南京市南京市第九中学九年级数学上册第二单元《二次函数》检测(有答案解析)
- 格式:doc
- 大小:1.39 MB
- 文档页数:23
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .不能确定 2.将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+B .()212y x =-- C .()212y x =++ D .()=+-2y x 12 3.如图等边ABC 的边长为4cm ,点P ,点Q 同时从点A 出发点,Q 沿AC 以1cm/s 的速度向点C 运动,点P 沿A B C --以2cm/s 的速度也向点C 运动,直到到达点C 时停止运动,若APQ 的面积为()2cmS ,点Q 的运动时间为()s t ,则下列最能反映S 与t 之间大致图象是( ).A .B .C .D .4.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .5.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .126.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位7.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定 8.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( )A .当n <0时,m <0B .当n >0时,m >x 2C .当n <0时,x 1<m <x 2D .当n >0时,m <x 19.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.10.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( )A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<< 11.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -< 12.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---二、填空题13.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a -,则A ∠=______︒. 14.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.15.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x 3-1- 0 1 3 y 552 152 72 72 31216.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.17.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.18.如图,抛物线2y x 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.19.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)20.抛物线y =x²-x 的顶点坐标是________三、解答题21.某超市进了一款新型玩具,预计平均每天售出20个,每个玩具盈利25元.为了增加盈利,超市老板决定采取降价措施.销售价格每降低1元,超市平均每天多售出2个玩具.(1)若超市卖玩具平均每天盈利600元,每个玩具售价应降低多少元?(2)若使超市卖玩具平均每天的盈利最多,每个玩具售价应降低多少元?22.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?24.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?25.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________;(2)小明此次投掷的成绩是多少米?26.如图,在平面直角坐标系xOy 中,一次函数y x m =-+的图象过点()1,3A ,且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系.【详解】解:∵抛物线过A (-3,0)、O (1,0)两点,∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小,即y 1>y 2.故选:A .【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.2.C解析:C【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:将抛物线2y x 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++.故答案为:C .【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键. 3.D解析:D【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时, 21133sin 222S AQ AP A t t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,1133sin 2(6)(6)22S AQ PC C t t t =⨯⨯=⨯⨯-=-, 图象为开口向下的抛物线,故选:D .【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.4.C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.5.C解析:C【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可.【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==, ∵抛物线与x 轴只有一个交点,故顶点为(,0)m , 2()y x m ∴=-.当3x m =+时,239y ==.故答案为C .【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.6.C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C .【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.B【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【详解】解:∵二次函数y=x2-4x+5的图象的对称轴是x=2,在对称轴的右面y随x的增大而增大,∵点P(3,y1)、Q(4,y2)是二次函数y=x2-4x+5的图象上两点,2<3<4,∴y1<y2.故选:B.【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键8.C解析:C【分析】首先根据a判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论.【详解】解:∵a>0,∴开口向上,以对称轴在y轴左侧为例可以画图二次函数y=ax2+bx+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,无法确定x1与x2的正负情况,∴当n<0时,x1<m<x2,但m的正负无法确定,故A错误,C正确;当n>0时,m<x1或m>x2,故B,D错误,均不完整故选:C.【点睛】本题主要考查二次函数图象与x轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.9.B解析:B解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断. 10.C解析:C【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9, 0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C .【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.11.C解析:C【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.【详解】A 、观察图象,二次函数的开口向下,∴0a <,与y 轴的交点在x 轴上方,∴0c >,又∵对称轴为2b x a =-,在x 轴的正半轴上, 故02b x a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确; C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确. 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键. 12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线25y x =-的图象向右平移1个单位所得函数图象的关系式是:()251y x =--; 由“上加下减”的原则可知,抛物线()251y x =--的图象向上平移3个单位长度所得函数图象的关系式是()2513y x =--+.故选:B .【点睛】本题考查了二次函数的图象平移,熟知函数图象平移的法则是解答此题的关键. 二、填空题13.75【分析】根据二次函数的性质当时y 有最小值为由此得到=整理得a=b 从而将问题转化为等腰三角形底角计算问题【详解】∵ab 是的边∴a+b >0;∴有最小值且当x=时取得最小值y=根据题意得=整理得a=b解析:75【分析】 根据二次函数的性质,当1x 2=-时,y 有最小值为534a b -+,由此得到534a b -+=2a -,整理得a=b ,从而将问题转化为等腰三角形底角计算问题. 【详解】∵a ,b 是ABC 的边,∴a+b >0;∴2()()()y a b x a b x a b =+++--有最小值,且当x=()12()2a b a b +-=-+时,取得最小值, y=534a b -+,根据题意,得534a b -+=2a -, 整理,得a=b , ∴ABC 是等腰三角形,∵30C ∠=︒, ∴180180307522C A -∠-∠===︒, ∴∠A 的度数为75︒,故填75.【点睛】 本题考查了二次函数的最小值,等腰三角形的判定和性质,灵活利用二次函数的最小值构造等式是解题的关键.14.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.15.【分析】先根据和的函数值相同可得二次函数的对称轴为从而可得再根据时的函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c , 2a c , 152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键. 16.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确 解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.【点睛】本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.17.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,进而可得抛物线的对称轴,则可求出此时点D 的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A ,B 的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),可得:当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,∴抛物线的对称轴为:直线1x =,∵点()3,0C -,∴点D 的坐标为()5,0,∵顶点在线段AB 上移动,∴点D 的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键. 18.【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿进行平移不妨设由题意可得:∵讨论时的运动路程∴将代入则有即讨论时y 值的变化当时的最小值为∴当时y 随x 增大而减小时∴y 从9运动至路程 解析:172【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿y x =进行平移,不妨设()2y x a a =-+,由题意可得:04a ≤≤,∵讨论3x =时的运动路程,∴将3x =代入则有()22359y a a a a =-+=-+,即讨论04a ≤≤时,y 值的变化, 当52a =时,y 的最小值为114, ∴当50<2a ≤时,y 随x 增大而减小,0a =时,9y =, ∴y 从9运动至114,路程为1125944-=, 当542a ≤≤时,y 随x 的增大而增大,4a =时,5y =, y 从114运动至4,路程为119544-=, ∴总路程为25934174442+==; 故答案是:172. 【点睛】 本题主要考查了二次函数图象平移的应用,准确分析计算是解题的关键.19.①③【分析】由抛物线的开口方向判断的符号由抛物线与轴的交点判断的符号然后根据对称轴抛物线的增减性进行推理进而对所得结论进行判断【详解】解:①图象开口向上与轴交于负半轴能得到:故①正确;②对称轴为直线解析:①③【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴、抛物线的增减性进行推理,进而对所得结论进行判断.【详解】解:①图象开口向上,与y 轴交于负半轴,能得到:0a >,0c <,0ac ∴<,故①正确; ②对称轴为直线1x =,12b a∴-=, 2b a ∴=-,20b a ∴+=,故②错误;③由图象可知,当1x =-时,0y a b c =-+=,故③正确;④由图象可知,在对称轴的右侧,从左往右图象逐渐上升,所以当1x >时,y 随x 的增大而增大,故④错误.故答案为:①③.【点睛】主要考查二次函数的图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键. 20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元;(2)若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元【分析】(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元,根据题意列出方程()()20225600x x +-=,求解即可;(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元,则()()20225y x x =+-,利用二次函数的性质即可求解.【详解】解:(1)设若超市卖玩具平均每天盈利600元,每个玩具应降低x 元根据题意得,()()20225600x x +-=解这个方程得,1x 5=,210x =答:若超市卖玩具平均每天盈利600元,每个玩具应降低5元或10元(2)设超市卖玩具平均每天盈利y 元,每个玩具售价降低x 元根据题意得,()()20225y x x =+-∴()227.5612.5y x =--+ ∵20-<∴若使超市卖玩具平均每天盈利最多,每个玩具售价应降低7.5元.【点睛】本题考查一元二次方程的实际应用、二次函数的应用,理解题意并列出方程是解题的关键.22.(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23.(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.24.(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.25.(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】(1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭ 得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键26.(1)4m =,B 的坐标为()4,0;(2)14x <<.【分析】(1)将点A 的坐标代入解析式即可求得m 的值,然后令y=0,求得x 的值即为B 点的横坐标;(2)先根据A 、B 两点的坐标求出二次函数的解析式,再画出函数图像,最后直接写出解集即可.【详解】解:(1)∵y x m =-+的图象过点()1,3A , ∴31m =-+, ∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0;(2)∵二次函数2y ax bx =+图象过A ,B 两点∴23=a+b 0=44a b ⎧⎨+⎩ ,解得:=-14a b ⎧⎨=⎩画出函数图像如图:由函数图像可得不等式2ax bx x m +>-+的解集为:14x <<.【点睛】本题考查了一次函数图像的性质、求二次函数的解析式及利用函数图像确定不等式的解集,掌握数形结合思想是解答本题的关键.。
九年级上册数学二次函数单元测试卷(解析版)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭.解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.3.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45°【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化.(3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵点C 在线段BM′上, ∴F 在优弧'BM H 上, ∴当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB 10,M′B 55M′A 85, 过点M′作M′G ⊥AB 于点G , 设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴851610﹣x )2=12516﹣x 2,∴x =5108, cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l1∥l′,F与M′重合,BF⊥l1∴∠B M′P=∠BCA=90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC=45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.4.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.y=2x-4x-3,顶点坐标(1,-【答案】(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2)25);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+ ∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.5.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】【分析】(1)将A、B、C三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB是等腰直角三角形,故只需使得PD越大,则△PDE的周长越大.联立直线AB与抛物线的解析式可得交点P坐标;(3)作点A关于直线x=-2的对称点D,利用∠MAC = 2∠MCA可推导得MD=CD,进而求得ME的长度,从而得出M坐标【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(-3,0),B(0,3),C(1,0),∴9303a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x2-2x+3;(2)∵A(-3,0),B(0,3),∴OA=OB=3,∴△AOB是等腰直角三角形,∴∠BAO=45°,∵PF⊥x轴,∴∠AEF=90°-45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 , ∴ME=3∴点M (-2,3)或(-2,-3).【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析6.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0k y x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥; 【解析】【分析】(1)①直接利用待定系数法,即可求出函数的表达式;②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,k x ),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52b a-≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1),①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,k x),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+;4∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n ,设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n n y x --=+, 设点P 为(x ,k x ),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--; ∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩, ∴不等式组的解集为:2n >; 当204n -<时,有∴410524nn⎪⎪⎨-⎪≥⎪-⎩,解得:1029n≤<,∴综合上述,n的取值范围为:109n≥.【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.7.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.8.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:121122m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以32m +=.综上所述:m 的取值范围是m <0,m =12+或m =32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.9.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:t=12-+或t=12-.∴此时点M 的坐标为(12-+,32-)或(12-,32+).综上所述,满足条件的点M 的坐标为:(0,1【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定2.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确结论的个数为( )A .1B .2C .3D .43.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<5.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .47.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .18.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .10.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-11.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 14.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.15.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)17.如图所示为抛物线223y ax ax =-+,则一元二次方程2230ax ax -+=两根为______.18.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.22.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0).(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长. 24.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A mB n Cd A B⨯+⨯+=+.例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题: 如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离;(3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.25.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:x… -4 -3 -2 -1 0 1 … y…-5343…(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.26.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系. 【详解】解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.2.B解析:B 【分析】根据函数图象与x 轴交点个数判断(1);利用待定系数法求出函数解析式,代入计算判断(2);由二次函数与一次函数的交点求出方程的解,判断(3)即可;利用函数图象比较函数值判断(4). 【详解】由图象知,二次函数过(3,3)(0,3),(1,1),∴93313a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得:133a b c =⎧⎪=-⎨⎪=⎩,∴b+c+1=﹣3+3+1=1,故②错误; ∵a =1,∴抛物线为y =x 2-3x+3, ∵函数y =x 2+bx+c 与x 轴无交点, ∴b 2﹣4c <0,故①错误;由图象知,抛物线y =x 2+bx+c 与直线y =x 的交点坐标为(1,1)和(3,3), ∴方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3,故③正确; ∵当1<x <3时,二次函数值小于一次函数值, ∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确; 故选:B . 【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,图象法比较函数值的大小,是一道较为基础的二次函数题.3.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600),∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.4.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.B解析:B 【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 . 【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y >∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0; 第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B . 【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小.6.C解析:C【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④.【详解】解:∵抛物线的开口向下∴a <0,故①错误;∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确; 故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.C解析:C【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x=﹣b 2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确;∵当x=-1时,y=0,∴a-b+c=0,而b=-2a ,∴a+2a+c=0,即c=-3a ,∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确;a+4b-2c=a-8a+6a=-a ,所以④错误;故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.8.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.9.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.10.B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.11.B解析:B【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a-< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.12.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.14.;【分析】先令y=0求得点AB 的坐标再求得顶点M 的坐标根据题意即可得出平移的方向和距离进而可求得平移后的解析式【详解】解:令y=0则有解得:x1=1x2=3∴A(10)B(30)∵=(x ﹣2)2﹣1解析:221y x x =++; 【分析】先令y=0求得点A 、B 的坐标,再求得顶点M 的坐标,根据题意即可得出平移的方向和距离,进而可求得平移后的解析式.【详解】解:令y=0,则有2043x x =-+,解得:x 1=1,x 2=3,∴A(1,0),B(3,0),∵243y x x =-+=(x ﹣2)2﹣1,∴顶点M 的坐标为(2,﹣1),∵平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴将原抛物线向上平移1个单位长度,再向左平移3个单位长度,即可得到平移后的抛物线,∴平移后的顶点坐标为(﹣1,0),即平移后的解析式为y=(x+1)2=x 2+2x+1,故答案为:221y x x =++.【点睛】本题考查了二次函数的图像与几何变换,会求抛物线与坐标轴的交点和顶点坐标,熟练掌握抛物线平移的变换规律是解答的关键. 15.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.16.①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的 解析:①②.【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可.【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2b a-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确; ③∵抛物线的对称轴为x =2b a-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0); 由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误; 所以正确的结论有:①②.故答案为:①②.【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.17.【分析】先求得对称轴再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标即可求解【详解】抛物线的对称轴由图象得抛物线与轴的一个交点的坐标为(30)∴抛物线与轴的另一个交点的坐标为(-10)∴元二次解析:11x =-,23x =【分析】先求得对称轴1x =,再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标,即可求解.【详解】 抛物线的对称轴212a x a-=-=,由图象得抛物线与x 轴的一个交点的坐标为(3,0),∴抛物线与x 轴的另一个交点的坐标为(-1,0),∴元二次方程2230ax ax -+=两根为1213x x =-=,.故答案为:1213x x =-=,.【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,理解方程20ax bx c ++=的根就是函数2y ax bx c =++(0a ≠)的图象与x 轴的交点的横坐标是解题的关键. 18.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查 解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.三、解答题21.(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上,设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=, 正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.(1)223y x x =--;(2)存在,M (1,﹣2)【分析】(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 可求出a 、b 、c 的值,即可确定二次函数关系式;(2)由对称可知,直线BC 与直线x =1的交点就是要求的点M ,求出直线BC 的关系式即可.【详解】解:(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩, ∴抛物线的关系式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, ∵点M 在对称轴x =1上,且△ACM 的周长最短,∴MC +MA 最小,∵点A 、点B 关于直线x =1对称, ∴连接BC 交直线x =1于点M ,此时MC +MA 最小,设直BC 的关系式为y =kx +b ,∵B (3,0),C (0,﹣3),∴303k b b +=⎧⎨=-⎩,解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当x =1时,132y =-=-,∴点M (1,﹣2),∴在抛物线的对称轴上存在一点M ,使得△ACM 的周长最短,此时M (1,﹣2).【点睛】本题考查二次函数综合,解题的关键是掌握抛物线解析式的方法和利用轴对称的性质解决线段和最短问题.23.(1)二次函数的解析式为223y x x =--;(2)375(,)28P ,四边形ABPC 的面积的最大值为758;(3)Q(1,-2),三角形QAC 1032+ 【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)求出点A 关于直线x=1对称点B ,再求直线BC 与对称轴交点Q ,将AQ+CQ 转化为BC ,在RtΔAOC 中求AC ,在RtΔBOC 中求BC 即可.【详解】(1)()()1,0,0,3A C --在曲线上,∴103b c c -+=⎧⎨=-⎩, 解得:23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令y=0,得x=3或x=-1,∴B(3,0),且C(0,-3),设BC 的直线为y=kx+b , 330b k b =-⎧⎨+=⎩, 解得31b k =-⎧⎨=⎩, ∴经过点B ,C 的直线为y=x-3,设点P 的坐标为()2,23x x x --,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,∵23375(x )228ABC BCP ABPC S S S ∆∆=+=--+四边形, ∴当32x =时,四边形ABPC 的面积的最大值为758; (3) ∵点A 关于直线x=1对称点B (3,0),∴直线BC 与对称轴的交点为Q ,则Q 为QA+QC 最小时位置,有(2)BC 的直线为y=x-3,当x=1,y=1-3=-2,∴Q(1,-2), ()221310AC =+-=2232AQ CQ CB OC OB +==+=∴三角形QAC 1032【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理,掌握这些知识与方法,会用它们解决问题是关键.24.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式22A m B n Cd A B ⨯+⨯+=+()3,2M 可得:点M 到直线AB 的距离为:22312306543d 3⨯4+⨯2+===+; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB 的距离为:2222431215123827543a a a a a d +-++-+==+,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3,∴()()3,0,0,4A B --, ∴22345AB =+=, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.25.(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.。
