟基酪醇含量及提取工艺研究收稿日期:2010-10-11基金项目:中国林科院林业新技术研究所基本科研业务费专项基金(CAFI NT2008C04,CAFI NT2010K05);农业科技成果转化资金项目(2010GB24320626)作者简介:叶建中(1985-),男,江苏泰兴人,研究实习员,从事天然产物化学研究 *通讯作者:王成章,湖北汉川人,研究员,主要从事天然产物研究与利用;E ma i:l w angczl hs @si na .co m 。
Y E Jian z hong叶建中1,2,王成章1,2*,陈虹霞1,董艳鹤1(1.中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点开放性实验室,江苏南京210042;2.中国林业科学研究院林业新技术研究所,北京100091)摘 要: 油橄榄含有橄榄苦苷、黄酮类和羟基酪醇等多酚抗氧化物。
采用ODS ( 4.6mm200mm,5 m )色谱柱,紫外检测波长为230n m,甲醇-0.2%醋酸水溶液6 94(体积比)为流动相,流速1mL /m i n ,建立羟基酪醇的H PLC 分析方法,对不同品种的油橄榄叶进行含量分析。
结果表明:10个品种油橄榄叶中羟基酪醇质量分数范围在0.3%~0.8%之间,小莱星含量最高,配多灵含量最低。
通过单因素和正交试验研究了超声波提取油橄榄叶中羟基酪醇的工艺,1g 油橄榄叶粉末正交试验的优化结果为:功率120W 、90%甲醇提取、料液比1 20(g mL)、时间20m i n 。
采用90%甲醇提取油橄榄叶,提取液经AB -8大孔树脂、硅胶柱层析和HPLC 制备色谱,分离质量分数95%以上的单体,通过M S 、NM R 鉴定该化合物为羟基酪醇。
橄榄树提取物10%羟基酪醇摘要:1.橄榄树提取物简介2.10% 羟基酪醇的提取工艺3.10% 羟基酪醇的主要作用与功效4.10% 羟基酪醇在化妆品和保健品领域的应用5.10% 羟基酪醇的副作用与注意事项正文:橄榄树提取物是一种从橄榄树叶中提取的天然物质,富含多种有益成分,具有很高的营养价值和药用价值。
其中,10% 羟基酪醇是橄榄树提取物中的一种重要成分,具有保湿、抗氧化、抗炎等多种功效。
10% 羟基酪醇的提取工艺主要包括以下几个步骤:首先,从橄榄树叶中提取橄榄树提取物;然后,通过特定的分离技术和纯化工艺,将10% 羟基酪醇从橄榄树提取物中分离出来。
这种提取工艺能够保留10% 羟基酪醇的活性成分,确保其功效得到充分发挥。
10% 羟基酪醇具有多种作用与功效。
首先,它具有良好的保湿作用,能够提高皮肤的水分含量,缓解皮肤干燥、脱皮等问题。
其次,10% 羟基酪醇具有强大的抗氧化能力,能够清除体内的自由基,预防氧化应激反应,保护细胞免受氧化损伤。
此外,10% 羟基酪醇还具有抗炎作用,能够缓解炎症性疾病,如关节炎、肠炎等。
10% 羟基酪醇在化妆品和保健品领域有着广泛的应用。
在化妆品领域,10% 羟基酪醇常被添加到保湿霜、精华液等产品中,以提高产品的保湿、抗氧化和抗炎效果。
在保健品领域,10% 羟基酪醇则常被用于提高免疫力、抗氧化、抗炎等方面的保健品中。
然而,虽然10% 羟基酪醇具有多种功效,但过量使用也可能产生副作用。
例如,过量使用10% 羟基酪醇可能导致皮肤过敏、刺激等不良反应。
因此,在使用10% 羟基酪醇时,应遵循适量、适宜的原则,遵循医生或专业人士的指导。
橄榄油中甾醇组成及总量测定方法的
探讨
橄榄油作为一种优质的食用油,其营养价值和健康益处备受关注。
其中,甾醇是橄榄油中的重要成分之一,具有降低胆固醇、预防心血管疾病等多种生理功能。
因此,对橄榄油中甾醇组成及总量的准确测定显得尤为重要。
目前,常用的橄榄油中甾醇组成及总量的测定方法主要包括气相色谱法、高效液相色谱法、薄层色谱法等。
这些方法各有优缺点,如气相色谱法具有分离效果好、灵敏度高等特点,但需要较高的操作技术和复杂的样品前处理过程;高效液相色谱法则具有操作简便、分析速度快等优点,但对于某些甾醇的分离效果可能不如气相色谱法。
在实际应用中,选择合适的测定方法需要考虑多种因素,如样品的性质、分析目的、实验室条件等。
同时,为了提高测定结果的准确性和可靠性,还需要注意样品的采集、保存和前处理过程,以及仪器的校准和维护等方面。
此外,随着科技的不断进步和分析方法的不断改进,新的测定方法也在不断涌现。
例如,近年来发展起来的质谱联用技术、核磁共振技术等,为橄榄油中甾醇组成及总量的测定提供了更加准确、快速的方法。
总之,橄榄油中甾醇组成及总量的测定方法是一个复杂而重要的研究领域。
通过不断优化和完善测定方法,我们可以更好地了解橄榄油的营养价值和健康益处,为人们的健康饮食提供更加科学的依据。
羟基酪醇营养成分表中含量
羟基酪醇是一种天然存在于橄榄和橄榄油中的多酚类化合物。
然而,具体的羟基酪醇含量可能因不同的产品、来源和提取方法而有所差异。
一般来说,羟基酪醇在橄榄油中的含量相对较低,通常以毫克/千克(mg/kg)或毫克/升(mg/L)来表示。
要确定羟基酪醇在特定产品营养成分表中的具体含量,最好参考该产品的标签或相关的营养信息。
营养成分表通常会提供关于各种成分的含量数据,包括羟基酪醇。
需要注意的是,营养成分表中的数据可能会受到多种因素的影响,例如原材料的质量、加工过程、储存条件等。
此外,不同的检测方法和实验室也可能会导致测量结果的差异。
如果你对特定产品中羟基酪醇的含量有更详细的了解需求,建议查阅相关的科学研究、产品规格说明或咨询专业的营养师或食品科学家。
他们可以提供更准确和具体的信息,以满足你的需求。
同时,记得在选择和使用含有羟基酪醇的产品时,综合考虑其他营养成分和整体饮食的均衡性。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201710262746.3(22)申请日 2017.04.20(71)申请人 中国科学院兰州化学物理研究所地址 730000 甘肃省兰州市城关区天水中路18号申请人 青岛市资源化学与新材料研究中心(72)发明人 邸多隆 刘建飞 火婷 黄新异 (74)专利代理机构 北京科亿知识产权代理事务所(普通合伙) 11350代理人 汤东凤(51)Int.Cl.C07C 37/00(2006.01)C07C 37/70(2006.01)C07C 39/11(2006.01)(54)发明名称一种从油橄榄果水中分离制备羟基酪醇的方法(57)摘要本发明公开了一种从油橄榄果水中分离制备羟基酪醇的方法,利用油橄榄果实在压榨获取橄榄油的同时产生的大量废弃果水作为原料,利用离心、萃取、低温浓缩及干燥等集成技术制备羟基酪醇提取物。
整个生产过程不涉及强酸强碱和高温,也不用化学材料进行富集纯化,确保了羟基酪醇提取物满足食品、保健食品及特殊医学用途食品原料的安全性要求,所得提取物的羟基酪醇纯度为20%~50%,从而满足不同产品的需求。
此方法高效节能、环保便捷、极易工业化,运行成本低。
权利要求书1页 说明书4页CN 106883102 A 2017.06.23C N 106883102A1.一种从油橄榄果水中分离制备羟基酪醇的方法,其特征在于,所述的方法包括如下步骤:1)将油橄榄果水进行固液分离后,获得待分离的果水液体;2)将步骤1)所得的果水液体加入有机溶剂,得混合液Ⅰ;3)搅拌下在步骤2)所得的混合液Ⅰ中加入无机盐,直至无机盐在混合溶液Ⅰ中不再溶解,有固体出现时停止搅拌,静置,得混合溶液Ⅱ;4)分离步骤3)所得的混合溶液Ⅱ的有机相,在温度不超过60℃下浓缩,得浓缩液;5)将步骤4)所得的浓缩液干燥,灭菌,即得羟基酪醇提取物。
LLE-UPLC-FLD法测定橄榄油中羟基酪醇和酪醇的含量王强;王锴;黄梅桂;谢跃杰;邓朝芳;王仲明;熊政委;王波【摘要】建立了液液萃取-超高效液相色谱串联荧光检测器(LLE-UPLC-FLD)快速分离和测定橄榄油中羟基酪醇和酪醇含量的方法.橄榄油样品经乙醇提取后,以0.2%(v/v)甲酸乙腈溶液和0.2% (v/v)甲酸水为流动相,梯度洗脱,采用BEH(50 mm × 1.0 mm,1.7 μm)色谱柱,柱温为35℃,流速为0.15 mL/min,进样量为2.0 μL,使用荧光检测器在激发波长为300 nm,发射波长为350 nm下进行检测,整个分析过程仅需10 min.羟基酪醇和酪醇的检出限(S/N =3)及定量限(S/N =10)分别为0.11,0.13和0.31,0.39 μg/g,2种组分按高、中、低3个浓度水平加标回收率均高于89.52%;在最优条件下,对20批不同产地橄榄油中的羟基酪醇和酪醇进行检测,羟基酪醇和酪醇的含量范围分别在1.28~20.34及1.03~21.22 μg/g之间;该法简便快速,重复性良好,结果准确可靠,可用于橄榄油中酪醇和羟基酪醇含量的测定.%This study was established a method of ultra performance liquid chromatography tandem fluorescence detector with liquid-liquid extraction for the rapid separation and determination of tyrosol and hydroxytyrosol in olive oil.The mobile phase was mixture with 0.2%(v/v)formic acid acetonitrile and 0.2% (v/v)formic acid water at a flow rateof 0.15 mL/min after extracted by ing the BEH(1.0 mm i.d.× 50 mm 1.7 μm)column.The fluorescence detector was detected at the excitation wavelength of 300 nm and the emission wavelength of 350 nm.The whole analysis process is only 10 min.The limit of detection (LOD) and limit of quantification (LOQ) of tyrosol and hydroxytyrosol were0.11,0.13 μg/g and 0.31,0.39 μg/g,respectively.The recovery rate of the 2components at the high,middle and low levels of 3 concentration levels was higher than 89.52%.The determination of tyrosol and hydroxytyrosol in 20 batches of olive oil from different areas were carried out under the optimal conditions.The contents of tyrosol and hydroxytyrosol were range from 1.28~20.34 μg/g and 1.03~21.22 μg/g,respectively.This method is simple,fast and reproducible,and could applicable for determination of tyrosol and hydroxytyrosol in olive oil.【期刊名称】《食品工业科技》【年(卷),期】2018(039)009【总页数】6页(P233-238)【关键词】液液萃取;荧光检测;酪醇;羟基酪醇;橄榄油【作者】王强;王锴;黄梅桂;谢跃杰;邓朝芳;王仲明;熊政委;王波【作者单位】重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;南京林业大学轻工与食品学院,江苏南京210037;重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;重庆第二师范学院生物与化学工程学院,重庆400067;重庆第二师范学院脂质资源与儿童日化品协同创新中心,重庆400067;甘肃出入境检验检疫局检验检疫综合技术中心,甘肃兰州730020【正文语种】中文【中图分类】TS201.2橄榄油是指以油橄榄鲜果为原料制取的油脂(不包含溶剂浸提或重酯化过程获得的油脂),并且不得掺杂其他种类的油脂[1-3]。
Analysis of Total Contents of Hydroxytyrosol and Tyrosol in Olive OilsConcepcio n Romero and Manuel Brenes *Food Biotechnology Department,Instituto de la Grasa (IG-CSIC),Avenida Padre García Tejero 4,41012Seville,Spain Olive oil has been consumed in the Mediterranean basin for centuries because of its organoleptic and nutritive properties,and many international regulations have been developed to maintain the quality of this commodity and to avoid commercial frauds.1Nowadays,consumers all over the world appreciate this healthy fat due to its high content of monounsaturated fatty acids and other minor components such as squalene,tocopherols,sterols,and,particularly,phenolic compounds.2,3Among others,olive oil polyphenols have been attributed free radical scavenging,anticarcinogenic,cardiopreventive,and antimicrobial properties.2In 2011,the NDA Panel of the European Food Safety Authority (EFSA)concluded that there is evidence of a cause and e ffect relationship between the consumption of olive oil polyphenols and the protection of low-density lipoprotein (LDL)chlolesterol particles from oxidative damage,4and recently the European Commission has authorized this claim in May 2012,although it “may be used only for olive oil which contains at least 5mg of hydroxytyrosol and its derivatives (e.g.oleuropein complex and tyrosol)per 20g of olive oil ”.Despite the huge number of papers published on olive oil polyphenols,there is no international regulation for the analysis of these substances.There are several reasons for the lack of a robust and reliable method for quantifying phenolic com-pounds in olive oil.First,the extraction methodology must be exhaustive.It has been reported that liquid −liquid extraction gives rise to higher recovery of phenolic compounds than solid-phase extraction,5,6although it also depends on the solvent used.For example,N ,N -dimethylformamide (DFM)achieves better recoveries of polyphenols than methanol/water mixtures.7The phenolic fraction of olive oil consists of a heterogeneous mixture of compounds,with the most abundant being the oleuropein and ligustroside aglycons (HyEA and TyEA),the dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol and tyrosol (HyEDA and TyEDA),the lignanslated,hydroxytyrosol,tyrosol,luteolin,apigenin,and other minor substances.8,9There are two