一、选择题1.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③2.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确结论的个数为( )A .1B .2C .3D .43.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .124.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t <<5.根据下列表格中的对应值:x 1.98 1.99 2.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<6.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位7.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =8.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2-B .()1,2C .()1,2-D .()2,19.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++10.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.11.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+12.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________16.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.17.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23 y831-3则在实数范围内能使得成立的取值范围是_______.18.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)19.抛物线y=x2+2x-3与x轴的交点坐标为____________________.20.如图,在平面直角坐标系中抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,点D是对称轴右侧抛物线上一点,且tan∠DCB=3,则点D的坐标为_____.三、解答题21.如图,已知正三角形ABC的边长为4,矩形DEFG的DE两个点在正三角形BC边上,F、G点在AB、AC边上,求矩形DEFG的面积的最大值是多少?22.如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=2个单位长AA B.度,把Rt△OAB沿x轴正方向平移2个单位长度后得△11(1)求以A为顶点,且经过点1B的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、 C的坐标.23.疫情期间,某防疫物晶销售量y(件)与售价x(元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润.售价x(元)...706560...销售量y(个)...300350400...(2)售价为多少时利润最大?最大利润为多少?24.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值. 25.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:x… -4 -3 -2 -1 0 1 … y…-5343…(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.26.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标; ②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③. 【详解】由图象知,抛物线与x 轴有两个交点, 方程ax 2+bx+c=0有两个不相等的实数根, ∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <, 抛物线与y 轴交于正半轴0c >, 对称轴直线为1x =-, ∴102ba-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >, ∴420a b c -+>,故③正确. 故选:B . 【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键2.B解析:B 【分析】根据函数图象与x 轴交点个数判断(1);利用待定系数法求出函数解析式,代入计算判断(2);由二次函数与一次函数的交点求出方程的解,判断(3)即可;利用函数图象比较函数值判断(4). 【详解】由图象知,二次函数过(3,3)(0,3),(1,1),∴93313a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得:133a b c =⎧⎪=-⎨⎪=⎩,∴b+c+1=﹣3+3+1=1,故②错误; ∵a =1,∴抛物线为y =x 2-3x+3, ∵函数y =x 2+bx+c 与x 轴无交点, ∴b 2﹣4c <0,故①错误;由图象知,抛物线y =x 2+bx+c 与直线y =x 的交点坐标为(1,1)和(3,3), ∴方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3,故③正确;∵当1<x <3时,二次函数值小于一次函数值, ∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确; 故选:B . 【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,图象法比较函数值的大小,是一道较为基础的二次函数题.3.C解析:C 【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可. 【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==,∵抛物线与x 轴只有一个交点,故顶点为(,0)m ,2()y x m ∴=-.当3x m =+时,239y ==.故答案为C . 【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.4.C解析:C 【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答. 【详解】解:对称轴为直线x=-21b⨯=1, 解得b=-2,所以二次函数解析式为y=x 2-2x , y=(x-1)2-1, x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标, ∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C . 【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.5.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.6.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意;B.由于a=5>0,所以抛物线开口向上,故本选项不符合题意;C.由于y=5(x﹣3)2+2=5x2﹣30x+47,则△=b2﹣4ac=900﹣4×5×47=﹣40<0,所以该抛物线与x轴没有交点,故本选项符合题意;D.对于y=5(x﹣3)2+2,则该函数的对称轴为直线x=3,故本选项不符合题意.故选:C.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征.8.B解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B.【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.9.C解析:C【分析】根据平均每个季度GDP增长的百分率为x,第三季度季度GDP总值约为7.9(1+x)元,第四季度GDP总值为7.9(1+x)2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是:y=7.9(1+x)2.故选:C.【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.10.B解析:B【解析】解:A、∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故本选项错误;B、∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C、∵抛物线对称轴为,∴b=-2a,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误. 故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.11.C解析:C 【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可. 【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y=(x-2)2+2. 故选:C . 【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.12.C解析:C 【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案. 【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大, ∴A 、B 、D 都不正确,C 正确, 故选:C . 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.17.或【分析】根据表格中的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3> 解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知, 该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.18.【分析】抛物线开口向上且对称轴为直线根据二次函数的图象性质:在对称轴的右侧y 随x 的增大而增大【详解】∵二次函数∴该抛物线开口向上且对称轴为直线:∴点A (-3m )关于对称轴的对称点为(1m )∵-1<0解析:>【分析】抛物线开口向上,且对称轴为直线1x =-,根据二次函数的图象性质:在对称轴的右侧,y 随x 的增大而增大.【详解】∵二次函数22(1)y x k =++,∴该抛物线开口向上,且对称轴为直线:1x =-.∴点A (-3,m )关于对称轴的对称点为(1,m ),∵-1<0<1,∴m >n .故答案为:>.【点睛】本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.19.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.20.()【分析】根据抛物线y =x2﹣3x+2与x 轴交于AB 两点与y 轴交于点C 得A (10)B (20)C (02)过点B 作BM ⊥BC 交CD 延长线于点M 过点M 作MG ⊥x 轴于点G 易证等腰直角三角形OCB ∽等腰直角解析:(715,24)【分析】根据抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,得A(1,0),B(2,0),C(0,2),过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,易证等腰直角三角形OCB∽等腰直角三角形GBM,可得M(8,6),再求得直线CM的解析式为y=12x+2,联立直线和抛物线,解方程组即可得点D的坐标.【详解】解:∵抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,∴解得A(1,0),B(2,0),C(0,2),∴OB=OC∴∠OBC=45°,如图,过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,∴∠COB=∠MGB=90°∴∠CBO+∠MBG=90°∴∠MBG=45°∴MG=BG∴等腰直角三角形OCB∽等腰直角三角形GBM∴BCBM =OCBG∵tan∠DCB=MBBC=3∴123BG∴BG=6∴MG=6∴M(8,6)设直线CM解析式为y=kx+b,把C(0,2),M(8,6)代入,解得k=12,b=2所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩ 解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.三、解答题21.【分析】设EF=x ,先求出三角形ABC 的高AH 的长,由矩形性质FG ∥BC ,推出△AFG ∽△ABC 利用性质得比例式FG AM =BC AH求出4x ⋅,利用矩形面积公式S矩形DEFG =24x x +利用函数的性质求出最值即可. 【详解】过A 作AH ⊥BC 于H ,交FG 于M ,∵正三角形ABC 的边长为4,∴BH=CH=2,在Rt△ABH 中由勾股定理设EF=x ,则AM=,∵矩形DEFG 的DE 两个点在正三角形BC 边上,∴FG ∥BC ,∴△AFG ∽△ABC ,∴FG AM =BC AH,∴234AM BC FG==AH 23x -⋅, ∴S 矩形DEFG =FE•FG=2234234323x xx x -⋅=-+, ∵23a =-0<, 则抛物线开口向下,有最大值,3232x =-=⎛⎫⨯- ⎪⎝⎭S 最大=23.【点睛】本题考查等边三角形内接矩形问题,涉及等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质,掌握等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质是解题关键.22.(1)()2122y x =-;(2)()0,2D ,(35,35C - 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得3x =±根据点C 的位置,取3x =∴(3C .【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.23.(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350),∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x 2-x-2=0可得A ,B 两点的坐标;(2)把P (m ,-2)代入y=x 2-x-2得m 2-m-2=-2,然后解关于m 的方程即可.【详解】解:(1)当y =0时,x 2-x-2=0,解得x 1=-1,x 2=2,∴A (-1,0),B (2,0);(2)把P (m ,-2)代入y =x 2-x-2得m 2-m-2=-2,解得m 1=0,m 2=1,∴m 的值为0或1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.25.(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)11322n n <<<-或 【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有, 12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,12n +>12n +<,即,n >或n < ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 3n n <<<或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值.。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
一、选择题1.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .不能确定2.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 3.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y << 4.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .35.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .46.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 7.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .48.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错 9.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 10.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 11.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++ 12.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).14.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.15.写出一个开口向下的二次函数的表达式______.16.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.17.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)18.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.19.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.20.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.三、解答题21.已知抛物线的解析式为y =﹣3x 2+6x+9.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.22.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?23.已知:二次函数2y x bx c =++过点(0,-3),(1,-4)(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x<3时,y的取值范围是.24.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm2的长方形吗?”25.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x天售价(元件)日销售量(件)≤≤60x130-x+30010xy(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.AC BD,当AC、26.如图,四边形ABCD的两条对角线AC、BD互相垂直,10BD的长是多少时,四边形ABCD的面积最大?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系.【详解】解:∵抛物线过A (-3,0)、O (1,0)两点,∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小,即y 1>y 2.故选:A .【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.2.B解析:B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键3.B解析:B【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可.【详解】解:当x=-1时,y=-2a-a-4=-3a-4;当x=1时,y=-2a+a-4=-a-4;当x=2时,y=-8a+2a-4=-6a-4;∵a >0∴-6a-4<-3a-4<-a-4∴312y y y <<故选B【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.4.C解析:C【分析】①由抛物线的开口方向、与y 轴的交点判定a 、c 的符号,根据对称轴确定b 的符号; ②根据二次函数图象与x 轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y 的符号.【详解】解:①∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-b 2a>0,c <0, 即b <0,∴abc >0,正确;②二次函数y=ax 2+bx+c 的图象与x 轴的交点是(-1,0)、(3,0),∴方程ax 2+bx+c=0的根为x 1=-1,x 2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x >1时,y 随x 的增大而增大;④根据图象可知抛物线与x 轴的交点坐标是(-1,0),(3,0),∴当x=2时,y <0∴当x=1时4a+2b+c <0,正确.共有四个正确的,故选:C .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.5.C解析:C【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断.【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确; ③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确.所以①②④三项正确,故选:C .【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.6.D解析:D【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2.【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a -=a ,抛物线开口向上,而当x <-1时,y 随x 的增大而减小,∴a≥-1,∴实数a 的取值范围是-1≤a <2.故选:D .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 7.C解析:C【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④.【详解】解:∵抛物线的开口向下∴a <0,故①错误;∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确; 故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8.C解析:C【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.9.B解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.10.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 11.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 12.B解析:B【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a -< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.二、填空题13.正【分析】根据抛物线的开口方向判定a<0根据对称轴位于y 轴左侧判定ab 同号根据抛物线与y 轴交点位置判定c 的符号【详解】解:由图可知抛物线的开口方向向下则a <0抛物线的对称轴位于y 轴的左侧则ab 同号即 解析:正【分析】根据抛物线的开口方向判定a<0,根据对称轴位于y 轴左侧判定a 、b 同号,根据抛物线与y 轴交点位置判定c 的符号.【详解】解:由图可知,抛物线的开口方向向下,则a <0,抛物线的对称轴位于y 轴的左侧,则a 、b 同号,即b <0,抛物线与y 轴交于负半轴,则c <0,所以bc >0,即bc 的值为正,故答案为:正.【点睛】本题考察抛物线与x 轴的交点、二次函数图像上点的坐标特征,解题此题的关键是掌握抛物线()20y ax bx c a =++≠中a 、b 、c 所表示的几何意义. 14.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程 解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.15.(答案不唯一)【分析】根据二次函数开口向下二次项系数为负可据此写出满足条件的函数解析式【详解】解:二次函数的图象开口向下则二次项系数为负即a <0满足条件的二次函数的表达式为y=-x2故答案为:y=-解析:2y x =-(答案不唯一)【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式.【详解】解:二次函数的图象开口向下,则二次项系数为负,即a <0,满足条件的二次函数的表达式为y=-x 2.故答案为:y=-x 2(答案不唯一).【点睛】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单.16.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .17.【分析】抛物线开口向上且对称轴为直线根据二次函数的图象性质:在对称轴的右侧y 随x 的增大而增大【详解】∵二次函数∴该抛物线开口向上且对称轴为直线:∴点A (-3m )关于对称轴的对称点为(1m )∵-1<0解析:>【分析】抛物线开口向上,且对称轴为直线1x =-,根据二次函数的图象性质:在对称轴的右侧,y 随x 的增大而增大.【详解】∵二次函数22(1)y x k =++,∴该抛物线开口向上,且对称轴为直线:1x =-.∴点A (-3,m )关于对称轴的对称点为(1,m ),∵-1<0<1,∴m >n .故答案为:>.【点睛】本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.18.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确 解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.【点睛】本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.19.()【分析】根据抛物线y =x2﹣3x+2与x 轴交于AB 两点与y 轴交于点C 得A (10)B (20)C (02)过点B 作BM ⊥BC 交CD 延长线于点M 过点M 作MG ⊥x 轴于点G 易证等腰直角三角形OCB ∽等腰直角解析:(715,24) 【分析】 根据抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,得A (1,0),B (2,0),C (0,2),过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,易证等腰直角三角形OCB ∽等腰直角三角形GBM ,可得M (8,6),再求得直线CM 的解析式为y =12x +2,联立直线和抛物线,解方程组即可得点D 的坐标. 【详解】 解:∵抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,∴解得A (1,0),B (2,0),C (0,2),∴OB =OC∴∠OBC =45°,如图,过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,∴∠COB =∠MGB =90°∴∠CBO +∠MBG =90°∴∠MBG =45°∴MG =BG∴等腰直角三角形OCB ∽等腰直角三角形GBM ∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩ 解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24)故答案为(715,24). 【点睛】 本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.20.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,进而可得抛物线的对称轴,则可求出此时点D 的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A ,B 的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),可得:当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,∴抛物线的对称轴为:直线1x =,∵点()3,0C -,∴点D 的坐标为()5,0,∵顶点在线段AB 上移动,∴点D 的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.【详解】解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a =﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 22.(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.23.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得: 314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩, 所以,二次函数的表达式为:223y x x =--;(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.24.不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm , 则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.25.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x , 当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.26.当AC=BD=5时,四边形ABCD 的面积最大.【分析】 直接利用对角线互相垂直的四边形面积求法得出12S AC BD =⋅,再利用配方法求出二次函数最值即可.【详解】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x , 则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252, 所以当AC=BD=5时,四边形ABCD 的面积最大.【点睛】本题考查二次函数的应用.理解对角线互相垂直的四边形面积等于对角线乘积的一半是解题关键.。
一、选择题1.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .2.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限4.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( ) A .16q <B .16q >C .16q ≤D .16q ≥5.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或126.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( )A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+7.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令COAO=m ,则下列m 与b 的关系式正确的是( )A .m=2b B .m=b+1C .m=6bD . m=2b +18.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =9.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>10.表格对应值:x1 2 3 4 2ax bx c ++ 0.5-512.522判断关于的方程2ax bx c ++=的一个解的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<11.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.12.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____. 15.已知抛物线y =x 2+9的最小值是y =_____.16.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.17.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.18.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.19.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.20.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____.三、解答题21.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图象完全重合,则c = ; (3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表: x ﹣2 1 5 y mn p的大小关系为 (用“<”连接).22.如图,在平面直角坐标系中,抛物线(部分)刻画了某果园年初以来累积利润y (万元)与销售时间x (月)之间的关系(即当年前x 个月的利润总和为y ,y 和x 之间的关系).根据图象提供的信息,请解答下列问题: (1)求y 与x 的函数关系式;(2)求第8个月该果园所获利润是多少万元? (3)求到哪个月末时,该果园累积利润可达到30万元?23.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.24.情境阅读:小敏同学期中复习时,再读九年级上册一本辅导书“一元二次方程”的“数学活动”时,重新思考了“活动围长方形”.下面呈现的是“活动内容”及“小敏反思”的部分:问题解决:请根据“小敏发现”,应用二次函数解决“能围出面积大于900cm 2的长方形吗?” 25.某超市经销一种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示: 销售单价x (元/千克) 45 50 55 60 销售量y (千克)70605040y x(2)为了尽可能提高销量且保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 26.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.2.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.3.C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键.4.C解析:C 【分析】根据抛物线与x 轴的交点情况可得到方程280x x q ++=根的情况,进而得到根的判别式大于等于0,即可得到关于q 的不等式,最后解不等式即可得到答案. 【详解】解:∵抛物线28y x x q =++与x 轴有交点 ∴方程280x x q ++=有实数根∴2248416440b ac q q ∆=-=-⨯⋅=-≥ ∴16q ≤. 故选:C 【点睛】本题考查了二次函数图象性质与一元二次方程根的情况的关系、解一元一次不等式等,体现了数形结合的思想.5.A解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.6.A解析:A 【分析】根据二次函数图象的平移规律解答即可.解:把抛物线231y x =+向上平移2个单位可得233y x =+, 故选:A . 【点睛】本题考查了二次函数的平移变换,熟悉二次函数的平移规律是解题的关键.7.B解析:B 【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可. 【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为cm-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=,将1c b =+代入可得;2110b b m m +--+=,即2210m b bmm ---=,210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦, 解得:1m b =+,或1m =-(舍去), 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.8.C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意.【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征.9.C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.10.B解析:B 【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围. 【详解】解:∵x =2时,y =5,即ax 2+bx +c >0; x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间, ∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.B解析:B 【解析】 解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断. 12.C解析:C【分析】由抛物线的开口方向判断a 与0,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】A .因为抛物线的开口向下,则a<0;又因为抛物线的对称轴在y 轴右侧,则-2b a>0,所以b>0,故A 错误;B .抛物线与y 轴的交点在y 轴负半轴,则c<0,故B 错误;C .抛物线与x 轴一个交点为(1,0),则x=1时,0y a b c =++=,故C 正确;D .抛物线与x 轴有两个交点,则240b ac ∆=->,故D 错误,故选C.【点睛】本题考查了二次函数的图象与系数的关系、二次函数的图象与×轴的交点等知识点,明确二次函数的相关性质是解题的关键. 二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.15.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .16.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式;【详解】∵抛物线2(3)2y x =--∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2),∴平移后的解析式22(33)22y x x =-+-=-.【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 17.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则解析:2339424y x x =-- 【分析】 根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1, ∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解18.不能【分析】根据题意将x=2代入求出相应的y值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x2+3.25,得y=-18×22+3.25=2.75,∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】由韦达定理得出ab与m的关系式由一元二次方程的根与判别式的关系得出m的取值范围再对代数式a2﹣ab+b2配方并将a+b和ab整体代入化简然后再配方结合m的取值范围可得出答案【详解】∵关于x的解析:9 16【分析】由韦达定理得出a,b与m的关系式、由一元二次方程的根与判别式的关系得出m的取值范围,再对代数式a2﹣ab+b2配方并将a+b和ab整体代入化简,然后再配方,结合m的取值范围可得出答案.【详解】∵关于x的一元二次方程x2﹣(2m+1)x+m2﹣1=0有实数根a,b,∴a+b=2m+1,ab=m2﹣1,△≥0,∴△=[﹣(2m+1)]2﹣4×1×(m2﹣1)=4m2+4m+1﹣4m2+4=4m+5≥0,∴m≥54.∴a2﹣ab+b2=(a+b)2﹣3ab=(2m+1)2﹣3(m2﹣1)=4m2+4m+1﹣3m2+3=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭. 故答案为:916. 【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点. 20.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)二次函数y =ax 2的图象随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y =﹣2x 2+c 的图象随着c 的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p <m <n【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数 y =ax 2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y =ax 2的图象随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y =﹣2x 2+c 的图象随着c 的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)∵函数y =ax 2与函数y =﹣2x 2+c 的形状相同,∴a =±2,∵抛物线y =ax 2沿y 轴向下平移2个单位得到y =ax 2﹣2,与y =﹣2x 2+c 的图象完全重合,∴c =﹣2,故答案为:±2,﹣2.(3)由函数y =﹣2x 2+c 可知,抛物线开口向下,对称轴为y 轴,∵1﹣0<0﹣(﹣2)<5﹣0,∴p <m <n ,故答案为:p <m <n .【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.22.(1)2122y x x =-;(2)第8个月该果园所获利是5.5万元;(3)截止到第10月末该果园累积利润可达30万元.【分析】 (1)通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出y 与x 之间的函数关系式;(2)分别把x =7,x =8,代入函数解析式2122y x x =-,再把总利润相减就可得出; (3)把y =30代入2122y x x =-的函数关系式里,求得月份. 【详解】解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:2(2)2ya x ∵所求函数关系式的图象过(0,0), 于是得:20(02)2=--a , 解得12a =, ∴所求函数关系式为:21(2)22y x =--,即2122y x x =-. (2)把7x =代入2122y x x =-, 得1492710.52y =⨯-⨯=,把8x =代入2122y x x =-, 得16428162y =⨯-⨯=, 第8个月该果园所获利润是:16﹣10.5=5.5万元,答:第8个月该果园所获利是5.5万元.(3)把30y =代入2122y x x =-, 化简得 24600x x --=,解得12106x x ==-,(舍去).答:截止到第10月末该果园累积利润可达30万元.【点睛】此题主要考查了二次函数的性质在实际生活中的应用,读懂题目意思,确定变量,建立函数模型,尤其是注意本题图象中所给的信息是解决问题的关键.23.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=,∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】 本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.24.不能围出,理由见解析.【分析】设长方形的长为xcm ,围成的面积为2ycm ,再根据长方形的面积公式可得y 与x 之间的函数关系式,然后利用二次函数的性质即可得.【详解】不能围出,理由如下:设长方形的长为xcm ,围成的面积为2ycm , 则12022x y x ,即()60y x x =-, 将其化成顶点式为()230900y x =--+,由二次函数的性质可知,当30x =时,y 取得最大值,最大值为900,即用长度为120cm 长的细绳围成的长方形的面积最大为2900cm ,故不能围出面积大于2900cm 的长方形.【点睛】本题考查了二次函数的几何应用,熟练掌握二次函数的性质是解题关键.25.(1)2160y x =-+;(2)50元;(3)定价60元,最大利润800元.【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组,得出解后根据x 求出对应的y ,即可求解;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(45,70)、(50,60)代入得:45705060k b k b +=⎧⎨+=⎩, 解得:2160k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式为2160y x =-+;(2)由题意得:()()402160600x x --+=,整理得212035000x x -+=,解得125070x x ==,,∵要求尽可能提高销量,当150x =时,销量为70千克,当270x =时,销量为20千克 ∴270x =不合题意,舍去答:为保证某天获得600元的销售利润,则该天的销售单价应定为50元/千克; (3)设当天的销售利润为w 元,则:()()402160w x x =--+22(60)800x =--+,∵﹣2<0∴当60x =时,w 最大值=800.答:当销售单价定为60元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.26.(1)3;(2)0;(3)3.1【分析】(1)由图像及表格可直接进行解答;(2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可.【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3;故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0; 故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得: 221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥, 把s=30代入解析式得:()230 2.51 1.980t t t =+≥, 解得:123.1, 3.9t t ≈≈-(不符合题意,舍去),∴当此滑雪者滑行距离为30m 时,用时约为3.1s ;故答案为3.1.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.。
一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .2.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣73.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 4.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 5.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( )A .当1x >时,12y y <B .当1x <时,12y y >C .当0.5x <时,12y y <D .当5x >时,12y y >6.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 7.下列各图象中有可能是函数()20y ax a a =+≠的图象( ) A . B . C . D . 8.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错 9.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .110.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x 时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤ 12.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+二、填空题13.如图,直线y =x +4与x 、y 轴分别交于A 、B 两点,点O 为坐标原点,点C 是点A 关于y 轴的对称点,动点D 在线段AC 上,连接BD ,作以BD 为直角边的等腰Rt △BDE ,则线段OE 的最小值为_________.14.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.15.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.16.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .17.已知抛物线y =x 2+9的最小值是y =_____.18.二次函数y=(x+2)2-5的最小值为_______.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.2251=-+-y x x 的图象不经过__________象限;三、解答题21.一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中: 销售单价(元)x 销售量y (件)销售玩具获得利润w(元)x 应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?22.温州某大超市计划销售一种水果,已知水果的进价为每盒9元,并且水果的销售量由售价决定.经市场调查表明,当售价在10到15元之间(含10元,15元)波动时,每盒水果的销售价格每减少1元则日销售量增加80盒,当水果售价为每盒15元时,日销售量为160盒,现设每盒水果的销售价为x 元.(每盒毛利润=每盒售价-每盒进价) (1)当每盒销售价为13元时,超市的当日销售量为______盒.(2)如果规定该种水果的日均销售量不低于400盒时,设销售这种水果所获得的日毛利润为y (元),求y 关于x 的函数解析式,并求出日毛利润y 的最大值.(3)为了提高水果的知名度,超市给当天售出的每盒苹果进行精包装,包装费每盒1元,另外从该种水果的日毛利润中提取50元作为销售员当天的额外奖励,且保证提取后日毛利润不低于750元,同时又要使顾客得到实惠,则当日水果的销售量至少是______盒.(直接写出答案)23.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.24.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?25.已知:二次函数2y x bx c =++过点(0,-3),(1,-4)(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .26.如图,已知抛物线2y x bx c =-++经过点(1,0)A -,(3,0)B ,与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)①如图1,当点P 在直线BC 上方时,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .若2PE ED =,求PBC 的面积;②抛物线上是否存在一点P ,使PBC 是以BC 为底边的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据二次函数y=ax2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y=ax2在第一象限内y随x的减小而减小,∴a>0,∴y=ax2的图象经过原点且开口方向向上,y=ax+a经过第一三象限,且与y轴的正半轴相交.A.二次函数开口向上,一次函数与y轴的负半轴相交,不符合题意B.二次函数开口向上,一次函数与y轴的正半轴相交,符合题意C.二次函数开口向下,一次函数与y轴的负半轴相交,不符合题意D.二次函数开口向下,一次函数与y轴的正半轴相交,不符合题意故选:B.【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出a 是正数是解题的关键.2.C解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3, 令y =0,则x =﹣5或1, 即点M 的横坐标的最小值为﹣5,故选:C .【点睛】本题考查的是二次函数与x 轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.3.B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.D解析:D【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D选项,抛物线开口向下,0a<,一次函数过二、三、四象限,0a<,0b<,满足ab>0,正确故选:D.【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.5.D解析:D【分析】当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【详解】解:当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,∴m=4,∴y1=(x﹣2)(x﹣4),抛物线的对称轴为:x=3,如下图:设点A、B的横坐标分别为1,5,则点A、B关于抛物线的对称轴对称,从图象看在点B处,即x=5时,y1>y2,故选:D.【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.6.D解析:D【分析】先根据运动速度和AB、BC的长可得t的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤, 由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键. 7.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.8.C解析:C【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.9.C解析:C【分析】利用抛物线开口方向得到a<0,利用抛物线的对称轴方程得到b=-2a>0,利用抛物线与y 轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a得到c=-3a,则可对③④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣b=1,2a∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(-1,0),∴关于x的一元二次方程ax2+bx+c=0的根是-1,3,所以②正确;∵当x=-1时,y=0,∴a-b+c=0,而b=-2a,∴a+2a+c=0,即c=-3a,∴a+2b-c=a-4a+3a=0,即a+2b=c,所以③正确;a+4b-2c=a-8a+6a=-a,所以④错误;故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.11.B解析:B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可;【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.12.B解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.二、填空题13.【分析】作交x 轴于点F 证明△DBO ≌△EDF 得设设D (t0)则根据勾股定理得进一步可得结论【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形∴作交x 轴于点F 如图∴∠EFO=∠DOB=90°又∠∴解析:【分析】作EF AC ⊥交x 轴于点F ,证明△DBO ≌△EDF 得FE OD FD BO ==,,设设D (t ,0),则(4,)E t t +,根据勾股定理得222(2)8OE t =++,进一步可得结论.【详解】解:∵△BDE 是以BD 为直角边的等腰直角三角形,∴BD DE =作EF AC ⊥交x 轴于点F ,如图,∴∠EFO=∠DOB=90°又∠90OBD BDO BDO FDE +∠=∠+∠=︒∴∠DBD FDE =∠在△DBO 和△EDF 中DBO EDF DOB EFD DB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBO ≌△EDF∴FE OD FD BO ==,对于y=x+4,当x=0,则y=4,当y=0,则x=-4,∴()40A -,,4(0)B ,, ∵点C 是点A 关于y 轴的对称点,∴0(4)C ,设D (t ,0),则(4,)E t t +∴22224)2((2)8OE t t t =++=++∴当t=-2时,取最小值,即822OE ==,故OE 的最小值为22 故答案为:2【点睛】此题主要考查了全等三角形的判定与性质以及勾股定理等知识,运用勾股定理得出22224)2((2)8OE t t t =++=++是解答此题的关键.14.【分析】由题意得当y=0时则有的两个根为进而根据同解方程可进行求解【详解】解:∵抛物线y =ax2+bx+c 经过点A (﹣30)B (40)两点∴当y=0时则有的两个根为∴的解为:或解得:;故答案为【点睛解析:121,6x x =-=【分析】由题意得当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,进而根据同解方程可进行求解.【详解】解:∵抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,∴当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,∴()2220a x bx b c -+-+=的解为:23x -=-或24x -=, 解得:121,6x x =-=;故答案为121,6x x =-=.【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.15.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.16.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.17.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .18.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5【分析】根据二次函数的顶点式的意义即可确定函数的最值.【详解】解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5.故答案为-5.【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1, ∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.三、解答题21.(1)101000x -+,210130030000x x -+-;(2)销售单价x 应定为50元或80元;(3)最大利润为8250元.【分析】(1)根据题意可直接进行列式求解即可;(2)由(1)可得210x 1300x 3000010000-+-=,然后求解即可;(3)由题意易得101000550x -+≥,然后可得4045x <≤,最后由二次函数的性质可进行求解.【详解】解:(1)由题意得:销售量()6001040101000y x x =--=-+;销售玩具获得利润()()23010100010130030000w x x x x =--+=-+-; 故答案为101000x -+,210130030000x x -+-;(2)由(1)及题意得:210x 1300x 3000010000-+-=,213040000x x -+=,解得:1250,80x x ==,∵40x >,∴1250,80x x ==;答:销售单价x 应定为50元或80元.(3)由题意得:101000550x -+≥,解得:45x ≤,∵40x >,∴4045x <≤,∵()2210130030000106512250w x x x =-+-=--+, ∴100a =-<,对称轴为直线65x =,∴当4045x <≤时,w 随x 的增大而增大,∴当x=45时,w 有最大值,即为()2104565122508250w =-⨯-+=; 答:销售该玩具所获最大利润为8250元.【点睛】本题主要考查二次函数的应用,会根据题意正确列式并明确二次函数的相关性质是解题的关键.22.(1)320;(2)280208012240y x x =-+-;当12x =,max 1200y =;(3)480【分析】(1)根据题意列式求解可得;(2)根据“毛利润=每盒毛利润×销售量”列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程:()28020801224050136080750x x x -+----=,解方程可得结论.【详解】(1)当每盒销售价为13元时,超市的当日销售量为:()151380160320-⨯+=(盒),故答案为:320;(2)由题意得:()()80151609y x x ⎡⎤=-+-⎣⎦228020*********(13)1280x x x =-+-=--+,∵规定该种水果日均的销售量不低于400盒,∴801360400x -+≥,解得:12x ≤,∵1015x ≤≤,∴1012x ≤≤,∵800-<,∴当1012x ≤≤时,y 随x 的增大而增大,∴当x=12时,y 取得最大值,最大值为1200,答:应将售价定为每盒12元时,所得日均毛利润最大,最大日均毛利润为1200元; (3)由题意得:()280208012240508015160x x x ⎡⎤-+----+=⎣⎦750, 整理得:2271800x x -+=,解得:121215x x ==,,∵要使顾客得到实惠,∴215x =应该舍去,当12x =时,当日水果的销售量为:()8015160480x -+=(盒),答:当日水果的销售量至少是480盒.故答案为:480.【点睛】本题主要考查了二次函数的应用以及一元二次方程的应用,解题的关键是熟练掌握根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.23.(1)234y x x =--;(2)3n =;(3)12x >-【分析】(1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.24.(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92 【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-,11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.25.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得:314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩, 所以,二次函数的表达式为:223y x x =--;(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.26.(1)2y x 2x 3=-++;(2)①32PBC S =△;②1113113,22P ⎛⎫++ ⎪ ⎪⎝⎭,2113113P --⎝⎭.【分析】(1)将A (-1,0),B (3,0)代入y=-x 2+bx+c ,可求出答案;(2)①先求出点C 的坐标,进而可求得直线BC 的函数关系式,再设()2,23P m m m -++,进而可表示出点E 的坐标为(,3)E m m -+,再根据PD=3ED 列出方程求解即可;②设点P 的坐标为()2,23P m m m -++,根据PB=PC 可得PB 2=PC 2,进而可列出方程求解即可.【详解】(1)抛物线2y x bx c =-++经过点()1,0A -,()3,0B , 22(1)0330b c b c ⎧---+=∴⎨-++=⎩, 解得23b c =⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++.(2)①在2y x 2x 3=-++中,当0x =时,3y =,()0,3C ∴设直线BC 的解析式为y kx b =+,则330b k b =⎧⎨+=⎩, 31b k =⎧∴⎨=-⎩∴直线BC 的解析式为3y x =-+,若2PE ED =,则3PD ED =,设()2,23P m m m -++,则(,3)E m m -+, 2233(3)m m m ∴-++=-+,即2560m m -+=,解得12m =,23m =(舍)当2m =时,()2,3P ,()2,1E ,则1PE =,131322PBC S ∴=⨯⨯=△, ②假设存在点P ,使PBC 是以BC 为底边的等腰三角形,设点P 的坐标为()2,23P m m m -++, ∵PBC 是以BC 为底边的等腰三角形,∴PB=PC ,∴PB 2=PC 2, ∵()2,23P m m m -++,B (3,0),C (0,3),∴(m-3)2+(-m 2+2m+3)2=m 2+(-m 2+2m+3-3)2整理得m 2-m-3=0,解得m 1m 2,当时,-m 2∴点P当-m 2∴点P 的坐标为(1132-,1132-), 综上所述:抛物线上存在一点P ,使PBC 是以BC 为底边的等腰三角形,此时点P 的坐标为1113113,P ⎛⎫++ ⎪ ⎪⎝⎭,2113113,P ⎛⎫-- ⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查的是二次函数的性质,等腰三角形的性质,两点距离公式等知识,其中,熟练掌握方程的思想方法解题的关键.。