drawbacks to quantifying these substances in olive oils,particularly the secoiridoid aglycons:(i)there are no commercial standards available regarding these polyphenols,and (ii)peaks in the HPLC and GC chromatograms are not well-de fined.Researchers have isolated these secoiridoid aglycons by semipreparative HPLC,but they are unstable and di fficult to obtain in their pure form in large amounts.10−12An alternative to the lack of standards has been the quanti fication of all peaks with only one commercial compound such as tyrosol,3,4-dihydroxyphene-thylacetic acid,oleuropein,or others.13−15This alternative has been proposed by the International Olive Council.16However,olive oil polyphenols have di fferent responses under UV detection after their HPLC separation.In fact,the response factors of tyrosol and hydroxtyrosol at 280nm are di fferent.17Another drawback is related to the resolution of the peaks,particularly in HPLC chromatograms.Peaks overlap on many occasions,and the resolution of those corresponding to secoiridoid aglycons is not good.These compounds,for example,the dialdehydic forms,show broad peaks in HPLC-DAD and HPLC-MS chromatograms,which have been attributed to the formation of isomeric forms that limit their quanti fication.8,12,18In addition,during heating and storage of the oil these secoiridoid aglycons originate oxidized products that coelute with nonoxidized products and possess di fferent response factors under UV detection.14,19−21Most of the biochemical and pharmacological e ffects of olive polyphenols have been attributed to hydroxytyrosol and,to a lesser extent,to tyrosol.Both substances are absorbed in the intestine and can be detected in urine,plasma,and LDLReceived:June 20,2012Revised:August 27,2012Accepted:August 27,2012Published:August 27,2012particles.22−24However,the analysis of their total content in olive oils fails to provide reliable data because of the unreliable quantification of secoiridoid aglycons.In fact,the NDA Panel of the EFSA makes mention of“5mg of hydroxtyrosol and its derivatives(e.g.oleuropein complex and tyrosol)”,which is rather confusing.The aim of this study was to optimize a simple and reliable method for analyzing the total contents of hydroxytyrosol and tyrosol in olive oils regardless of whether they are free orcombined.■MATERIALS AND METHODSReagents.Hydroxytyrosol,tyrosol,hydroxytyrosol glycol,and syringic acid were purchased from Sigma-Aldrich(St.Louis,MO, USA).Analytical grade methanol,DMF,hexane,phosphoric acid,and hydrochloric acid were supplied by Panreac(Barcelona,Spain). Ultrapure water from a Mili-Q system(Millipore,Bedford,MA,USA) was used throughout this research.Standard Solutions.Stock standard solutions of5000mg/L of hydroxytyrosol and tyrosol were prepared by dissolving these substances in a mixture of methanol/water.Calibration samples were prepared in the range of5−250mg/L by dilution in the same matrix.Olive Oil Samples.Olive oils were purchased from supermarkets located in the Seville province(Spain).Extra virgin olive oils of the Arbequina,Picual,Hojiblanca,Manzanilla,and undefined olive variety of six different commercial brands were d-flavored olive oils and intenselyflavored olive oils of6six different commercial brands were also studied.These are a mixture of refined olive oil and virgin olive oil.Analysis of Phenolic Compounds in Olive Oil.Phenolic extracts of olive oils were obtained following the procedure described elsewhere.7Briefly,0.6g of olive oil was extracted using3×0.6mL of DMF;the extract was then washed with hexane,and N2was bubbled into the DMF extract to eliminate residual hexane.Finally,the extract wasfiltered through a0.22μm pore size and injected into thechromatograph.The chromatographic system consisted of a Waters717plus autosampler,a Waters600E pump,and a Waters heater module (Waters Inc.,Milford,MA,USA).A Spherisorb ODS-2(5μm,25cm ×4.6mm i.d.,Waters Inc.)column was used.Separation was achieved using an elution gradient with an initial composition of90%water(pH adjusted to 3.0with phosphoric acid)and10%methanol.The concentration of the later solvent was increased to30%over10min and maintained for20min.Subsequently,the methanol percentage was raised to40%over10min,maintained for5min,and then increased to50%.Finally,the methanol percentage was increased to 60,70,and100%in5min periods.Initial conditions were reached in 15min.Aflow of1mL/min and a temperature of35°C were used in all of the experiments.A Waters996diode array detector and a Jasco FP-920fluorescence detector(Jasco,Tokyo,Japan)were connected in series.Most of the phenolic compounds used for standards were obtained by semipreparative HPLC as described elsewhere.7 Assays for the Extraction and Hydrolysis of Olive Oil Polyphenols.Olive oil(2.5−25g)and2M HCl(25−50mL) were put into a100mL glass bottle that was closed with a polypropylene cap.The mixture was vigorously homogenized by agitation at400rpm in an orbital shaking incubator model WY-200 (Comecta,S.A.,Barcelona,Spain).Experiments were run at25°C. Finally,1−2mL of the aqueous phase was removed by a plastic pipet,filtered through a0.22μm pore size,and injected into the chromatograph.The chromatographic system and conditions were the same as noted above,except the gradient program of solvents thatwas modified,the washing period starting at20min from injection.■RESULTS AND DISCUSSIONFigure1shows a representative HPLC chromatogram of olive oil polyphenols monitored by ultraviolet(UV)andfluorescence detection(FL).Phenethyl alcohols,hydroxytyrosol and tyrosol, exhibited sharp peaks in both UV and FL detection,although the heights of their peaks were much higher with the latter technology.Precisely,FL detection is recommended for lignans,hydroxytyrosol acetate,and hydroxytyrosol glycol analysis.25Oleuropein and ligustroside aglycons(HyEA and TyEA)can also be detected with FL detection,although broad peaks are currently formed.Peak splitting was observed for these substances in both UV and FL detection due to isomeric forms.On the contrary,poor resolution of the peaks corresponding to the dialdehydic forms of decarboxymethyl elenolic acid linked to hydroxytyrosol(HyEDA)and tyrosol (TyEDA)was obtained usingfluorometric evaluation;there-fore,UV detection was required.26However,the peaks of lignans and TyEDA were not well-defined using UV detection. Again,the presence of isoforms of TyEDA and particularly HyEDA made the analysis of these substances difficult.4,26 Consequently,we explored the analysis of the total contents of hydroxytyrosol and tyrosol in the oils using acid hydrolysis. This methodology has been proposed for the analysis of ellagic acid in berries and strawberries27,28andflavonoids in foods.29 With regard to olive oil polyphenols,Miro-Casas et al.30used acid hydrolysis to quantify hydroxytyrosol and tyrosol in virgin olive oil,but after extraction of polyphenols from the oil with a mixture of methanol/water.A strong acid hydrolysis has also been reported to release hydroxytyrosol from olive leaves.31A treatment with HCl of olive oils was used to test the exhaustiveness of the solvent extraction of olive oil poly-phenols.7Therefore,we studied the acid hydrolysis ofaglycons Figure1.HPLC chromatogram of phenolic compounds isolated from an extra virgin olive oil of the Picual variety.They were monitored by ultraviolet(UV)andfluorescence(FL)detection.Peaks:(1) hydroxytyrosol glycol;(2)hydroxytyrosol;(3)tyrosol;(4)hydrox-ytyrosol acetate;(IS)internal standard,syringic acid;(5)dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol;(6) dialdehydic form of decarboxymethyl elenolic acid linked to tyrosol;(7)1-acetoxypinoresinol;(8)pinoresinol;(9)oleuropein aglycon;(10)ligustroside aglycon.with 2M HCl.Figure 2displays a chromatogram of the phenolic compounds present in the acidic phase of a mixtureoil/HCl maintained at 25°C for 6h.Hydroxytyrosol and tyrosol were the main polyphenols detected at 280nm together with a small peak corresponding to hydroxytyrosol glycol.No other phenolic compound was observed in the chromatogram.It must be said that the acidic solution was directly injected into the chromatograph without any previous treatment except filtration through a 0.22μm nylon filter,and no interference peaks appeared at the retention times of hydroxytyrosol or tyrosol.Two phenomena occurred during the contact of oil with 2M HCl:(i)the acid hydrolysis of the secoiridoid aglycons and (ii)the di ffusion of phenethyl alcohols from the oily to the aqueous phase.The hydrolysis of secoiridoid aglycons was very fast (Figure 3),and their concentration was reduced almost completely during the first 2h of treatment.Moreover,hydroxytyrosol acetate was rapidly hydrolyzed.At the same time,the di ffusion of hydroxytyrosol and tyrosol to the acidic phase was fast,although it depended to a large extent on the ratio of grams of oil per milliliters of acidic solution (Figure 4).This was a crucial point to optimize the methodology.It was observed that at least a ratio of 1:10(2.5g of oil and 25mL of 2M HCl solution)was necessary to reach high concentrations of hydroxytyrosol and tyrosol in the acidic phase.Finally,a ratio of 1:20(2.5g of oil and 50mL 2M HCl)was chosen as appropriate to evaluate the e ffect of agitation time on the exhaustiveness of the method.It can be deduced from the data re flected in Figure 5that 4−6h was necessary to complete the hydrolysis of secoiridoid aglycons and the di ffusion of phenethyl alcohols from the oil to the acidic solution.It must also be noted that assays were run at 25°C and under intensive agitation (400rpm)of the mixture.With the aim of evaluating the recovery of the method,2.5g of three virgin olive oils was mixed with 50mL of 2M HCl,and the mixture was thoroughly agitated for 6h.The contents of hydroxytyrosol and tyrosol of the aqueous phase were analyzed,and subsequently 1g of the extracted oil was again put into contact with 1mL of 2M HCl for another 2h.The results of this assay are presented in Table 1.It can be observed that a very high recovery of hydroxytyrosol and tyrosol from oils was achieved and that the amount of these substances remaining in the first extracted oil was below 1%.Hence,<1or 2mg/kg of hydroxytyrosol and tyrosol,respectively,was not extracted fromthe oils.The slightly lower recovery found for tyrosol must be related to its lower polarity relative to that ofhydroxytyrosol.Figure 2.HPLC chromatogram of phenolic compounds obtained from extra virgin olive oil treated with 2M HCl.They were monitored by UV detection at 280nm.Peaks:(1)hydroxytyrosol glycol;(2)hydroxytyrosol;(3)tyrosol.Figure 3.Evolution of the main phenolic compounds in an extra virgin olive oil (2.5g)during its contact with 2M HCl (50mL).HyEDA,didaldehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol;TyEDA,dialdehydic form of decarboxymethyl elenolic acid linked to tyrosol;HyEA,oleuropein aglycon;TyEA,ligustroside aglycon;HyAC,acetylatedhydroxytyrosol.Figure 4.E ffect of the ratio of grams of oil to milliliters of 2M HCl on the estimated concentration of hydroxytyrosol and tyrosol in an extra virgin olive oil.Error bars indicate standard deviation.Validation of the quantitative analytical method for simultaneous total hydroxytyrosol and tyrosol determination in olive oil followed Horwitz ’s recommendations.32With regard to sensitivity of the method,the limit of detection (LOD)and the limit of quanti fication (LOQ)were calculated by measuring the analytical background response at 280nm.LOD and LOQ were