数学九年级上册二次函数单元测试卷附答案一、初三数学二次函数易错题压轴题(难)1.已知,抛物线y=-12x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)直接填写抛物线的解析式________;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.【答案】(1)2122y x x=-++;(2)见详解;(3)见详解.【解析】【分析】(1)把点C、D代入y=-12x2 +bx+c求解即可;(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y=-12x2 +bx+c过点C(0,2),点Q(2,2),∴2122222b cc⎧-⨯++⎪⎨⎪=⎩=,解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-,x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ).设直线QG 的解析式为y kx m =+,将点()2,2Q 代入y kx m =+得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4∴CG•CH=(2-m )•(2-n )=4.2.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题:(1)填空:1a = ,1b = ;(2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值;(2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小.【详解】 解:(1)y 1=0时,a 1x (x -b 1)=0,x 1=0,x 2=b 1,∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1,∴B 1(12b ,12b ),D 1(12b ,12b -), ∵B 1在抛物线c 上,则12b =(12b )2,解得:b 1=0(不符合题意),b 1=2,∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1,故答案为1,2;(2)当20y =时,有()220a x x b -=,解得2x b =或0x =,()22,0A b ∴.由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-. 解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=,解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.3.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.4.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围; (3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围.【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-<【解析】【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可; (3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案.【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0),∴令y =0得:ax 2+bx+c =0∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点;(2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下,又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤, ∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ),∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0,∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0,∵a≠0,则9a 2>0,∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩, ∴4233b a -<<-,∴二次函数图象对称轴与x轴交点横坐标的取值范围是:12 323ba<-<.【点睛】本题考查了抛物线与x轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.5.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.6.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5); 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.7.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解.【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN ==, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.8.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=32×22=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
数学九年级上册二次函数单元测试卷(含答案解析)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m ,∴点A 1'的坐标为(﹣m +1,m ﹣2),代入y =﹣x 2+2x +3中,解得,m =﹣3或m =2(舍),∴Q 的坐标为(1,﹣3), ∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y 轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为⎝⎭或⎝⎭. 【解析】【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可.【详解】解:()1当0y =时,()210,x a x a -++= 解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=- ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a < 3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-,∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩11x y ⎧=⎪⎪∴⎨⎪=⎪⎩(舍去),22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点的P坐标为⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =-则23,23,y x y x x =-⎧⎨=+-⎩11152x y ⎧=⎪⎪∴⎨+⎪=⎪⎩(舍去),22152x y ⎧=⎪⎪⎨-⎪=⎪⎩∴点P'的坐标为⎝⎭综上可得,点P的坐标为1322⎛⎫++ ⎪ ⎪⎝⎭或515,22⎛⎫-- ⎪ ⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.3.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G ) (1)当a =1时,①直接写出图象G 对应的函数表达式②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围(3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)315a --<,1153a <<,113a <<-【解析】【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可.【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)----(2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321a x a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点 将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a >∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点, 综上,0a <或2635a << (3)266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x >3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:1a -<; 当2221561a a a a ⎧+>⎨-+>-⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点解得:1a -+<<,与前提条件a <0不符,故舍去; ②当a ≥0时, ()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +,必过点(-1,-1),即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>,此时当x=3a 时,y 的最小值为296a a -+,由()2310a --≤可得2961a a -+≤,即此图象必有一个点到x 轴的距离为1当222221561961961a a a a a a a a ⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x axax a =-+>与x 轴有两个交点解得:1125a <<-+且13a ≠; 当222221561961961a a a a a a a a ⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点此不等式无解,故舍去;当222221561961961a a a a a a a a ⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点此不等式无解,故舍去;综上:314125a ---<<或1153a <<或1123a <<-+ 【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.4.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-. ()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离)454d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()12442t t t =⨯-=-;∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-,则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+--- ∴()()26554m m m -+---=,即()()140,m m --= 解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得541m -=或541m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键5.如图,抛物线y=﹣x 2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值6.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M'.①写出点M'的坐标;②将直线l绕点A按顺时针方向旋转得到直线l',当直线l′与直线AM'重合时停止旋转,在旋转过程中,直线l'与线段BM'交于点C,设点B,M'到直线l'的距离分别为d1,d2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45° 【解析】【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化.(3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值.【详解】 (1)令x =0代入y =﹣3x+3,∴y =3,∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3,∴二次函数解析式为:y =﹣x 2+2x+3.(2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3,∴x =﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB =10,M′B =55,M′A =854, 过点M′作M′G ⊥AB 于点G ,设BG =x , ∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2,∴8516﹣(10﹣x )2=12516﹣x 2, ∴x =510, cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1∴∠B M′P=∠BCA =90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC =45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.7.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,442D AB =,(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++8220.8220.4a b ca b cc⎧-+=⎪⎪++=⎨⎪=⎪⎩解得124abc⎧=-⎪⎪=⎨⎪=⎪⎩2142y x∴=-+;()2如图21:42C y x=-+.关于(),0F m对称的抛物线为()21:242C y x m'=--当C'过点()0,4D时有()2140242m=--解得:2m=当C'过点()2,0B时有()21022242m=-解得:22m=222m∴<<;()3四边形'PMP N可以为正方形由题意设(),P n n,P是抛物线C第一象限上的点2142n n∴-+=解得:122,2n n==-(舍去)即()2,2P如图作HK OF⊥,PH HK⊥于H,MK HK ⊥于K四边形PMP N '为正方形易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得 ()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.8.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32); (2)由题意得:AB=5,AD=10,BD=35,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN =,即3535AN =, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -),则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.9.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC ,∠AOC=90°,∴△AOC 是等腰直角三角形,∴,∠BAC=45°,∵B (-1,0),D (-2,-1),∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB AC BP BA =,即2BP = 解得BP=3, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP , ∴AB AC BA BP =, 即2322BP=, 解得BP=32过点P 作PE ⊥x 轴于E ,则BE=PE=3222=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m --0),D 点坐标为41(3m m -+,0),顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
一、选择题1.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( ) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩ 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个3.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位4.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥5.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( ) A .12y y >B .12y y <C .12y y =D .无法确定7.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( ) A .16q <B .16q >C .16q ≤D .16q ≥8.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或129.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)10.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0 乙:若4b =,则点P 的个数为1 丙:若3b =,则点P 的个数为1 A .甲乙错,丙对 B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错11.表格对应值:x1 2 3 4 2ax bx c ++ 0.5-512.522判断关于的方程2ax bx c ++=的一个解的范围是( )A .01x <<B .12x <<C .23x <<D .34x <<12.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>二、填空题13.对于抛物线243y x x =-+,当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解,则t 的取值范围是 ______.14.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②abc>0;③20a b -=;④80a c +<;⑤930a b c ++>,其中结论正确的是__________.(填正确结论的序号)18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________19.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.20.2251=-+-y x x 的图象不经过__________象限;三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.22.某工厂大门是抛物线形水泥建筑,大门地面宽AB 为4m ,顶部C 距离地面的高度为4.4m ,现有一辆货车,其装货宽度为2.4m ,高度2.8米,请通过计算说明该货车能否通过此大门?23.已知二次函数21122y x kx k =++-. (1)求证:不论k 为任何实数,该二次函数的图象与x 轴总有公共点;(2)若该二次函数的图象与x 轴有两个公共点A ,B ,且A 点坐标为()3,0,求B 点坐标.24.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.25.如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标.(2)点E 是对称轴上的一个动点,求OE CE +的最小值.26.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)若点E 在抛物线上,且BCE 是以BC 为底的等腰三角形,求点E 的横坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.2.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误. 综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.3.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.B解析:B 【分析】根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥. 【详解】∵抛物线开口朝下, ∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点), ∴23c ≤≤, ∴4ac <0,∴24ac b <, ∴①正确;∵1x =为抛物线的对称轴, ∴12ba-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<,∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确;∵1x =为抛物线的对称轴,(1,0)A -, ∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴, ∴1x >时,y 随着x 的增大而减小, ∴⑤不正确;由图像可知:213000y y y =<,>,, ∴132y y y <<, ∴⑥不正确; 故选:B . 【点睛】本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.5.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴b x 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.6.B解析:B 【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系. 【详解】解:∵二次函数y=x 2-4x+5的图象的对称轴是x=2, 在对称轴的右面y 随x 的增大而增大,∵点P (3,y 1)、Q (4,y 2)是二次函数y=x 2-4x+5的图象上两点, 2<3<4, ∴y 1<y 2. 故选:B . 【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键7.C解析:C 【分析】根据抛物线与x 轴的交点情况可得到方程280x x q ++=根的情况,进而得到根的判别式大于等于0,即可得到关于q 的不等式,最后解不等式即可得到答案. 【详解】解:∵抛物线28y x x q =++与x 轴有交点∴方程280x x q ++=有实数根∴2248416440b ac q q ∆=-=-⨯⋅=-≥ ∴16q ≤.【点睛】本题考查了二次函数图象性质与一元二次方程根的情况的关系、解一元一次不等式等,体现了数形结合的思想.8.A解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.9.A解析:A 【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标. 【详解】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(−1,1), ∵A 1A 2∥OA , 设直线A 1A 2为y =x +b 把A 1(−1,1)代入得1=-1+b 解得b=2∴直线A 1A 2为y =x +2,解22y x y x=+⎧⎨=⎩ 得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴A 2(2,4),∴A 3(−2,4),∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9),∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ∴A 2020(1011,10112),故选A .【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.10.C解析:C【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.11.B解析:B【分析】利用x =1和x =2所对应的函数值可判断抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,则根据抛物线于x 轴的交点问题可判断关于x 的方程ax 2+bx +c =0(a≠0)的一个解x 的范围.【详解】解:∵x =2时,y =5,即ax 2+bx +c >0;x =1时,y =-0.5,即ax 2+bx +c <0,∴抛物线y=ax 2+bx +c 与x 轴的一个交点在(1,0)和(2,0)之间,∴关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是1<x <2.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.12.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 二、填空题13.﹣1≤t <8【分析】结合直角坐标系将一元二次方程转化成二次函数与一次函数图象相交的问题确定二次函数在上的取值范围即可求解【详解】解:当时关于x 的一元二次方程有解∴即在图象上和在相交∵当x=2时有最小解析:﹣1≤t <8【分析】结合直角坐标系,将一元二次方程转化成二次函数与一次函数图象相交的问题,确定二次函数 21=43y x x -+在712x -<<上的取值范围即可求解. 【详解】 解:当712x -<<时,关于x 的一元二次方程2430x x t -+-=有解, ∴243x x t -+= 即在图象上21=43y x x -+和2=y t 在712x -<<相交, ∵()21=21y x -- 当x=2时,1y 有最小值﹣1当x =﹣1是,1y 有最大值8 即当712x -<<是,﹣1≤y 1<8 ∴﹣1≤t <8故答案为:﹣1≤t <8【点睛】本题主要考查二次函数与一次函数交点的问题,解题的关键是正确理解题意,将方程转化为二次函数与一次函数相交的问题. 14.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程 解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.15.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则 解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.①②【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后根据对称轴及抛物线与x 轴交点情况进行推理进而对所得结论进行判断即可【详解】解:①由图知:抛物线与x 轴有两个不同的 解析:①②.【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可.【详解】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2−4ac >0,∴b 2>4ac ,故①正确;②抛物线开口向上,得:a >0;抛物线的对称轴为x =2b a-=1,b =−2a ,故b <0;抛物线交y 轴于负半轴,得:c <0;所以abc >0;故②正确; ③∵抛物线的对称轴为x =2b a-=1,b =−2a ,∴2a +b =0,故③错误; ④根据②可将抛物线的解析式化为:y =ax 2−2ax +c (a≠0); 由函数的图象知:当x =−2时,y >0;即4a−(−4a )+c =8a +c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0); 当x =−1时,y <0,所以当x =3时,也有y <0,即9a +3b +c <0;故⑤错误; 所以正确的结论有:①②.故答案为:①②.【点睛】本题主要考查了图象与二次函数系数之间的关系,,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.18.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.19.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可 解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.20.第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断.【详解】解:对于2251=-+-y x x ,∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1,∴当x ﹤0时,y ﹤﹣1,即y ﹤0,∴函数图象不经过第二象限,故答案为:第二.【点睛】 本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.三、解答题21.(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA ,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=, 正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.能,理由见解析【分析】首先建立适当的平面直角坐标系,并利用图象中的数据确定二次函数的解析式,进而得到装货后的最大高度,即可求解.【详解】解:以C 为坐标原点,抛物线的对称轴为y 轴,建立如下图所示的平面直角坐标系,根据题意知,A (﹣2,﹣4.4),B (2,﹣4.4),设这个函数解析式为y =kx 2.将A 的坐标代入,得y =﹣1.1x 2,∵货车装货的宽度为2.4m ,∴E 、F 两点的横坐标就应该是﹣1.2和1.2,∴当x =1.2时 y =﹣1.584,∴GH =CH ﹣CG =4.4﹣1.584=2.816(m ),因此这辆汽车装货后的最大高度为2.816m ,∵2.8<2.816,所以该货车能够通过此大门.【点睛】本题考查点的坐标的求法及二次函数的实际应用关键是建立数学模型,借助二次函数解决实际问题,注意根据线段长度得出各点的坐标,难度一般.23.(1)见解析;(2)B (1-,0)【分析】(1)令y=0得到关于x 的一元二次方程,再用k 表示出该方程的判别式,可判断出其根的情况,可证得结论;(2)把A 点坐标代入可求得抛物线的解析式,再令0y =,可求得方程的解,可得出B 点坐标.【详解】(1)证明:令0y =可得:211022x kx k ++-=, ∵12a =,b k =,12c k =-, ∵22114422b ac k k ⎛⎫=-=-⨯⨯- ⎪⎝⎭221k k =-+ ()210k =-≥,∴不论k 为任何实数,方程211022x kx k ++-=, 二次函数21122y x kx k =++-的图象与x 轴总有公共点; (2)解:∵A (3,0)在抛物线21122y x kx k =++-上, ∴21133022k k ⨯++-=,解得1k =-, ∴二次函数的解析式为21322y x x =--, 令0y =,即213022x x --=, 解得3x =或1x =-,∴B 点坐标为(1-,0).【点睛】本题主要考查了二次函数与方程的关系,掌握二次函数图象与x 轴的交点横坐标为对应一元二次方程的两根是解题的关键.24.(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去); ∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫- ⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫-⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.25.(1)(1,2)D ;(213【分析】(1)先根据抛物线的解析式求出点B 、C 的坐标和对称轴,从而可得点D 的横坐标,再利用待定系数法求出直线BC 的函数解析式,然后将点D 的横坐标代入直线BC 的函数解析式即可得其纵坐标;(2)先根据二次函数的对称性可得点C 关于对称轴的对称点的坐标,然后根据两点之间线段最短、两点之间的距离公式求解即可得.【详解】(1)对于二次函数2y x 2x 3=-++,当0y =时,2230x x -++=,解得1x =-或3x =,则(1,0),(3,0)A B -,当0x =时,3y =,则(0,3)C ,二次函数2y x 2x 3=-++化成顶点式为2(1)4y x =--+, 则二次函数的对称轴为1x =,点D 为BC 与二次函数的对称轴的交点,∴点D 的横坐标为1,设直线BC 的函数解析式为y kx b =+,将点(3,0),(0,3)B C 代入得:303k b b +=⎧⎨=⎩,解得13k b =-⎧⎨=⎩, 则直线BC 的函数解析式为3y x =-+,将1x =代入得:132y =-+=,即点D 的坐标为(1,2)D ;(2)如图,作点C 关于对称轴MN 的对称点C ',连接C E ',由二次函数的对称性得:点C '一定在此二次函数的图象上,其纵坐标与点C 的纵坐标相同,且C E CE '=,则OE CE OE C E '+=+,由两点之间线段最短得:当点,,O E C '共线时,OE C E '+取最小值,最小值为OC ', 设点C '的坐标为(,3)C a ',二次函数的对称轴为1x =,点C 的坐标为(0,3)C , 012a+∴=, 解得2a =,即(2,3)C ', 则最小值22(20)(30)13OC '=-+-=,故OE CE +的最小值为13.【点睛】本题考查了二次函数的图象与性质、利用待定系数法求一次函数的解析式、两点之间线段最短等知识点,较难的是题(2),利用二次函数的对称性找出最小值是解题关键. 26.(1)213222y x x =-++;(2)1412-或1412-【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)根据等腰三角形性质,然后列方程求解.【详解】解:(1)∵抛物线22y ax bx =++经过点(1,0),(4,0)A B -, ∴2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为213222y x x =-++;(2)设点E 为213,222⎛⎫-++ ⎪⎝⎭m m m 依题意得,EC EB = ∴22EC EB =,即2222221313(4)22222m m m m m m ⎛⎫⎛⎫+-+=-+-++ ⎪ ⎪⎝⎭⎝⎭ 化简得,2100m m +-=解得:1122m =-+2122m =--∴点E 的横坐标为122-+或122--. 【点睛】本题为二次函数的综合应用,涉及待定系数法、等腰三角形等,根据等腰三角形性质列方程式解题的关键.。