considered to be 3and 10times,respectively,the standard deviation of six blank samples analyzed.Table 2shows that the LOD was <0.5mg/L for both hydroxytyrosol and tyrosol,whereas the LOQs were 0.8and 1.4mg/L for hydroxytyrosol and tyrosol,respectively.It must be noted that these limits can be lower when using fluorescence detection if necessary.Method precision was studied as intra-and interday assays (n =5)for each compound.The intraday precision of the procedure was determined by analyzing replicates (n =5)of two olive oil extracts,and interday precision by analyzing these two olive extracts on five di fferent days.Precision was calculated as relative standard deviation (RSD).Table 2shows that intraday and interday precisions expressed as RSD %for both compounds,hydroxytyrosol and tyrosol,were <3%,which is an acceptable level.Brie fly,the optimized method consists of agitating a mixture of oil (2.5g)and 2M HCl (50mL)for 4−6h at 25°C.Subsequently,the contents of hydroxytyrosol and tyrosol of the acidic phase are directly analyzed by HPLC and expressed as milligrams of polyphenol per kilogram of oil.The recently authorized claim by the European Commission has established that “20g of oil must contain at least 5mg of hydroxytyrosol and its derivatives ”,which means a minimum content of 250mg/kg oil in these substances.Supposedly,these substances must account for free hydroxytyrosol and tyrosol as well as their derivatives HyEDA,TyEDA,HyEA,and TyEA.4However,as mentioned above,the analysis of these substances presents some drawbacks,particularly the lack of commercial standards,formation of oxidized forms during oil storage,and appearance of broad peaks in HPLC chromatograms.In addition,secoiridoid aglycons are hydrolyzed during oil storage,giving rise to simple hydroxytyrosol and tyrosol.14,34,35Taking into consideration the molecular weight ratio between these phenethyl alcohols and their derivatives (1:2−2.5),a great decrease in total polyphenol concentration will be quanti fied in oils during their commercial shelf life.The molecular weights of hydroxytyrosol and tyrosol are 154and 138uma,respectively,whereas those of the secoiridoid aglycons range between 304and 378uma.The optimized procedure was applied to the determination of total hydroxytyrosol and tyrosol levels in several types of commercial olive oils,and results are re flected in Figures 6and7.Among the oils analyzed,the mild-flavored and intensely flavored olive oils had the lowest contents in both hydroxytyrosol and tyrosol,which is in agreement with the low content in total polyphenols reported for these oils.33In fact,commercial olive oil is a mixture of re fined olive oil with virgin olive oil,and the results obtained in this study point out that the percentage of virgin olive oil in the mixture is low,probably because of the low content in phenethyl alcohols.With regard to extra virgin olive oils,the content in hydroxytyrosol ranged from 50to 200mg/kg oil.A great variability was found among olive varieties and within each monovarietal oil.Similar findings were obtained from the tyrosol analyses (Figure 7),with the content of this polyphenols in virgin olive oils ranging from 40to 180mg/kg oil.Therefore,the concentration of total hydroxytyrosol and tyrosol in virgin olive oils ranged from 100to 400mg/kg oil.Taking these data into consideration,the total amountofFigure 5.E ffect of time of agitation on the estimated concentration of hydroxytyrosol and tyrosol in an extra virgin olive oil.A ratio of 2.5g of oil to 50mL of 2M HCl was used.Di fferent letters on the bars indicate signi ficant di fferences according to a Duncan ’s multiple-range test (P <0.05).Table 1.Assessment of the Contents of TotalHydroxytyrosol and Tyrosol of Three Extra Virgin Olive Oils by Analyzing First the Acidic Phase of a Mixture of Oil (2.5g)and 2M HCl (50mL)Agitated for 6h andSubsequently the Acidic Phase of a New Mixture of Treated Oil (1g)and 2M HCl (1mL)Agitated for 2hB 201.10.6162.4 1.1C63.30.1106.90.7Table 2.Sensitivity and Precision of the Methodtyrosol0.41.41.4−3.21.3−2.3aDetermined by analyzing two di fferent olive oil extracts with low and high concentrations of hydroxytyrosol andtyrosol.Figure 6.Concentration of total hydroxytyrosol of several types of commercial olive oils.Mean and standard deviation (error bars)of six analyses.hydroxytyrosol and tyrosol required in 20g of oil should be as low as 2−2.5mg because of the di fferences between the molecular weights of these phenethyl alcohols and their derivatives.In conclusion,a simple,robust,and reliable method has been optimized to measure total hydroxytyrosol and tyrosol in olive oil.It will be useful for studies on the bioavailability of these substances in humans and the nutritional quanti fication of these polyphenols in olive oils.■AUTHOR INFORMATIONCorresponding Author*Phone:+34954690850.Fax:+34954691262.E-mail:brenes@cica.es.FundingThis work was supported by project AGL-2009-07512.NotesThe authors declare no competing financial interest.■REFERENCES(1)European Community Regulation EU no.61/2011on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis.(2)Frankel,E.N.Nutritional and biological properties of extra virgin olive oil.J.Agric.Food Chem.2011,59,785−792.(3)Visoli,F.;Bernardini,E.Extra virgin olive oil's polyphenols:biological activities.Curr.Pharm.Design 2011,17,786−804.(4)EFSA (European Food Safety Authority)Panel on Dietetic Products,Nutrition and Allergies (NDA).EFSA J.2011,9,2033.(5)Bendini,A.;Bonoli,M.;Cerretani,L.;Biguzzi,B.;Lercker,G.;Toshi,T.G.Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods.J.Agric.Food Chem.2003,985,425−433.(6)Hrncirik,K.;Fritsche,paratibility and reliability of different techniques for the determination of phenolic compounds in virgin olive oil.Eur.Lipid Sci.Technol.2004,106,540−549.(7)Brenes,M.;García, A.;García,P.;Garrido, A.Rapid and complete extraction of phenols from olive oil and determination by means of a coulometric electrode array system.J.Agric.Food Chem.2000,48,5178−5183.(8)Montedoro,G.F.;Servili,M.;Baldioli,M.;Selvaggini,R.;Miniati,E.;Macchioni,A.Simple and hydrolyzable compounds in virgin olive oil.3.Spectroscopic characterizations of the secoiridoid derivatives.J.Agric.Food Chem.1993,41,2228−2234.(9)Brenes,M.;Hidalgo,F.J.;García,A.;Rios,J.J.;García,P.;Zamora,R.;Garrido,A.Pinoresinol and 1-acetoxypinoresinol two new phenolic compounds identified in olive oil.J.Am.Oil Chem.Soc.2000,77,715−720.(10)Montedoro,G.F.;Servili,M.;Baldioli,M.;Miniati,E.Simple and hydrolyzable phenolic compounds in virgin olive oil.1.Their extraction,separation,and quantitive and semiquantitave evaluation.J.Agric.Food Chem.1992,40,1571−1576.(11)Brenes,M.;García,A.;García,P.;Rios,J.J.;Garrido,A.Phenolic compounds in Spanish olive oils.J.Agric.Food Chem.1999,47,3535−3540.(12)Sua r ez,M.;Macia ,A.;Romero,M.P.;Motilva,M.J.Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil.J.Chromatogr.,A 2008,1214,90−99.(13)Bonoli-Carbognin,M.;Cerretanni,L.;Bendini,A.;Almajano,M.P.;Gordon,M.H.Bovine serum albumin produces a synergistic increase in the antioxidant activity of virgin olive oil phenol compounds in oil-in-water emulsions.J.Agric.Food Chem.2008,56,7076−7081.(14)Daskalaki, D.;Kefi,G.;Fotsiou,K.;Tasioula-Margari,M.Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating.J.Food Nutr.Res.2009,48,31−41.(15)Bucelli,P.;Costantini,E.A.C.;Barbetti,R.;Franchini,E.Soil water availability in rainfed cultivation affects more than cultivar some nutraceutical components and the sensory profile of virgin olive oil.J.Agric.Food Chem.2011,59,8304−8313.(16)International Olive Council (IOC).Determination of biophenols in olive oil by HPLC.COI/T.20/Doc.no.29,November 2009.