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =-.下列结论:①240b ac ->,②0abc <,③420a b c -+>.其中正确的是( )A .①②B .①③C .②③D .①②③ 3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 5.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+B .231y x =-C .()2321y x =++D .()2321y x =-+ 6.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n 7.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++ 10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-11.抛物线2288y x x =-+-的对称轴是( )A .2x =B .2x =-C .4x =D .4x =- 12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+ B .2(1)1y x =-+ C .2(2)2y x =-+ D .2(1)3y x =-+二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论:①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____.15.已知抛物线y =x 2+9的最小值是y =_____.16.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________17.如图,在直角坐标系中,点A ,C 在x 轴上,且8AC =,10AB =,90ACB ∠=,抛物线经过坐标原点O 和点A ,若将点B 向右平移5个单位后,恰好与抛物线的顶点D 重合,则抛物线的解析式为_______.18.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.19.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.20.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.三、解答题21.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.22.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 23.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值.24.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?25.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?26.已知关于x 的方程222(1)2()10a x a b x b +-+++=.(1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a =-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④.【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确; ②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a --=-=-==-, 当11222a <-<时,解得102a <<, ∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a =-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B .【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.B【分析】先由抛物线与x 轴的交点个数判断出结论①,再根据二次函数图像的开口方向,及与y 轴的交点位置,对称轴的位置分别判断出,,a b c 的符号可判断结论②,最后用2x =-时,抛物线再x 轴上方判断结论③.【详解】由图象知,抛物线与x 轴有两个交点,方程ax 2+bx+c=0有两个不相等的实数根,∴b 2-4ac>0,故①正确,由图象知抛物线的开口向下0a <,抛物线与y 轴交于正半轴0c >,对称轴直线为1x =-, ∴102b a-=-<,可推出0b <, ∴0abc >,故②错误,由图象知,当x=-2与x=0对应的y 值相同,0y >,∴420a b c -+>,故③正确.故选:B .【点睛】本题主要考查了二次函数图形与系数的关系,抛物线的开口方向,与y 轴的交点,抛物线的对称轴,掌握抛物线的性质是解题的关键3.B解析:B【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2b a=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误;∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误;综上,正确的有①②④.【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.4.B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .【点睛】 本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.5.A解析:A【分析】根据二次函数图象的平移规律解答即可.【详解】解:把抛物线231y x =+向上平移2个单位可得233y x =+,故选:A .【点睛】本题考查了二次函数的平移变换,熟悉二次函数的平移规律是解题的关键. 6.A解析:A【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题.解:∵二次函数的解析式是()()2y x p x q =---∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根∴当x m =或x n =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间.故选:A【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.7.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.8.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .本题属于二次函数与一次函数的综合,关键在意找到系数的正负.9.C解析:C【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得.【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键. 10.D解析:D【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案.【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键.11.A解析:A【分析】利用抛物线对称轴公式求解即可.【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-, 故选:A .【点睛】 本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.12.C解析:C【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x-2)2+2.故选:C .【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可.【详解】解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12.【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.15.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .16.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 17.【分析】利用勾股定理易求BC 的长即点D 的纵坐标长度再求出OE 的长即可出点D 的坐标设抛物线的解析式为y=a (x-3)2+6把点A 坐标代入求出a 的值即可得到抛物线解析式【详解】解:如图所示∵BC ⊥x 轴即 解析:2243y x x =-+ 【分析】利用勾股定理易求BC 的长,即点D 的纵坐标长度,再求出OE 的长即可出点D 的坐标,设抛物线的解析式为y=a (x-3)2+6,把点A 坐标代入求出a 的值即可得到抛物线解析式.【详解】解:如图所示,∵BC ⊥x 轴,即∠BCA=90°,∴226BC AB AC -=.由平移性质得,CE=BD=5.∴AE=OE=3.∴D 的坐标为(3,6).设抛物线的解析式为y=a (x-3)2+6,将点A (6,0)代入得,a (6-3)2+6=0.∴a=23, ∴y=-23(x-3)2+6=2243x x -+. 故答案为:2243y x x =-+ 【点睛】 本题考查了抛物线与x 轴的交点、利用待定系数法求抛物线的解析式以及勾股定理的运用,题目的综合性较强,难度中等.18.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭.故答案为:916. 【点睛】 本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.19.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .20.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<,123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.三、解答题21.(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.22.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=,∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.23.(1)22y x x =-++;(2 【分析】(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),利用待定系数法即可求得二次函数关系式;(2)先分别表示出点P 、Q 的横坐标,进而可表示出它们的纵坐标,再根据题意列出方程求解即可.【详解】解:(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),将(2,0),(0,2)代入2y x bx c =-++,得 4202b c c -++=⎧⎨=⎩解得12b c =⎧⎨=⎩∴二次函数的表达式为22y x x =-++;(2)∵正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,∴点P 的横坐标为-m ,点Q 的横坐标为2-m ,当x=-m 时,22y m m =--+,当x=2-m 时,2(2)22y m m +=---+ 23m m =-∵点Q 纵坐标是点P 纵坐标的2倍,∴2232(2)m m m m -=--+解得1m =,2m =(舍去)∴m 的值为52-+. 【点睛】 本题考查了用待定系数法求二次函数关系式,正方形的性质等相关知识,熟练掌握待定系数法求二次函数关系式是解决本题的关键.24.(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-, 11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.25.(1)211020010z x x =-+-,当销售价格50元/个时,最大利润为50万元;(2)4060x ≤≤,40.【分析】 (1)总净利润=单件利润×销售量-40,首先求出单件利润(x-20),然后乘以销售量y ,将解析式化为顶点式即可求解;(2)令(1)中解析式的值为40,然后作出函数图像示意图,根据示意图即可求解x 的取值范围,然后结合销售量和销售价的关系即可判断x 的值.【详解】(1)根据题意得:()2040z x y =--=()12084010x x ⎛⎫--+- ⎪⎝⎭ =211020010x x -+- 将其化为顶点式:211020010x x -+- =()2110020010x x --- =()2150250020010x ⎡⎤----⎣⎦ =()21505010x --+ ∴销售价格定为50元/个时净得利润最大,最大值是50万元. (2)当公司要求净得利润为40万元时,即()21x 50504010--+= 解得:x 1=40,x 2=60如图,通过观察函数y =()21505010x --+的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60 而y 与x 的函数关系式为:1810y x =-+,y 随x 的增大而减少, 因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.【点睛】 本题考查了二次函数的实际应用,在本类题型中,将二次函数的一般式化为顶点式是解题的关键.26.(1)12;(2)27y -≤< 【分析】(1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤ ∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.。
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④ 3.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x =4.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( ) A .(1,5)- B .(2,8)- C .(3,18)-D .(4,20)-5.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .47.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米 B .12米 C .25米 D .35米 8.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>9.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .10.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2-B .()1,2C .()1,2-D .()2,111.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<12.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<二、填空题13.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.14.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).15.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.16.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,的取值范围是______.17.将抛物线2(3)2y x =--向左平移3个单位后的解析式为______.18.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.19.已知二次函数()232y x m x m =-+-+的顶点在y 轴上,则其顶点坐标为___________.20.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.三、解答题21.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元).(1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润; (3)为了使每月利润等于6000元时,应如何确定销售价格. 22.已知二次函数y =﹣x 2+4x .(1)下表是y 与x 的部分对应值,请补充完整; x … 0 1 2 3 4 … y……(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出该函数图象;(3)根据图象,写出当y <0时,x 的取值范围.23.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表: 第x 天售价(元件)日销售量(件)130x ≤≤60x + 30010x -y (1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元? (3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果. 24.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值.25.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)若点E 在抛物线上,且BCE 是以 BC 为底的等腰三角形,求点E 的横坐标. 26.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大,由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.A解析:A 【分析】由OC 与OA 的大小对①进行判断;利用二次函数的性质对②进行判断;利用x=-2时,y <0可对③进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点为(3,0),然后根据抛物线与x 轴的交点问题可对④进行判断. 【详解】∵抛物线与y 轴的交点在x 轴的上方,且OC >1, ∴c >1,所以①正确; ∵抛物线的对称轴为直线x=1,而点(2,y 1)到直线x=1的距离小于点(4,y 2)到直线x=1的距离相等, ∴y 1>y 2,所以②正确; ∵x=-2时,y <0,∴4a-2b+c <0,所以③正确;∵抛物线的对称轴为直线x=1,而抛物线与x 轴的一个交点为(-1,0), ∴抛物线与x 轴的另一个交点为(3,0),∴方程ax 2+bx+c=0的两根是x 1=-1,x 2=3,所以④正确. 故选:A . 【点睛】考查了二次函数图象与系数的关系,解题关键是熟记二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3.D解析:D 【分析】直接利用二次函数对称轴求法得出答案.解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.4.C解析:C 【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可. 【详解】解:∵22229()9y x mx x m m =--=---,∴点M 为(m ,29m --), ∴点M′的坐标为(m -,29m +), ∴222299m m m -=++, 解得:3m =±; ∵0m >, ∴3m =;∴点M 的坐标为:(3,18-). 故选:C . 【点睛】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.5.B解析:B 【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 . 【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y >∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解;综上所述得12m <.【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小.6.C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确; 故选C . 【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.C解析:C 【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0)B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值. 【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0)B(-1,O), 设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2ba-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a . ∴y =ax 2-a .∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0). ∴PH =a×(-0.2)2-a =-0.96a EF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a ∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故选:C . 【点睛】本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.8.A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y , ∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键.9.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.10.B解析:B【分析】由于给的是二次函数顶点式的表达式,可直接写出顶点坐标.【详解】解:∵y=-5(x-1)2+2,∴此函数的顶点坐标是(1,2).故选:B .【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数顶点式的表示方法.11.C解析:C【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围. 12.C解析:C【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9, 0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C .【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.【分析】由题意得当y=0时则有的两个根为进而根据同解方程可进行求解【详解】解:∵抛物线y =ax2+bx+c 经过点A (﹣30)B (40)两点∴当y=0时则有的两个根为∴的解为:或解得:;故答案为【点睛解析:121,6x x =-=【分析】由题意得当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,进而根据同解方程可进行求解.【详解】解:∵抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,∴当y=0时,则有20ax bx c ++=的两个根为123,4x x =-=,∴()2220a x bx b c -+-+=的解为:23x -=-或24x -=, 解得:121,6x x =-=;故答案为121,6x x =-=.【点睛】本题主要考查二次函数与一元二次方程的关系,熟练掌握二次函数与一元二次方程的关系是解题的关键.14.【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++, ∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 15.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC 解析:26- 【分析】 连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=22,根据三角函数和勾股定理可得点B 的坐标为(6-,2-),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=22,∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12OB= 2,OD= 22OB BD -= 82-= 6, ∴点B 的坐标为(6-,2-), ∵点B 在抛物线()20y axa =<的图象上, 则:()262a -=-,解得:26a =-, 故答案为26a =-故答案为:26-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.16.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x >【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出.【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3.【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.17.【分析】根据得到该抛物线的顶点坐标为(3-2)将该点向左平移3个单位后得到的点的坐标为(0-2)即可得到解析式;【详解】∵抛物线∴顶点坐标为(3-2)∴向左平移3个单位后得到新的坐标为(0-2)∴平解析:22y x =-【分析】根据2(3)2y x =--得到该抛物线的顶点坐标为(3,-2),将该点向左平移3个单位后得到的点的坐标为(0,-2),即可得到解析式;【详解】∵抛物线2(3)2y x =--∴顶点坐标为(3,-2),∴向左平移3个单位后得到新的坐标为(0,-2),∴平移后的解析式22(33)22y x x =-+-=-.【点睛】本题考查了二次函数图象的平移变换,正确掌握二次函数平移的方法是解题的关键; 18.y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为解析:y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式.【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故答案为y =(x ﹣2)2+2.【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.19.【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴从而求出m 的值再根据二次函数的解析式即可得出答案【详解】二次函数的顶点在y 轴上此二次函数的对称轴为y 轴即解得二次函数的解析式为其顶点坐标为故答案 解析:()0,2【分析】先根据二次函数的顶点在y 轴上可得其对称轴为y 轴,从而求出m 的值,再根据二次函数的解析式即可得出答案.【详解】二次函数()232y x m x m =-+-+的顶点在y 轴上, ∴此二次函数的对称轴为y 轴,即()2023m x -=-=⨯-, 解得2m =,∴二次函数的解析式为232y x =-+,∴其顶点坐标为()0,2,故答案为:()0,2.【点睛】本题考查了二次函数的顶点坐标和对称轴,熟练掌握二次函数的对称性是解题关键. 20.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =,∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键. 三、解答题21.(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.22.(1)3,4,3;(2)见解析;(3)x <0或x >4.【分析】(1)把x =1,x =2,x =3分别代入函数解析式,求出y 的值即可;(2)在坐标系内描出各点,再顺次连接即可;(3)根据函数图象即可得出结论.【详解】解:(1)∵当x =1时,y =﹣1+4×1=3;当x =2时,y =﹣4+4×2=4;当x =3时,y =﹣9+4×3=3.故答案为:3,4,3;(2)如图所示;(3)如图所示,当y <0时,x 的取值范围是x <0或x >4.【点睛】本题考查了二次函数的图象,函数与方程、不等式的关系,熟知画二次函数图象的一般步骤列表、描点、连线,理解函数与方程、不等式的关系是解题关键.23.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.24.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x 2-x-2=0可得A ,B 两点的坐标;(2)把P (m ,-2)代入y=x 2-x-2得m 2-m-2=-2,然后解关于m 的方程即可.【详解】解:(1)当y =0时,x 2-x-2=0,解得x 1=-1,x 2=2,∴A (-1,0),B (2,0);(2)把P (m ,-2)代入y =x 2-x-2得m 2-m-2=-2,解得m 1=0,m 2=1,∴m 的值为0或1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.25.(1)213222y x x =-++;(2)122-+或122--【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)根据等腰三角形性质,然后列方程求解.【详解】解:(1)∵抛物线22y ax bx =++经过点(1,0),(4,0)A B -, ∴2016420a b a b -+=⎧⎨++=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为213222y x x =-++;(2)设点E 为213,222⎛⎫-++ ⎪⎝⎭m m m 依题意得,EC EB = ∴22EC EB =,即2222221313(4)22222m m m m m m ⎛⎫⎛⎫+-+=-+-++ ⎪ ⎪⎝⎭⎝⎭ 化简得,2100m m +-=解得:1122m =-+2122m =--∴点E 的横坐标为122-+或122--. 【点睛】本题为二次函数的综合应用,涉及待定系数法、等腰三角形等,根据等腰三角形性质列方程式解题的关键.26.223y x x =--+,点(2,3)P -在这个二次函数的图象上.【分析】先设此二次函数解析式的交点式,再将点(0,3)代入即可得,然后将点P 的坐标代入进行验证即可得.【详解】由题意,设此二次函数的解析式为31y a x x =+-()(),将点(0,3)代入得:(03)(01)3a +⨯-=,解得1a =-,则此二次函数的解析式为2(3)(1)23y x x x x =-+-=--+,即223y x x =--+;当2x =-时,()()222233=---⨯-+=y ,则点(2,3)P -在这个二次函数的图象上.【点睛】本题考查了利用待定系数法求二次函数的解析式等知识点,熟练掌握待定系数法是解题关键.。
九年级上册数学 二次函数单元测试卷(解析版)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m =3±3或1±3,∴P (3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3), 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.3.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标; (2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.4.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=52∴﹣m2+3m+4=214∴3521(,)24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539(,)24M--21139(,)24M-3521(,)24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.5.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,0453593535,(4359355)4t tS tt⎧⎛⎫≤≤⎪ ⎪⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t 3535<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5;①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(435935(5)4t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪+<≤⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.6.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003ab c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0), ∴AB=-1-(-3)=2, ∵OA=OC ,∠AOC=90°, ∴△AOC 是等腰直角三角形, ∴AC=2OA=32,∠BAC=45°, ∵B (-1,0),D (-2,-1), ∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB ACBP BA =, 即232BP =, 解得BP=223, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP ,∴AB ACBA BP =, 即2322BP=, 解得BP=32, 过点P 作PE ⊥x 轴于E , 则BE=PE=32×2=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫-- ⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似; 【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______; (2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; ①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少? 【答案】(1)()1,41m --+,13x;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】 【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解. 【详解】解:(1)12bx a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大.故答案为:(1,41)m --+;13x;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0), AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点, ②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形, 则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2, 即22242(4)x =+-, 解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1). 【解析】 【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标. 【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.9.如图,已知二次函数22(0)y ax ax c a的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1) 求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且3tan2OAM∠=,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4【解析】【分析】(1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M在x轴下方时,有31312xx+-=+,∴59x=-∴25 (,9M-23 -)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N 当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:5 =,∴所求最小值为5【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =, ∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得 222OP OF PF +=,∴222(45)55(2)t t +-=+-∴51t +=. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