(17)Romero,C.;Brenes,M.;García,P.;Garrido,A.Hydroxytyrosol-4-β-D -glucoside,an important phenolic compound in olive fruits and derived products.J.Agric.Food Chem.2002,50,3835−3839.(18)Di Donna,L.;Benabdelkamel,H.;Mazzotti,F.;Napoli,A.;Nardi,M.;Sindona,G.High-throughput assay of oleopentanedialde-hydes in extra virgin olive oil by the UHPLC-ESI MS/MS and isotope dilution methods.Anal.Chem.2011,83,1990−1995.(19)Brenes,M.;García,A.;Dobarganes,M.C.;Velasco,J.;Romero,C.Influence of termal treatments simulating cooking processes on the polyphenol content in virgin olive oil.J.Agric.Food Chem.2002,50,5962−5967.(20)Rovellini,P.;Cortesi,N.Liquid chromatography-mass spectrometry in the study of oleuropein and ligustroside aglycons in virgin olive oil:aldehydic,dialdehydic forms and their oxidized products.Riv.Ital.Sostanze Grasse 2002,79,1−14.(21)Carrasco-Pancorbo, A.;Cerretani,L.;Bendini, A.;Segura-Carretero,A.;Lercker,G.;Ferna n dez-Gutie r rez,A.Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils.J.Agric.Food Chem.2007,55,4771−4780.(22)Bonanome,A.;Pagnan,A.;Caruso,D.;Toia,A.;Xamin,A.;Fedeli,E.;Berra,B.;Zamburlini,A.;Ursini,F.;Galli,G.Evidence of postprandial absorption of olive oil phenols in humans.Nutr.Metab.Cardiovasc.Dis.2000,10,111−120.(23)Vissers,M.N.;Zock,P.L.;Roodengurb,A.J.C.;Leenen,R.;Katan,M.B.Olive oil phenols are absorbed in humans.J.Nutr.2002,132,409−417.(24)Covas,M.I.;Nyyssonen,K.;Poulsen,H.E.;Kaikkonen,J.;Zunft,H.J.;Kiesewetter,H.;Gaddi,A.;de la Torre,R.;Mursu,J.;Baumler,H.;Nascetti,S.;Salonen,J.T.;Fito,M.;Virtanen,J.;Marrugat,J.;Group,E.S.The effect of polyphenols in olive oil on heart disease risk factors:a randomized trial.Ann.Intern.Med.2006,145,333−341.(25)Brenes,M.;García,A.;Ríos,J.J.;García,P.;Garrido,e of 1-acetoxypinoresinol to authenticate Picual olive oils.Int.J.Food Sci.Technol.2002,37,615−625.(26)Selvaggini,R.;Servili,M.;Urbani,S.;Esposto,S.;Taticchi,A.;Montedoro,G.F.Evaluation of phenolic compounds in virgin olive oil by direct injection in high-performance liquid chromatography with fluorometric detection.J.Agric.Food Chem.2006,54,2832−2838.(27)Ha k kinen,S.H.;Ka renlampi,S.O.;Mykka n en,H.M.;Heinonen,M.;To r ro n en, A.R.Ellagic acid content inberries:Figure 7.Concentration of total tyrosol of several types of commercial olive oils.Mean and standard deviation (error bars)of six analyses.influence of domestic processing and storage.Eur.Food Res.Technol. 2000,212,75−80.(28)Cerda,B.;Toma s-Barbera n,F.A.;Espín,J.C.Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries,walnuts,and oak-aged wine in humans:identification of biomarkers and individual variability.J.Agric.Food Chem.2005,53, 227−235.(29)Nuutila,A.M.;Kammiovirta,K.;Oksman-Caldentey,K.M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis.Food Chem.2002, 76,519−525.(30)Miro-Casas,E.;Covas,M.I.;Fito,M.;Farre-Albadalejo,M.; Marrugat,J.;de la Torre,R.Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans.Eur.J. Clin.Nutr.2003,57,186−190.(31)De Leonardis,A.;Aretini,A.;Alfano,G.;Macciola,V.;Ranalli,G.Isolation of hydroxytyrosol-rich extract from olive leaves(Olea europaea L.)and evaluation of its antioxidant properties and bioactivity.Eur.Food Res.Technol.2008,226,653−659.(32)Horwitz,W.Evaluation of analytical methods used for regulation of foods and drugs.Anal.Chem.1982,54,67−76. (33)García,A.;Brenes,M.;García,P.;Romero,C.;Garrido,A. Phenolic content in commercial olive oils.Eur.Food Res.Technol. 2003,216,520−525.(34)Brenes,M.;García,A.;García,P.;Garrido,A.Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil.J.Agric.Food Chem.2001,49,5609−5614.(35)Go m ez-Alonso,S.;Mancebo-Campos,V.;Salvador,M.D.; Fregapane,G.Evolution of major and minor components and oxidation indices of virgin olive oil during21months storage at room temperature.Food Chem.2007,100,36−42.。