一、选择题1.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<2.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩ 3.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .20 4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个5.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .6.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或127.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+ B .231y x =- C .()2321y x =++D .()2321y x =-+8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令COAO=m ,则下列m 与b 的关系式正确的是( )A .m=2b B .m=b+1C .m=6bD . m=2b +110.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =11.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.12.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =4二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.15.写出一个开口向下的二次函数的表达式______.16.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-0 3 yn33_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.17.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.18.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B 的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)19.如图,在平面直角坐标系xOy 中,抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为6,则线段AB 的长为______.20.抛物线y =x²-x 的顶点坐标是________三、解答题21.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.22.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?23.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润. 售价x (元) ... 70 65 60 ... 销售量y (个)...300350400...(2)售价为多少时利润最大?最大利润为多少?24.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示. (1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式; (2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?25.已知抛物线的顶点为()1,4-,且过点()2,5-. (1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).26.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系202600y x =+.(1)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(2)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系. 【详解】 解:∵在22y xx c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小, ∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3, ∴312y y y <<, 故选:C . 【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.2.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A .【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.3.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x -+=--解得:62x a =- 由x ≠2得,a ≠5, 由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1, 同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15, 故选:B . 【点睛】本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.B解析:B 【分析】由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断. 【详解】解:①∵由二次函数的图象可知:抛物线的开口向上, ∴a >0;又∵二次函数的图象与y 轴的交点在负半轴, ∴c <0;∴ac <0,即①正确; ②由图象知,对称轴x =2ba-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确; ④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③. 故选:B . 【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.D解析:D 【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得. 【详解】 设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BCs =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤,由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合, 故选:D . 【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.6.A解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<,∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.7.A解析:A 【分析】根据二次函数图象的平移规律解答即可. 【详解】解:把抛物线231y x =+向上平移2个单位可得233y x =+, 故选:A . 【点睛】本题考查了二次函数的平移变换,熟悉二次函数的平移规律是解题的关键.8.A解析:A 【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题. 【详解】解:∵二次函数的解析式是()()2y x p x q =--- ∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根 ∴当x m =或xn =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间. 故选:A 【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.9.B解析:B 【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可. 【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为cm-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=,将1c b =+代入可得;2110b b m m +--+=,即2210m b bmm---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦, 解得:1m b =+,或1m =-(舍去), 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.10.C解析:C 【分析】根据函数图象和性质逐个求解即可. 【详解】解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C . 【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征.11.B解析:B【解析】解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断. 12.C解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.15.(答案不唯一)【分析】根据二次函数开口向下二次项系数为负可据此写出满足条件的函数解析式【详解】解:二次函数的图象开口向下则二次项系数为负即a <0满足条件的二次函数的表达式为y=-x2故答案为:y=-解析:2y x =-(答案不唯一)【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式.【详解】解:二次函数的图象开口向下,则二次项系数为负,即a <0,满足条件的二次函数的表达式为y=-x 2.故答案为:y=-x 2(答案不唯一).【点睛】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单. 16.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为 解析:①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下, ∵33|2|||22π-->- ∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.17.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根.【详解】解:∵当x=0时,4()()y ax b x b=++=4,∴m=0或m=﹣2,∴二次函数4()()y ax b x b =++经过(0,4),(2,4)或(2,4),(0,4)-,∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =,∴方程的另一个根为x=﹣1或﹣5,故答案为:x=﹣1或﹣5.【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键. 18.①②【分析】根据开口向上故;对称轴再y 轴的的左边根据同左异右故抛物线交y 轴的下方;对称轴为故有即抛物线与x 轴的交点有两个根据对称性可以得到交点为等信息利用这些信息进行答题【详解】解:根据开口向上故; 解析:①②【分析】根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方;对称轴为1x =-,故有12b a-=- 即2b a =,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-等信息,利用这些信息进行答题.【详解】解:根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方,故0c < ,因此0abc <①正确对称轴为1x =-,故有12b a-=- 即2b a = 故②20a b -=也正确 由抛物线知道,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==- 当当0y >时,图形上是在x 轴的上方,有1x >或者3x <- 故③错误当x=1是,由图可以知道0a b c ++= 即2220a b c ++= 由2b a =,便有320b c += 故④错误由图形可以知道当1x <-时,y 随x 的增大而减小,当1x ≥-时,y 随x 的增大而增大,故⑤错误故答案为①②【点睛】本题考查二次函数图像,从图像中获取信息是关键,19.2【分析】先确定抛物线的解析式令得到AB 两点的坐标即可得到结果;【详解】∵抛物线y =-2x2+bx +c 顶点C 到x 轴的距离为6∴化二次函数解析式为顶点式为:∴令得解得:∵抛物线y =-2x2+bx +c 与解析:先确定抛物线的解析式,令0y =,得到A ,B 两点的坐标,即可得到结果;【详解】∵抛物线y =-2x 2+bx +c 顶点C 到x 轴的距离为6,∴化二次函数解析式为顶点式为:()226y x h =--+, ∴令0y =,得()2260x h --+=,解得:1x h =+2x h =-,∵抛物线y =-2x 2+bx +c 与x 轴交于A ,B 两点,∴()A h +,()B h -,∴(AB h h =+--=故答案是【点睛】本题主要考查了二次函数的性质,抛物线与坐标轴的交点,准确分析计算是解题的关键. 20.【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去); ∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫- ⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫- ⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫-⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.22.(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-,11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ St t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.23.(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解;(2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可.【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350),∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,∴商品的成本为:70÷(1+40%)=50元,∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000,此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】(1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可;(2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得: 12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.25.(1)()214y x =--或223y x x =--; (2)1x <-或3x >【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.26.(1)这种衬衫定价为70元;(2)售价定为65元可获得最大利润,最大利润是19500元【分析】(1)根据“总利润=每件商品的利润×销售量”列出方程并求解,最后根据尽量给客户实惠,对方程的解进行取舍即可;(2)求出w 的函数解析式,将其化为顶点式,然后求出定价的取值,即可得到售价为多少万元时获得最大利润,最大利润是多少.【详解】解:(1)()()5020260024000x x --+=,解得,170x =,2110x =,∵尽量给客户优惠,∴这种衬衫定价为70元;(2)由题意可得,()()()250202600209032000w x x x =--+=--+,∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50x ≤,()505030%x -÷≤,解得,5065x ≤≤,∴当65x =时,w 取得最大值,此时19500w =,答:售价定为65元可获得最大利润,最大利润是19500元,【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.。
一、选择题1.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m 的值可以是( )A .1B .0C .1-D .2- 2.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( ) A . B .C .D .3.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x a x x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8 C .4 D .34.设函数()()12y x x m =--,23y x =,若当1x =时,12y y =,则( ) A .当1x >时,12y y <B .当1x <时,12y y >C .当0.5x <时,12y y <D .当5x >时,12y y >5.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t << 6.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .4 7.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =- B .直线3x = C .直线1x = D .直线2x = 8.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 9.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y轴交于C 点,且OC=OB,令CO AO =m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>二、填空题13.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a -,则A ∠=______︒. 14.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).15.关于x 的一元二次方程220x x k -++=的一个解是13x =,则抛物线22y x x k =-++与x 轴的交点坐标是____.16.已知函数y =ax 2﹣(a ﹣1)x +1,当0<x <2时,y 随x 的增大而增大,则实数a 的取值范围是_____.17.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)18.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.20.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)三、解答题21.如图,已知正三角形ABC 的边长为4,矩形DEFG 的DE 两个点在正三角形BC 边上,F 、G 点在AB 、AC 边上,求矩形DEFG 的面积的最大值是多少?22.已知:二次函数2y x bx c =++过点(0,-3),(1,-4)(1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .23.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小;④函数图象与x 轴有2个公共点.所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k 的取值范围是____.24.如图①,抛物线23y ax bx =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点C .(1)求抛物线23y ax bx =++的解析式;(2)如图②,连接AC ,点E 是第一象限内抛物线上的动点,过点E 作EF AC ⊥于点F ,//EG y 轴交AC 于点G ,求EFG 面积的最大值及此时点E 的坐标;(3)如图③,若抛物线的顶点坐标为点D ,点P 是抛物线对称轴上的动点,在坐标平面内是否存在点Q ,使得以A 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.26.如图,已知抛物线2y x bx c =-++经过点(1,0)A -,(3,0)B ,与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)①如图1,当点P 在直线BC 上方时,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .若2PE ED =,求PBC 的面积;②抛物线上是否存在一点P ,使PBC 是以BC 为底边的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】当k <0时,抛物线对称轴为直线432k x k +=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k +=-2-32k >-2,可确定m 的范围, 【详解】 对称轴:直线433222k x k k+=-=--, 0k <, 3222k∴-->-, x m <时,y 随x 的增大而增大,322m k ∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D .【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键. 2.C解析:C【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案.【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0,∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600,∴顶点坐标为(20,600),∵s 从0开始到最大值时停止,∴0≤t≤20,∴C 选项符合题意,故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.3.C解析:C【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案.【详解】解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a ,∴当x <a 时,y 随x 的增大而减小,∵当x≤1时,y 随x 的增大而减小,∴a≥1, 解分式方程4311x a x x ++=--可得x =72a -, ∵关于x 的分式方程4311x a x x ++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4,故选:C .【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.4.D解析:D【分析】当y 1=y 2,即(x ﹣2)(x ﹣m )=3x ,把x =1代入得,(1﹣2)(1﹣m )=3,则m =4,画出函数图象即可求解.【详解】解:当y 1=y 2,即(x ﹣2)(x ﹣m )=3x, 把x =1代入得,(1﹣2)(1﹣m )=3,∴m =4,∴y 1=(x ﹣2)(x ﹣4),抛物线的对称轴为:x =3,如下图:设点A 、B 的横坐标分别为1,5,则点A 、B 关于抛物线的对称轴对称,从图象看在点B 处,即x =5时,y 1>y 2, 故选:D .【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.5.C解析:C【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b =1, 解得b=-2, 所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键.6.C解析:C【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④.【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2b a>0,c <0, 即b <0,∴abc >0,∴①正确;由抛物线与x 轴有两个交点,∴△=b 2-4ac >0,故②正确;由图象可知:x=1时,y=a+b+c <0,故③正确; 由图象可得,当0<x<-2b a时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个.故选:C .【点睛】 本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.7.D解析:D【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.8.A解析:A【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可.【详解】 解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.9.B解析:B【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可.【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=,则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为c m-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=, 将1c b =+代入可得;2110b b m m +--+=,即2210m b bm m ---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦,解得:1m b =+,或1m =-(舍去),故选:B .【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.10.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.11.C解析:C【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确.故选:C .【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.12.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.二、填空题13.75【分析】根据二次函数的性质当时y 有最小值为由此得到=整理得a=b 从而将问题转化为等腰三角形底角计算问题【详解】∵ab 是的边∴a+b >0;∴有最小值且当x=时取得最小值y=根据题意得=整理得a=b解析:75【分析】 根据二次函数的性质,当1x 2=-时,y 有最小值为534a b -+,由此得到534a b -+=2a -,整理得a=b ,从而将问题转化为等腰三角形底角计算问题. 【详解】∵a ,b 是ABC 的边,∴a+b >0;∴2()()()y a b x a b x a b =+++--有最小值,且当x=()12()2a b a b +-=-+时,取得最小值, y=534a b -+,根据题意,得534a b -+=2a -, 整理,得a=b , ∴ABC 是等腰三角形,∵30C ∠=︒, ∴180180307522C A -∠-∠===︒,∴∠A 的度数为75︒,故填75.【点睛】本题考查了二次函数的最小值,等腰三角形的判定和性质,灵活利用二次函数的最小值构造等式是解题的关键.14.【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0 解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 15.(30)(-10)【分析】设一元二次方程的另一个根为利用根与系数的关系即可求得进而得到对应的函数与轴的交点坐标【详解】设一元二次方程的另一个根为∵即解得:∴抛物线与轴的交点坐标为(30)(-10)故解析:(3,0),(-1,0)【分析】设一元二次方程220x x k -++=的另一个根为2x ,利用根与系数的关系即可求得2x ,进而得到对应的函数22y x x k =-++与x 轴的交点坐标. 【详解】设一元二次方程220x x k -++=的另一个根为2x , ∵12b x x a+=-,即232x +=, 解得:21x =-,∴抛物线22y x x k =-++与x 轴的交点坐标为(3,0),(-1,0),故答案为:(3,0),(-1,0).【点睛】本题考查了一元二次方程根与系数的关系,抛物线与x 轴交点的坐标.解题时,注意二次函数22y x x k =-++与一元二次方程22y x x k =-++间的转化关系. 16.【分析】分a <0a=0及a >0三种情况考虑:当a <0时利用二次函数的性质可得出﹣≥2解之可得出a 的取值范围;当a=0时原函数为一次函数y=x+1由一次函数的性质可得出y 随x 的增大而增大进而可得出a= 解析:113a -≤≤ 【分析】分a <0,a=0及a >0三种情况考虑:当a <0时,利用二次函数的性质可得出﹣()12a a --≥2,解之可得出a 的取值范围;当a=0时,原函数为一次函数y=x+1,由一次函数的性质可得出y 随x 的增大而增大,进而可得出a=0符合题意;当a >0时,利用二次函数的性质可得出,﹣()12a a --≤0,解之可得出a 的取值范围.综上此题得解.【详解】解:根据题意得:当a <0时,﹣()12a a --≥2, 解得:﹣13≤a <0; 当a =0时,原函数为一次函数y =x +1,∵1>0,∴y 随x 的增大而增大,∴a =0符合题意;当a >0时,﹣()12a a --≤0, 解得:a ≤1.综上所述:a 的取值范围是﹣13≤a ≤1, 故答案为﹣13≤a ≤1. 【点睛】本题考查了二次函数图象与系数的关系,分a <0,a=0及a >0三种情况,找出a 的取值范围是解题的关键. 17.【分析】抛物线开口向下且对称轴为直线x=-1根据二次函数的图象性质:在对称轴的左侧y 随x 的增大而增大判断即可【详解】解:∵二次函数的解析式为y=-x2-2x+c=-(x+1)2+1+c ∴该抛物线开口解析:>【分析】抛物线开口向下,且对称轴为直线x=-1,根据二次函数的图象性质:在对称轴的左侧,y 随x 的增大而增大判断即可.【详解】解:∵二次函数的解析式为y=-x 2-2x+c=-(x+1)2+1+c ,∴该抛物线开口向下,且对称轴为直线:x=-1.∵点A (-2,y 1),B (-3,y 2)在二次函数y=-x 2-2x+c 的图象上,且-3<-2<-1, ∴y 1>y 2.故答案为>.【点睛】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.19.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=, ∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键. 20.①③【分析】由抛物线的开口方向判断的符号由抛物线与轴的交点判断的符号然后根据对称轴抛物线的增减性进行推理进而对所得结论进行判断【详解】解:①图象开口向上与轴交于负半轴能得到:故①正确;②对称轴为直线解析:①③【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴、抛物线的增减性进行推理,进而对所得结论进行判断.【详解】解:①图象开口向上,与y 轴交于负半轴,能得到:0a >,0c <,0ac ∴<,故①正确; ②对称轴为直线1x =,12b a∴-=, 2b a ∴=-,20b a ∴+=,故②错误;③由图象可知,当1x =-时,0y a b c =-+=,故③正确;④由图象可知,在对称轴的右侧,从左往右图象逐渐上升,所以当1x >时,y 随x 的增大而增大,故④错误.故答案为:①③.【点睛】主要考查二次函数的图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.三、解答题21.【分析】设EF=x ,先求出三角形ABC 的高AH 的长,由矩形性质FG ∥BC ,推出△AFG ∽△ABC 利用性质得比例式FG AM =BC AH求出4x ⋅,利用矩形面积公式S矩形DEFG =24x x +利用函数的性质求出最值即可. 【详解】过A 作AH ⊥BC 于H ,交FG 于M ,∵正三角形ABC 的边长为4,∴BH=CH=2,在Rt △ABH 中由勾股定理AH=2222AB -BH =4-2=23, 设EF=x ,则AM=23-x ,∵矩形DEFG 的DE 两个点在正三角形BC 边上,∴FG ∥BC ,∴△AFG ∽△ABC ,∴FG AM =BC AH, ∴234AM BC FG==AH 23x -⋅, ∴S 矩形DEFG =FE•FG=223423423x xx x -⋅=-+, ∵23a =-0<, 则抛物线开口向下,有最大值,3232x =-=⎛⎫⨯- ⎪⎝⎭S 最大=23.【点睛】本题考查等边三角形内接矩形问题,涉及等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质,掌握等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质是解题关键.22.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得:314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩, 所以,二次函数的表达式为:223y x x =--;(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.23.(1)x 为任意实数;(2)见解析;(3)①③;(4)13k -<<【分析】(1)根据函数解析式可以写出x 的取值范围;(2)根据函数图象的特点,可以得到该函数关于y 轴对称,从而可以画出函数的完整图象;(3)根据函数图象可以判断各个小题中的结论是否成立;(4)根据函数图象,可以写出关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根时,k 的取值范围.【详解】解:(1)∵函数y =x 2-4|x |+3,∴x 的取值范围为任意实数,故答案为:任意实数;(2)由函数y =x 2-4|x |+3可知,x >0和x <0时的函数图象关于y 轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y 轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x >2时,y 随x 的增大而增大,当x <-2时,y 随x 的增大而减小,故③正确; 函数图象与x 轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根,则k 的取值范围是-1<k <3, 故答案为:-1<k <3.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)2y x 2x 3=-++;(2)最大面积8164,315,24E ⎛⎫ ⎪⎝⎭;(3)()1,4P -或 21,3⎛⎫ ⎪⎝⎭或 (1,425+或(1,425-【分析】(1)把A,B 坐标代入即可求解;(2)先求出直线AC 解析式,证明△EFG 是等腰直角三角形,再得到当EG 最大时,EFG 面积的最大故可列出EG 关于x 的二次函数,即可求解;(3)根据菱形的性质作图,分情况讨论即可求解.【详解】(1)把()3,0A 、()1,0B -代入23y ax bx =++得093303a b a b =++⎧⎨=-+⎩,解得12a b =-⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++;(2)令x=0,解得y=3∴C (0,3)设直线AC 解析式为y=mx+n ,把()3,0A ,C (0,3)代入得033m n n =+⎧⎨=⎩解得13n n =-⎧⎨=⎩∴直线AC 解析式为y=-x+3,∵CO=OA∴△AOC 是等腰直角三角形,∴∠ACO=45°∵//EG y∴∠FGE=45°∵EF AC ⊥∴△EFG 是等腰直角三角形,∴EF=FG,EG 2=EF 2+FG 2=2EF 2∴S △EFG =12EF×FG=12EF 2=14EG 2 ∴当EG 最大时,EFG 面积的最大设E (x, 223x x -++)则G (x ,-x+3)∴EG=(223x x -++)-(-x+3)=-(x-32)2+94 ∴当x=32,EG 最大值为94,故此时EFG 最大面积为14×(94)2=8164,315,24E ⎛⎫ ⎪⎝⎭; (3)如图①AD=DP 时,∵2y x 2x 3=-++=-(x-1)2+4∴D (1,4)又A (3,0)∴==DP∴P 1(1,4+,P 2(1,4-②DP=AP 时设P (1,y )∵DP 2=AP 2,A (3,0)∴(4-y )2=(3-1)2+(0-y )2解得y=23 ∴P 321,3⎛⎫ ⎪⎝⎭③当AD=AP 时,设P (1,y )∵AD 2=AP 2,A (3,0)∴(25)2=(3-1)2+(0-y )2解得y=-4(4舍去)∴P 4()1,4-综上,P 点坐标为()1,4P -或 21,3⎛⎫ ⎪⎝⎭或 ()1,425+或()1,425-.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质、等腰直角三角形及菱形的性质.25.(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可.【详解】解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(−1,0),B′(0,2),∵A′(−1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x−2)将B′(0,2)代入得出:2=a(0+1)(0−2),解得:a=−1,故抛物线的解析式为y=−(x+1)(x−2)=−x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=−x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=12×1×2+12×2×x+12×2×y,=x+(−x2+x+2)+1,=−x2+2x+3,∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=−x2+2x+3,即x2−2x+1=0,解得:x1=x2=1,此时y=−12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.【点睛】此题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换−旋转,利用四边形PB′A′B 的面积是△A′B′O 面积的4倍得出等式方程求出x 是解题关键.26.(1)2y x 2x 3=-++;(2)①32PBC S =△;②111,22P ⎛⎫++ ⎪ ⎪⎝⎭,21122P ⎛ ⎝⎭.【分析】(1)将A (-1,0),B (3,0)代入y=-x 2+bx+c ,可求出答案;(2)①先求出点C 的坐标,进而可求得直线BC 的函数关系式,再设()2,23P m m m -++,进而可表示出点E 的坐标为(,3)E m m -+,再根据PD=3ED 列出方程求解即可;②设点P 的坐标为()2,23P m m m -++,根据PB=PC 可得PB 2=PC 2,进而可列出方程求解即可.【详解】(1)抛物线2y x bx c =-++经过点()1,0A -,()3,0B , 22(1)0330b c b c ⎧---+=∴⎨-++=⎩, 解得23b c =⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++.(2)①在2y x 2x 3=-++中,当0x =时,3y =,()0,3C ∴设直线BC 的解析式为y kx b =+,则330b k b =⎧⎨+=⎩, 31b k =⎧∴⎨=-⎩∴直线BC 的解析式为3y x =-+,若2PE ED =,则3PD ED =,设()2,23P m m m -++,则(,3)E m m -+, 2233(3)m m m ∴-++=-+,即2560m m -+=,解得12m =,23m =(舍)当2m =时,()2,3P ,()2,1E ,则1PE =, 131322PBC S ∴=⨯⨯=△, ②假设存在点P ,使PBC 是以BC 为底边的等腰三角形,设点P 的坐标为()2,23P m m m -++, ∵PBC 是以BC 为底边的等腰三角形,∴PB=PC ,∴PB 2=PC 2, ∵()2,23P m m m -++,B (3,0),C (0,3),∴(m-3)2+(-m 2+2m+3)2=m 2+(-m 2+2m+3-3)2整理得m 2-m-3=0,解得m 1=113+,m 2=113-, 当m=113+时,-m 2+2m+3=113+, ∴点P 的坐标为(113+,113+), 当m=113-时,-m 2+2m+3=113-, ∴点P 的坐标为(1132-,1132-), 综上所述:抛物线上存在一点P ,使PBC 是以BC 为底边的等腰三角形,此时点P 的坐标为1113113,22P ⎛⎫++ ⎪ ⎪⎝⎭,2113113,22P ⎛⎫-- ⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查的是二次函数的性质,等腰三角形的性质,两点距离公式等知识,其中,熟练掌握方程的思想方法解题的关键.。
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-3.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…)A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩4.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .5.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个6.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .127.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-8.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x ﹣1 0 2 3 4 y5﹣4﹣3A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 29.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0 乙:若4b =,则点P 的个数为1 丙:若3b =,则点P 的个数为1 A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错10.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m11.抛物线()2526y x =-+-可由25y x =-如何平移得到( ) A .先向右平移2个单位,再向下平移6个单位 B .先向右平移2个单位,再向上平移6个单位 C .先向左平移2个单位,再向下平移6个单位 D .先向左平移2个单位,再向上平移6个单位12.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<二、填空题13.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_____________.14.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 15.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.16.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是______.17.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .18.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.19.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.20.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形. (1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.22.如图,已知90,30Rt OAB OAB ABO ∠=︒∠=︒,,斜边4OB =,将Rt OAB 绕点O 顺时针旋转60︒,得到ODC △,连接BC . (1)填空:OBC ∠=_________︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB 边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路匀速运动,当两点相遇时运动停止,己知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN 的面积为y ,求y 与x 的函数关系式.23.如图,□ABCD 中,AB=c ,AC=b ,BC=a .(1)若四边形ABCD 是正方形,求抛物线2y ax bx c =+-的对称轴; (2)若抛物线2y ax bx c =+-的对称轴为直线34x =-,抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -.且1b c =+,求四边形ABCD 的面积. 24.已知二次函数y =﹣x 2+4x +5,完成下列各题: (1)求出该函数的顶点坐标. (2)求出它的图象与x 轴的交点坐标. (3)直接写出:当x 为何值时,y >0.25.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.26.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④.【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.A解析:A 【分析】先将二次函数解析式化为顶点式,分别根据自变量x 的取值范围确定y 的范围,再根据任意两边之和是否大于第三边即可判断. 【详解】 解:245y x x =--+=()229x -++,∴抛物线的对称轴为直线2x =-且抛物线开口向下,A 选项,当5122x -<<时,1194y <≤,当12y y ,取3,3y 取9时,123y y y +<,两边之和小于第三边,不能构成三角形,故符合题意;B 选项,当7122x -<<-时,2794y <≤,2727+944>,所以以1y 、2y 、3y 为长的三条线段能围成一个三角形,故不符合题意;C 选项,当30x -<<时,59y <≤,同理三条线段能围成一个三角形,故不符合题意;D 选项,当41x -<<-时,59y <≤,同理三条线段能围成一个三角形,故不符合题意. 故选:A . 【点睛】本题主要考查二次函数的取值范围问题,涉及三角形成立的条件,解题的关键是确定y 的取值范围,再根据任意两边之和是否大于第三边判断.3.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.4.B解析:B 【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意.故选:B . 【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.5.B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.6.C解析:C 【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可. 【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==,∵抛物线与x 轴只有一个交点,故顶点为(,0)m ,2()y x m ∴=-.当3x m =+时,239y ==.故答案为C . 【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.7.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.8.B解析:B 【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误; 故选:B . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.C解析:C 【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.解:y=x (4-x )=-x 2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P 的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C .【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.10.B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.11.C【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 12.C解析:C【分析】由抛物线的开口方向判断a 与0,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】A .因为抛物线的开口向下,则a<0;又因为抛物线的对称轴在y 轴右侧,则-2b a>0,所以b>0,故A 错误;B .抛物线与y 轴的交点在y 轴负半轴,则c<0,故B 错误;C .抛物线与x 轴一个交点为(1,0),则x=1时,0y a b c =++=,故C 正确;D .抛物线与x 轴有两个交点,则240b ac ∆=->,故D 错误,故选C.【点睛】本题考查了二次函数的图象与系数的关系、二次函数的图象与×轴的交点等知识点,明确二次函数的相关性质是解题的关键. 二、填空题13.【分析】根据AB 两点的横坐标可得−1<x<3时ax2+c<mx+n 即可得出ax2−mx+c<n 的解集【详解】∵抛物线与直线交于A(−1p)B(3q)抛物线开口向上∴−1<x<3时ax2+c<mx+n解析:13x【分析】根据A 、B 两点的横坐标可得 −1<x<3 时, ax 2+c<mx+n ,即可得出 ax 2−mx+c<n 的解集.【详解】∵抛物线与直线交于 A(−1,p) , B(3,q) ,抛物线开口向上,∴ −1<x<3 时, ax 2+c<mx+n ,∴ ax2−mx+c<n 的解集为−1<x<3 .故答案为:−1<x<3【点睛】本题考查二次函数与不等式,根据两函数图象的上下关系找出不等式的解集是解题关键.14.(﹣13)【分析】根据y=a(x﹣h)2+k的顶点是(hk)可得答案【详解】y=﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y=a(x﹣h)2+k的顶点是(h,k),可得答案.【详解】y=﹣12(x+1)2+3的顶点坐标是(﹣1,3),故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y=a(x−h)2+k,顶点坐标为(h,k)是解答此题的关键.15.>【分析】二次函数开口向上当x取任意实数时都有y>0则−4ac<0据此即可列不等式求解【详解】解:−4ac=1−4m<0解得:m>故答案为:>【点睛】本题考查了抛物线与x轴交点个数个数由−4ac的符解析:m>1 4【分析】二次函数开口向上,当x取任意实数时,都有y>0,则2b−4ac<0,据此即可列不等式求解.【详解】解:2b−4ac=1−4m<0,解得:m>14.故答案为:m>14.【点睛】本题考查了抛物线与x轴交点个数,个数由2b−4ac的符号确定,当△=2b−4ac>0时,抛物线与x轴有2个交点;△=2b−4ac=0时,抛物线与x轴有1个交点;△=2b−4ac<0时,抛物线与x轴没有交点.16.或【分析】由表格给出的信息可看出对称轴为直线x=1a>0开口向上与x 轴交于(−10)(30)两点则y>0时x的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x=1a>0开口向解析:1x <-或3x >【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出.【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3.【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.17.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.18.324【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴然后求出点P 的坐标过点P 作PM ⊥y 轴于点M 过点P 作PN ⊥x 轴于点N 根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积然后求解即可 解析:324.【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】解:过点P 作PM ⊥y 轴于点M ,过点P 作PN ⊥x 轴于点N ,∵抛物线平移后经过原点O 和点A (6,0),∴平移后的抛物线对称轴为x=3,∴平移后的二次函数解析式为: ()2123y x h =--+, 将(6,0)代入得出:()201263h =-⨯-+,解得:108h =,∴点P 的坐标是(3,108).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S= 3108⨯=324故答案为:324【点睛】本题主要考查二次函数的有关知识,涉及到二次函数的性质及二次函数图象平移的规律,解题的关键是熟练所学知识并学会做辅助线.19.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根.【详解】解:∵当x=0时,4()()y ax b x b =++=4,∴m=0或m=﹣2,∴二次函数4()()y ax b x b =++经过(0,4),(2,4)或(2,4),(0,4)-,∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =,∴方程的另一个根为x=﹣1或﹣5,故答案为:x=﹣1或﹣5.【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键.20.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,进而可得抛物线的对称轴,则可求出此时点D 的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A ,B 的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),可得:当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,∴抛物线的对称轴为:直线1x =,∵点()3,0C -,∴点D 的坐标为()5,0,∵顶点在线段AB 上移动,∴点D 的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=, 正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.(1)60;(2)7;(3)()2228038434 4.82x x x x x x ⎛⎫<≤ ⎪⎝⎭⎪⎪⎪⎛⎫+<≤⎨ ⎪⎝⎭⎪⎪⎪<≤⎪⎩【分析】(1)由旋转性质可知:OB=OC ,∠BOC=60°,则△OBC 是等边三角形,即可求解;(2)证明△BOC 是等边三角形,BC=OB=4,而∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,故AC ==S △AOC 11222OA AB =⋅⋅=⨯⨯= (3)分880, 4.4 4.833x x x <≤<≤<≤三种情况,利用面积公式求解即可. 【详解】 解:(1)由旋转性质可知:OB=OC ,∠BOC=60°,∴△OBC 是等边三角形,∴∠OBC=60°.故答案为:60;(2)如图1,904,30BAP OB ABO ∠=︒=∠=︒,,123232OA OB AB OA ∴====, 由旋转得:BOC 是等边三角形,4BC OB ==∴6090OBC ABC ABO OBC ∠=︒∠=∠+∠=︒,,∴2227AC AB BC =+=, ∴112232322AOC S OA AB =⋅⋅=⨯⨯=. ∴243221727AOC S OP AC ===. (3)①当803x <≤时,M 在OC 上运动,N 在OB 上运动,如图2,过点N 作NE OC ⊥且交OC 于点E .则13322OE x NE ON x ===,, 1131.5222OMNS OM NE x x ∴=⋅⋅=⨯⨯. ∴233y x =; ②当843x <≤时,M 在BC 上运动,N 在OB 上运动,如图2,作MH OB ⊥于H ,则()381.5,8 1.5BM x MH x =-=- ∴2133232y ON MH x x =⨯⨯=-+ ③当4 4.8x <≤时,M 、N 都在BC 上运动,作OG BC ⊥于G .12 2.5MN x =-,23OG AB ==∴15312322y MN OG x =⋅⋅= 综上所述,()22233808333823483531234 4.82x x x x x x x ⎧⎛⎫<≤⎪ ⎪⎝⎭⎪⎪⎪⎛⎫-+<≤⎨ ⎪⎝⎭⎪⎪⎪<≤⎪⎩ 【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题. 23.(1)x=22-;(2) ABCD 372S =四边形. 【分析】(1)由正方形推出22a ,利用对称轴公式求对称轴(2)对称轴为直线34x =-利用公式得b=32a ,抛物线与x 轴交点为(),0c -代入得20ac bc c --=,1bc =+求出a b c 、、的值,由=a c 推出四边形ABCD 为菱形,利用菱形面积公式求出即可【详解】(1)∵四边形ABCD 是正方形,∴AB=BC ,AC=2BC ,b=2c=2a2y ax bx c =+-=a (x 2+2x-1)对称轴为x=222b a a --==- (2) 对称轴为直线34x =-, ∴利用对称轴公式得b=32a 抛物线2y ax bx c =+-与x 轴的一个交点为(),0c -代入抛物线20ac bc c --=由c>0、b>0、a>0,10ac b --=∴10132ac b b c b a ⎧⎪--=⎪=+⎨⎪⎪=⎩,解得232a b c =⎧⎪=⎨⎪=⎩(负值已舍去),∵ABCD ,=2a c =∴四边形ABCD 为菱形连BD 交AC 于O ,BO ⊥AO ,AO=OC=1.5在RtΔABO 中,由勾股定理2272OB AB AO =-=,AD=2OB=7 ∴ABCD 137732S =⨯⨯=四边形【点睛】本题考查正方形的性质与菱形的性质,掌握正方形的性质与菱形性质和菱形面积求法,会用正方形的性质推出a b c 、、之间关系,进而求对称轴,会利用对称轴推出a b 、关系,利用点C 在抛物线上,确定a b c 、、之间关系会解方程组解决问题24.(1)(2,9);(2)(5,0)、(﹣1,0);(3)当﹣1<x <5时,y >0.【分析】(1)由y=-x 2+4x+5=-(x-2)2+9即可求解;(2)令y=-x 2+4x+5=0,解得x=5或-1,即可求解;(3)a=-1<0,则抛物线开口向下,即可求解.【详解】解:(1)y =﹣x 2+4x +5=﹣(x ﹣2)2+9,则抛物线的顶点坐标为(2,9);(2)令y =﹣x 2+4x +5=0,∴()-5(1=0x x ++) 解得x =5或﹣1,故图象与x 轴的交点坐标为(5,0)、(﹣1,0);(3)∵a =﹣1<0,故抛物线开口向下,故当﹣1<x <5时,y >0.【点睛】【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,解题的关键是熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.25.(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可.【详解】解:(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的,又A (0,1),B (2,0),O (0,0),∴A′(−1,0),B′(0,2),∵A′(−1,0),B′(0,2),B (2,0),设抛物线的解析式为:y =a (x +1)(x−2)将B′(0,2)代入得出:2=a (0+1)(0−2),解得:a =−1,故抛物线的解析式为y =−(x +1)(x−2)=−x 2+x +2;(2)∵P 为第一象限内抛物线上的一动点,设P (x ,y ),则x >0,y >0,P 点坐标满足y =−x 2+x +2.连接PB ,PO ,PB′,∴S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,=12×1×2+12×2×x +12×2×y , =x +(−x 2+x +2)+1,=−x 2+2x +3,∵A′O =1,B′O =2,∴△A′B′O 面积为:12×1×2=1, 假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,则4=−x 2+2x +3,即x 2−2x +1=0,解得:x 1=x 2=1,此时y =−12+1+2=2,即P (1,2).∴存在点P (1,2),使四边形PB′A′B 的面积是△A′B′O 面积的4倍.【点睛】此题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换−旋转,利用四边形PB′A′B 的面积是△A′B′O 面积的4倍得出等式方程求出x 是解题关键. 26.(1)211122y x x =--;(2)-1<x <4. 【分析】(1)根据二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,代入得出关于a ,b 的二元一次方程组,求得a ,b ,从而得出二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,令y=0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】(1)∵二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,∴1016415a b a b --=⎧⎨+-=⎩,∴12a =,12b =-, ∴二次函数的解析式为211122y x x =--; (2)当0y =时,得:01x =+,解得1x =-,当4x =时,得:5y =,解得1x =-,∴直线1y x =+经过点D (-1,0)和C (4,5)两点,∴图象如图,观察图象,当-1<x <4时,直线1y x =+在抛物线的上方,∴当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,数形结合是解题的关键.。
一、选择题1.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣72.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩3.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A .B .C .D .5.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+-- D .21y x =-6.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 7.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .428.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( )x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个10.已知函数235y x =-+经过A (m ,1y )、B (m−1,2y ),若12y y >.则m 的取值范围是( ) A .0m ≤B .12m <C .102m <<D .12m <<11.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+二、填空题13.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.14.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.15.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .16.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x3- 1-0 1 3y55215272 72 31217.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.18.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)20.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题21.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量的二组对应值如下表: 售价x (元/件) 55 65 销售量y (件/天)9070(2)由于某种原因,该商品进价提高了a 元/件(a >0),商店售价不低于进价,物价部门规定该商品售价不得超过70元件,该商店在今后的销售中,每天能获得的销售最大利润是960元,求a 的值.22.已知二次函数y =ax 2+bx+c 中自变量x 和函数值y 的部分对应值如表:(1)求该二次函数的函数关系式;(2)在所给的直角坐标系中画出此函数的图象;(3)作该二次函数y =ax 2+bx+c 的图象关于x 轴对称的新图象,则新图象的函数关系式为 .23.如图①,抛物线23y ax bx =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点C .(1)求抛物线23y ax bx =++的解析式;(2)如图②,连接AC ,点E 是第一象限内抛物线上的动点,过点E 作EF AC ⊥于点F ,//EG y 轴交AC 于点G ,求EFG 面积的最大值及此时点E 的坐标;(3)如图③,若抛物线的顶点坐标为点D ,点P 是抛物线对称轴上的动点,在坐标平面内是否存在点Q ,使得以A 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.24.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?25.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示)(2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 26.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】当图象顶点在点B 时,点N 的横坐标的最大值为4,求出a =13;当顶点在点A 时,M 点的横坐标为最小,此时抛物线的表达式为:y =13(x +2)2﹣3,令y =0,求出x 值,即可求解. 【详解】当图象顶点在点B 时,点N 的横坐标的最大值为4, 则此时抛物线的表达式为:y =a (x ﹣1)2﹣3, 把点N 的坐标代入得:0=a (4﹣1)2﹣3, 解得:a =13, 当顶点在点A 时,M 点的横坐标为最小, 此时抛物线的表达式为:y =13(x +2)2﹣3, 令y =0,则x =﹣5或1,即点M 的横坐标的最小值为﹣5, 故选:C . 【点睛】本题考查的是二次函数与x 轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.2.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.3.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.4.B解析:B【分析】根据两个函数图象与y 轴交于同一点可排除选项A ,再根据抛物线的开口方向和对应一次函数的增减性即可做出选择. 【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故A 不符合题意;当a >0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而增大,故D 不符合题意;当a <0时,二次函数y =ax 2+bx +c 的图象开口向上,一次函数y =ax +c 中y 值随x 值的增大而减小,故C 不符合题意. 故选:B . 【点睛】本题考查二次函数及一次函数的图象与性质,熟练掌握两个函数图象与系数的关系是解答的关键.5.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.6.C解析:C 【分析】依据二次函数的增减性分1≤h≤3、h <1、h >3三种情况,由函数的最小值列出关于h 的方程,解之可得. 【详解】∵()2=+3y x h -中a=1>0,∴当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大;①若1≤h≤3,则当x=h 时,函数取得最小值2h ,即3=2h , 解得:h=32; ②若h <1,则在1≤x≤3范围内,x=1时,函数取得最小值2h , 即()2132h h -+=, 解得:h=2>1(舍去);③若h >3,则在1≤x≤3范围内,x=3时,函数取得最小值2h , 即()2332h h -+=, 解得:h=2(舍)或h=6, 综上,h 的值为32或6, 故选C . 【点睛】本题主要考查二次函数的最值,熟练掌握分类讨论思想和二次函数的增减性是解题的关键.7.A解析:A 【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3y =-代入解析式求得相应的x 的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax = ∵观察图形可知抛物线经过点()2,2B - ∴222a -=⋅ ∴12a =-∴抛物线解析式为:212y x =- ∴当水位下降1米后,即当213y =--=-时,有2132x -=-∴1x =2x =∴水面的宽度为:.故选:A【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.8.A解析:A【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题.【详解】解:∵二次函数的解析式是()()2y x p x q =---∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根∴当x m =或x n =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间.故选:A【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.9.B解析:B【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y =ax 2+bx +c 经过原点;①正确; 抛物线对称轴为:直线0212x +==,即12b a-=,∴2a +b =0,②正确;当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y >0时,x 的取值范围是x <0或x >2;③正确由以上分析可知当x=1时,y 取得最小值为a+b+c若点P (m ,n )在该抛物线上,则am 2+bm+c≥a+b+c .即am 2+bm≥a+b ,④错误 故选:B【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.B解析:B【分析】由235y x =-+图像开口向下,对称轴为y =0知,要使12y y >,需使A 点更靠近对称轴y轴,由此列出关于m 的不等式解之即可 .【详解】解:∵235y x =-+图像开口向下,对称轴为y =0且12y y > ∴1m m <-,下面解此不等式.第一种情况,当m <0时,得1m m -<-,解得m <0;第二种情况,当01m ≤<时,得1m m <-,解得12m <; 第三种情况,当m 1≥时,得1m m <-,解得,无解; 综上所述得12m <. 故选:B .【点睛】此题考查二次函数的图像与性质,比较图像上两点的函数值.其关键是,当二次函数开口向下时,图像上的点越靠近对称轴时,函数值越大;当二次函数开口向上时,图像上的点越靠近对称轴时,函数值越小. 11.C解析:C【分析】根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确.【详解】解:由抛物线对称轴为直线x =2b a,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确.故选C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.12.C解析:C【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x-2)2+2.故选:C .【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.二、填空题13.或【分析】先求出A1A2B 1B2…的坐标若B1为直角顶点则A1A2的中点(10)到B1的距离与到A1和A2的距离相等求出d 的值;同理:若B2为直角顶点求出d 的值;若B3为直角顶点求出的d 值是负数(舍 解析:512或1112【分析】先求出A 1、A 2、B 1、B 2…的坐标,若B 1为直角顶点,则A 1A 2的中点(1,0)到B 1的距离与到A 1和A 2的距离相等,求出d 的值;同理:若B 2为直角顶点,求出d 的值;若B 3为直角顶点,求出的d 值是负数(舍去);总结上述结果即可得出答案.【详解】解:直线l :1134y x =+, 当x =1时,y =712, 即:B 1(1,712), 当x =2时,y =1112, 即:B 2(2,1112), ∵A 1(d ,0),A 2(2﹣d ,0),若B 1为直角顶点,则A 1A 2的中点(1,0)到B 1的距离与到A 1和A 2的距离相等, 即:1﹣d =712, 解得:d =512; 同理:若B 2为直角顶点,则A 2A 3的中点(2,0)到B 2的距离与到A 3和A 2的距离相等, 即:2﹣(2﹣d )=1112, 解得:d =1112; 若B 3为直角顶点,求出的d 为负数,并且从B 3之后的B 点,求出的d 都为负数; 所以d 的值是512或1112. 故答案为:512或1112. 【点睛】本题主要考查了二次函数图象上点的坐标特征,直角三角形斜边上的中线等知识点,解此题的关键是进行分类讨. 14.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得.【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上, ∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258, 137y y ,即123y y y <<,故答案为:123y y y <<.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.15.【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:( 解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+,2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系,则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.16.【分析】先根据和的函数值相同可得二次函数的对称轴为从而可得再根据时的函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =,122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c ,2a c ,152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键. 17.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查 解析:24【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解.【详解】抛物线2(4)y a x k =-+的对称轴是4x =过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯.故答案为24.【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键. 19.【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案【详解】解:∵二次函数的解析式为∴抛物线的对称轴是直线∴当时随的增大而减小;当时随的增大而增大∵是抛物线上的三个点∴∴∴故答案是:【点睛】 解析:132y y y >>【分析】根据题目中的函数解析式和二次函数图像性质即可得到答案.【详解】解:∵二次函数的解析式为()21y x m =+-∴抛物线的对称轴是直线1x =- ,10a =>∴当1x <-时,y 随x 的增大而减小;当1x >-时,y 随x 的增大而增大∵()13,A y -、()22,B y -、31,2C y ⎛⎫ ⎪⎝⎭是抛物线()21y x m =+-上的三个点 ∴()132---=,()121---=,()13122--= ∴3212>> ∴132y y y >>.故答案是:132y y y >>【点睛】本题考查了二次函数图像与系数的关系、二次函数图像上点的坐标特征,解答本题的关键是明确题意,能利用图像的增减性进行解答.20.0或【分析】需要分类讨论:①若则函数为一次函数;②若则函数为二次函数由抛物线与轴只有一个交点得到根的判别式的值等于0且m 不为0即可求出m 的值【详解】解:①若则函数是一次函数与x 轴只有一个交点;②若则解析:0或14【分析】 需要分类讨论:①若0m =,则函数为一次函数;②若0m ≠,则函数为二次函数.由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m 的值.【详解】解:①若0m =,则函数1y x =+,是一次函数,与x 轴只有一个交点;②若0m ≠,则函数21y mx x =++,是二次函数.根据题意得:140m ∆=-=, 解得:14m =. 故答案为:0或14. 【点睛】 本题考查抛物线与x 轴的交点,一次函数图象与坐标轴的交点问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)60元或者90元;(2)a =4.【分析】(1)设y =kx +b ,根据题意可列出方程组,求出k 和b ,即可得到每天销量y 和与售价x 之间的关系式.再由总利润=单件利润×销量,即可列出等式,求出x 即可.(2)由总利润=单件利润×销量可列出二次函数关系式w =(x -50-a )(-2x +200),再根据二次函数的性质,即可知当x =70时,w 最大,即可求出a .【详解】(1)依题意设y =kx +b ,则有55906570k b k b +=⎧⎨+=⎩ , 解得:2200k b =-⎧⎨=⎩, 所以y =-2x +200,若某天销售利润为800元,则(x ﹣50)(-2x +200)=800,解得:x 1=60,x 2=90,故该天的售价为60元或者90元;(2)设总利润为w ,根据题意得:w =(x -50-a )(-2x +200)=-2x 2+(300+2a )x -10000-200a∵a >0,∴对称轴x =150752a +>. ∵-2<0,∴抛物线的开口向下.∵x ≤70,∴w 随x 的增大而增大,当x =70时,w 最大=960,即960=-2×702+(300+2a )×70-10000-200a ,解得:a =4.【点睛】本题考查二次函数的实际应用.结合总利润=单件利润×销量列出二次函数的关系式是解答本题的关键.22.(1)y =x 2﹣4x+5.(2)见解析;(3)y =﹣x 2+4x ﹣5.【分析】(1)当x=1或3时,y 均等于2,那么此二次函数的对称轴是2,则顶点坐标为(2,1),设出顶点式,把表格中除顶点外的一点的坐标代入可得a 的值,也就求得了二次函数的值;(2)描点、连线画出函数图象即可;(3)根据关于x 轴对称的点的坐标特征即可求得.【详解】解:(1)由图表可知抛物线y =ax 2+bx+c 过点(1,2),(3,2),∴对称轴为x =132+=2; ∴顶点坐标为:(2,1),∴设y =a (x ﹣2)2+1,将(0,5)代入可得:4a+1=5,解得:a =1,∴二次函数的解析式为:y =(x ﹣2)2+1,即y =x 2﹣4x+5,所求二次函数的关系式为y =x 2﹣4x+5.(2)描点、连线画出函数图象如图:;(3)∵新图象与二次函数y =ax 2+bx+c 的图象关于x 轴对称,∴﹣y =x 2﹣4x+5,∴新图象的函数关系式为y =﹣x 2+4x ﹣5,故答案为y =﹣x 2+4x ﹣5.【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式,二次函数的图象与性质,熟练掌握待定系数法是解题的关键.23.(1)2y x 2x 3=-++;(2)最大面积8164,315,24E ⎛⎫ ⎪⎝⎭;(3)()1,4P -或 21,3⎛⎫ ⎪⎝⎭或 (1,425+或(1,425-【分析】(1)把A,B 坐标代入即可求解;(2)先求出直线AC 解析式,证明△EFG 是等腰直角三角形,再得到当EG 最大时,EFG 面积的最大故可列出EG 关于x 的二次函数,即可求解;(3)根据菱形的性质作图,分情况讨论即可求解.【详解】(1)把()3,0A 、()1,0B -代入23y ax bx =++得093303a b a b =++⎧⎨=-+⎩,解得12a b =-⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++;(2)令x=0,解得y=3∴C (0,3)设直线AC 解析式为y=mx+n ,把()3,0A ,C (0,3)代入得033m n n =+⎧⎨=⎩解得13n n =-⎧⎨=⎩∴直线AC 解析式为y=-x+3,∵CO=OA∴△AOC 是等腰直角三角形,∴∠ACO=45°∵//EG y∴∠FGE=45°∵EF AC ⊥∴△EFG 是等腰直角三角形,∴EF=FG,EG 2=EF 2+FG 2=2EF 2∴S △EFG =12EF×FG=12EF 2=14EG 2 ∴当EG 最大时,EFG 面积的最大设E (x, 223x x -++)则G (x ,-x+3)∴EG=(223x x -++)-(-x+3)=-(x-32)2+94 ∴当x=32,EG 最大值为94,故此时EFG 最大面积为14×(94)2=8164,315,24E ⎛⎫ ⎪⎝⎭; (3)如图①AD=DP 时,∵2y x 2x 3=-++=-(x-1)2+4∴D (1,4)又A (3,0)∴==DP∴P 1(1,4+,P 2(1,4-②DP=AP 时设P (1,y )∵DP 2=AP 2,A (3,0)∴(4-y )2=(3-1)2+(0-y )2解得y=23 ∴P 321,3⎛⎫ ⎪⎝⎭③当AD=AP 时,设P (1,y )∵AD 2=AP 2,A (3,0)∴(2=(3-1)2+(0-y )2解得y=-4(4舍去)∴P 4()1,4-综上,P 点坐标为()1,4P -或 21,3⎛⎫ ⎪⎝⎭或 ()1,425+或()1,425-.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质、等腰直角三角形及菱形的性质. 24.当AC=BD=5时,四边形ABCD 的面积最大.【分析】直接利用对角线互相垂直的四边形面积求法得出12S AC BD =⋅,再利用配方法求出二次函数最值即可.【详解】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x ,则:211125(10)(5)2222S AC BD x x x =⋅=-=--+, ∴当x=5时,S 最大=252,所以当AC=BD=5时,四边形ABCD 的面积最大.【点睛】本题考查二次函数的应用.理解对角线互相垂直的四边形面积等于对角线乘积的一半是解题关键.25.(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【分析】(1)根据销售单价上涨x 元,每天销售量减少5x 瓶即可得,再根据“每瓶的利润=售价-成本价”即可得;(2)结合(1)的结论,根据“这款洗手液的日销售利润y 达到300元”可建立关于x 的一元二次方程,再解方程即可得;(3)根据“每天的利润=(每瓶的售价-每瓶的成本价)⨯每天的销售量”可得y 与x 的函数关系式,再利用二次函数的性质求最值即可得.【详解】(1)由题意得:当销售单价上涨x 元时,每天销售量会减少5x 瓶,则每天的销售量为()605x -瓶,每瓶洗手液的利润是20164x x +-=+(元),故答案为:()605x -,()4x +;(2)由题意得:()()6054300x x -+=,解得16x =,22x =,答:销售单价应上涨2元或6元;(3)由题意得:(605)(4)y x x =-+,化成顶点式为25(4)320x y =--+,由二次函数的性质可知,当4x =时,y 取得最大值,最大值为320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.【点睛】本题考查了一元二次方程的应用、二次函数的应用,依据题意,正确建立方程和函数关系式是解题关键.26.(1)211122y x x =--;(2)-1<x <4. 【分析】(1)根据二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,代入得出关于a ,b 的二元一次方程组,求得a ,b ,从而得出二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,令y=0,解一元二次方程,求得x 的值,从而得出与x 轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】(1)∵二次函数21y ax bx =+-的图象过D (-1,0)和C (4,5)两点,∴1016415a b a b --=⎧⎨+-=⎩, ∴12a =,12b =-, ∴二次函数的解析式为211122y x x =--; (2)当0y =时,得:01x =+,解得1x =-,当4x =时,得:5y =,解得1x =-,∴直线1y x =+经过点D (-1,0)和C (4,5)两点,∴图象如图,观察图象,当-1<x <4时,直线1y x =+在抛物线的上方,∴当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,数形结合是解题的关键.。
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个3.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程0ax bx c ++=(,,,为常数)一个根的范围是()A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x <<D .2.00 2.01x <<5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3B .2C .1D .06.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .7.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .3C .6D .428.把抛物线231y x =+向上平移2个单位,则所得抛物线的表达式为( ) A .233y x =+ B .231y x =- C .()2321y x =++D .()2321y x =-+9.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n <0时,m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2D .当n >0时,m <x 110.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .11.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+D .2(1)1y x =-+12.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-二、填空题13.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.14.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 15.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.16.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.17.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________ 18.二次函数y=(x+2)2-5的最小值为_______.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题21.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量的二组对应值如下表: 售价x (元/件) 55 65 销售量y (件/天)9070(2)由于某种原因,该商品进价提高了a 元/件(a >0),商店售价不低于进价,物价部门规定该商品售价不得超过70元件,该商店在今后的销售中,每天能获得的销售最大利润是960元,求a 的值.22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表:地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1关于的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 23.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA . (1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?24.如图,抛物线213y x =-+向右平移1个单位得到抛物线2y .回答下列问题:(1)抛物线2y 的顶点坐标是______. (2)求阴影部分的面积;(3)若再将抛物线2y 绕原点O 旋转180︒得到抛物线3y ,则抛物线3y 开口方向_____,顶点坐标是_____.25.已知关于x 的方程222(1)2()10a x a b x b +-+++=. (1)若2b =,且2x =是此方程的根,求a 的值;(2)若此方程有实数根,当51a -<<-时,求函数242y a a ab =++的取值范围.26.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量y (个)与每个降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确;③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B .本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.3.D解析:D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项. 【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确 故选:D . 【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.4.D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断.解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.7.A解析:A 【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3y =-代入解析式求得相应的x 的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax = ∵观察图形可知抛物线经过点()2,2B - ∴222a -=⋅ ∴12a =-∴抛物线解析式为:212y x =-∴当水位下降1米后,即当213y =--=-时,有2132x -=- ∴16x =26x =- ∴水面的宽度为:6m . 故选:A 【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键.8.A解析:A 【分析】根据二次函数图象的平移规律解答即可. 【详解】解:把抛物线231y x =+向上平移2个单位可得233y x =+, 故选:A .【点睛】本题考查了二次函数的平移变换,熟悉二次函数的平移规律是解题的关键.9.C解析:C【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论.【详解】解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确;当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.10.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.11.B解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.12.B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x, 故答案为:13x .【点睛】本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键.14.或【分析】根据抛物线与轴有两个交点可知二次函数过原点或与轴相切故分两种情况解答:①将代入解析式;②△【详解】解:抛物线与坐标轴有两个交点①将代入解析式得;②△解得故答案为:或【点睛】本题考查的是抛物解析:0c 或18【分析】根据抛物线与x 轴有两个交点可知二次函数过原点或与x 轴相切.故分两种情况解答:①将(0,0)代入解析式;②△0=.【详解】 解:抛物线22y x x c =++与坐标轴有两个交点, ①将(0,0)代入解析式得0c; ②△180c =-=, 解得18c =. 故答案为:0c 或18. 【点睛】 本题考查的是抛物线与x 轴的交点及根的判别式,熟知抛物线与x 轴的交点问题与一元二次方程根的关系是解答此题的关键.15.156【分析】由题意可得:结合已知条件求解再求解的坐标再代入抛物线的解析式求解即可得到答案【详解】解:在抛物线上菱形ABCD >故答案为:【点睛】本题考查的是抛物线的性质菱形的性质勾股定理的应用掌握以解析:156【分析】由题意可得:()0B c ,,结合已知条件求解AB = 再求解C 的坐标,再代入抛物线的解析式求解c 即可得到答案.【详解】解:B 在抛物线上,()0B c ∴,()5,0A ,AB ∴=菱形ABCD ,BC AB ∴==()C c ∴()(2225+1325,c c c c ∴=-+++225c ∴+=2250,c +≠13,=2144,c ∴=c >0,12,c ∴=1312=156.ABCD S ∴=⨯菱形故答案为:156.【点睛】本题考查的是抛物线的性质,菱形的性质,勾股定理的应用,掌握以上知识是解题的关键.16.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.17.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.18.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5【分析】根据二次函数的顶点式的意义即可确定函数的最值.【详解】解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5.故答案为-5.【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.【分析】先求出抛物线的顶点坐标再根据向右平移横坐标加求出平移后的抛物线的顶点坐标再根据旋转的性质求出旋转后的顶点坐标然后根据平移旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可【详 解析:2(2)2y x =++【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,再根据旋转的性质求出旋转后的顶点坐标,然后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【详解】223y x x =---()22113x x =-+++-2(1)2x =-+-,所以,抛物线的顶点坐标为(-1,-2).∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,-2).∵再绕原点O 旋转180°,∴旋转后的抛物线的顶点坐标为(-2,2),且开口向上∴所得抛物线解析式为2(2)2y x =++.故答案为:2(2)2y x =++.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便. 三、解答题21.(1)60元或者90元;(2)a =4.【分析】(1)设y =kx +b ,根据题意可列出方程组,求出k 和b ,即可得到每天销量y 和与售价x 之间的关系式.再由总利润=单件利润×销量,即可列出等式,求出x 即可.(2)由总利润=单件利润×销量可列出二次函数关系式w =(x -50-a )(-2x +200),再根据二次函数的性质,即可知当x =70时,w 最大,即可求出a .【详解】(1)依题意设y =kx +b ,则有55906570k b k b +=⎧⎨+=⎩, 解得:2200k b =-⎧⎨=⎩, 所以y =-2x +200,若某天销售利润为800元,则(x ﹣50)(-2x +200)=800,解得:x 1=60,x 2=90,故该天的售价为60元或者90元;(2)设总利润为w ,根据题意得:w =(x -50-a )(-2x +200)=-2x 2+(300+2a )x -10000-200a∵a >0,∴对称轴x =150752a +>. ∵-2<0,∴抛物线的开口向下.∵x ≤70,∴w 随x 的增大而增大,当x =70时,w 最大=960,即960=-2×702+(300+2a )×70-10000-200a ,解得:a =4.【点睛】本题考查二次函数的实际应用.结合总利润=单件利润×销量列出二次函数的关系式是解答本题的关键.22.(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2. 【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得: 188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩,所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2. 【点睛】本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.23.(1)y =x 2-3x +2;(2)点P 的坐标为(32,12);(3)当t =1时,S △BCN 的最大值为1.【分析】(1)先确定c ,然后再根据OC =2OA 确定A 点的坐标,再将A 点的坐标代入解析式求得b 即可解答;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ',此时PA+PB 最小;然后求得直线BC 的解析式,最后确定P '的坐标即可;(3)先求出M 点坐标,然后再根据S △BCN =S △MNC +S △MNB 确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y =x 2+bx +c 过点C (0,2),∴c =2又∵OC =2OA ,∴OA =1,即A (1,0);又∵点A 在抛物线y =x 2+bx +2上,∴0=12+b ×1+2,b =-3;∴抛物线对应的二次函数的解析式为y =x 2-3x +2;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ', 则PA +PC 的最小值为P 'B +P 'C =BC ,设BC 的解析式为y =mx +n ,令x 2-3x +2=0,解得:x =1或2,∴B (2,0),又∵C (0,2),∴202m n n +=⎧⎨=⎩,解得:12m n =-⎧⎨=⎩, ∴直线BC 的解析式为:y =-x +2, 令x =32,代入,得:y =12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.24.(1)()1,3;(2)阴影部分的面积等于3;(3)向上,()1,3--.【分析】(1)根据抛物线的移动规律左加右减可直接得出抛物线y 2的解析式,再根据y 2的解析式求出顶点坐标即可;(2)根据阴影部分的面积等于底×高,列式计算即可;(3)先求出二次函数旋转后的开口方向和顶点坐标,从而得出抛物线y 3的解析式.【详解】解:(1)∵抛物线y 1=-x 2+3向右平移1个单位得到的抛物线y 2,∴抛物线y 2的顶点坐标为(1,3).故答案为:(1,3);(2)如图所示,根据平移前后图形的全等性,图中阴影部分的面积等于平行四边形ABCD 的面积.133ABCD S S ∴==⨯=阴影,即阴影部分的面积等于3.(3)∵将抛物线y 2绕原点O 旋转180°后,得到抛物线y 3的顶点坐标为:(-1,-3), ∴抛物线y 3的解析式为y 3=(x+1)2-3,开口方向向上.故答案为:向上,(-1,-2).【点睛】此题考查了二次函数的图象与几何变化,用到的知识点是二次函数的图象和性质、顶点坐标,关键是掌握二次函数的移动规律和几何变换.25.(1)12;(2)27y -≤< 【分析】(1)把2b =、2x =代入方程可得()()22212222210a a +⋅-+⋅++=,然后解a 关于的方程即可得解;(2)根据根的判别式的意义可得()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦,整理得()210ab -≤,利用非负数的性质得到1ab =,则函数242y a a ab =++为:()222y a =+-,再由51a -<<-可求得函数的取值范围.【详解】解:(1)∵若2b =,且2x =是此方程的根∴()()22212222210a a +⋅-+⋅++= ∴2102a ⎛⎫-= ⎪⎝⎭ ∴1212a a ==∴a 的值为12. (2)∵方程222(1)2()10a x a b x b +-+++=有实数根∴()()()2222424110b ac a b a b ∆=-=-+-⋅+⋅+≥⎡⎤⎣⎦ ∴()210ab -≤∴10ab -=∴1ab =∴函数242y a a ab =++为:()224222y a a a =++=+-∵51a -<<-∴可画出函数图象,如图:∴函数242y a a ab =++的取值范围是:27y -≤<.【点睛】本题考查了含参数的一元二次方程、一元二次方程的根的判别式、由自变量取值范围求函数取值范围等,熟练掌握相关知识点是解题的关键.26.(1)()10100020y x x =+<<;(2)每个降价5元时,获利最大,最大利润是2250元【分析】(1)由待定系数法可以得到解答;(2)由题意可以得到获利与降价之间的函数关系,根据所得函数的性质即可得到答案.【详解】解:(1)设y 与x 之间的函数解析式为y kx b =+,当1x =时,110y =;当4x =时,140y =,∴110,4140,k b k b +=⎧⎨+=⎩解得10,100,k b =⎧⎨=⎩∴y 与x 之间的函数解析式为()10100020y x x =+<<.(2)设该玩具每个降价x 元时,小王获利最大,最大利润是w 元.根据题意得()()2604010100101002000w x x x x =--+=-++, ∴()21052250w x =--+, 故该玩具每个降价5元时,小王获利最大,最大利润是2250元.【点睛】本题考查一次函数与二次函数的综合运用,由题意得到有关变量的函数解析式是解题关键.。