教育最新K122017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法练习
- 格式:doc
- 大小:262.50 KB
- 文档页数:7
新高考数学复习考点知识与解题方法专题讲解专题8.7 立体几何中的向量方法【考纲解读与核心素养】1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).4.培养学生的数学抽象、数学运算、数学建模、逻辑推理、直观想象等核心数学素养.5. 高考预测:(1)以几何体为载体,综合考查平行或垂直关系证明,以及角与距离的计算.(2)利用几何法证明平行、垂直关系,利用空间向量方法求角或距离.(3)利用空间向量证明平行或垂直是高考的热点,内容以解答题中的一问为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向.空间的角与距离的计算(特别是角的计算)是高考热点,一般以大题的条件或一小问形式呈现,考查用向量方法解决立体几何问题,将空间几何元素之间的位置关系转化为数量关系,并通过计算解决立体几何问题.距离问题往往在与有关面积、体积的计算中加以考查.此类问题往往属于“证算并重”题,即第一问用几何法证明平行关系或垂直关系,第二问则通过建立空间直角坐标系,利用空间向量方法进一步求角或距离.浙江卷对空间向量方法考题较少,较为注重几何法的考查.6.备考重点:(1)掌握空间向量的坐标运算; (2)掌握角与距离的计算方法.【知识清单】知识点1.利用空间向量证明平行问题1.直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =xv 1+yv 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 知识点2.利用空间向量证明垂直问题1. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 2.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 知识点3.异面直线所成的角 1.两条异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角.②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a ba b θϕ⋅==⋅.知识点4.直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.知识点5.二面角 1.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).知识点6.利用向量求空间距离 1.空间向量的坐标表示及运算 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3);②λa =(λa 1,λa 2,λa 3); ③a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则||(AB d AB a ==. 2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【典例剖析】高频考点一:利用空间向量证明平行问题【典例1】(选自2017天津,理17)如图,在三棱锥P-ABC中,PA⊥底面ABC,∠=︒.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,BAC90AB=2.(Ⅰ)求证:MN∥平面BDE;【答案】(Ⅰ)证明见解析【解析】如图,以A为原点,分别以AB,AC,AP方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(Ⅰ)证明:DE=(0,2,0),DB=(2,0,2-).设(,,)x y z=n,为平面BDE的法向量,则DEDB⎧⋅=⎪⎨⋅=⎪⎩nn,即20220yx z=⎧⎨-=⎩.不妨设1z=,可得(1,0,1)=n.又MN=(1,2,1-),可得0MN⋅=n.因为MN⊄平面BDE,所以MN//平面BDE.【规律方法】利用空间向量证明平行的方法【变式探究】(湖北卷)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线//1BC 平面EFPQ .【答案】直线//1BC 平面EFPQ .【解析】以D 为原点,射线1,,DD DC DA 分别为z y x ,,轴的正半轴建立如图3的空间直角坐标系xyz D -,由已知得),0,0(),0,0,1(),2,2,0(),0,2,2(1λP F C B , 所以)2,0,2(1-=BC ,),0,1(λ-=,)0,1,1(=,(1)证明:当1=λ时,)1,0,1(-=FP ,因为)2,0,2(1-=BC , 所以BC 21=,即FP BC //1,而⊂FP 平面EFPQ ,且⊄1BC 平面EFPQ ,故直线//1BC 平面EFPQ . 【总结提升】证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.高频考点二 : 利用空间向量证明垂直问题【典例2】在边长是2的正方体ABCD -1111A B C D 中,,E F 分别为1,AB A C 的中点. 应用空间向量方法求解下列问题.(1)求EF 的长(2)证明://EF 平面11AA D D ; (3)证明: EF 平面1A CD .【答案】(1)2;(2)见解析;(3)见解析.zy【解析】(1)如图建立空间直角坐标系11(2,0,2),(2,0,0),(2,2,0),(0,2,0),(0,0,2)A A B C D =====(2,1,0),(1,1,1)E F ==(1,0,1),||2EF EF =-= 4分(2)11(2,0,2)AD AD EF =-∴而11ADD A EF ⊄面//EF ∴平面11AA D D 8分(3)11EF CD 0,EF A D=0EF CD,EF A D ⋅=⋅∴⊥⊥ 又1CD A D=D ⋂EF ∴⊥平面1A CD . 【规律方法】用空间向量证明垂直问题的方法zy【变式探究】设平面α与向量a =(-1,2,-4)垂直,平面β与向量b =(2,3,1)垂直,则平面α与β的位置关系是________.【答案】垂直 【解析】由题意,()()2?31?1?2?42640,a b ⋅---+-=,,=,,== ,a b ∴⊥ ∵根据平面α与向量()1?2?4a --=,,垂直,平面β与向量() 2?31?b =,,垂直, .αβ∴⊥故答案为垂直【总结提升】1.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.2.要证明两线垂直,需转化为两线对应的向量垂直,进一步转化为证明两向量的数量积为零,这是证明两线垂直的基本方法,线线垂直是证明线面垂直,面面垂直的基础.3.证明线面垂直,可利用判定定理.如本题解法.4.用向量证明两个平面垂直,关键是求出两个平面的法向量,把证明面面垂直转化为法向量垂直.高频考点三 : 异面直线所成的角 【典例3】(2018年理数全国卷II )在长方体中,,,则异面直线与所成角的余弦值为( ) A. B. C.D.【答案】C【特别提醒】提醒:两异面直线所成角θ的范围是⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角.【变式探究】(2019·广西高考模拟(理))在直三棱柱111ABC A B C -中,3,3,32AC BC AB ===,14AA =,则异面直线1A C 与1BC 所成角的余弦值为__________.【答案】1625【解析】因为3,3,32AC BC AB ===C 为直角,又直棱柱中,侧棱与底面垂直,所以1CA CB CC 、、两两垂直,以C 点为坐标原点,以1CA CB CC 、、方向分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,()10,0,4C ,()13,0,4A ,()0,3,0B ,所以()13,0,4AC =--,()1 0,3,4BC =-, 设异面直线1A C 与1BC 所成角为θ,则1111114416cos cos 25916916AC BC AC BC AC BC θ-⨯====+⨯+,.故答案为1625【总结提升】向量法求两异面直线所成角的步骤 (1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.高频考点四 : 直线与平面所成角【典例4】(2020·北京高考真题)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)23.【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23.【规律方法】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.【变式探究】(2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.所成角的正弦值为.高频考点五:二面角【典例5】(2019年高考全国Ⅲ卷理)图1是由矩形ADEB,R t△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE,CG BE,所以AD CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)作EH⊥BC,垂足为H.因为EH⊂平面BCGE,平面BCGE⊥平面ABC,所以EH⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=3.以H为坐标原点,HC的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,则A(–1,1,0),C(1,0,0),G(2,03),CG=(1,03),AC=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧=⎪⎨-=⎪⎩ 所以可取n =(3,6又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°. 【规律方法】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【变式探究】(2017课标II ,理19)如图,四棱锥P-ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D--的余弦值.【答案】(1)证明略;(2) 10 5.【解析】(1)取PA的中点F,连结EF,BF.因为E是PD的中点,所以EF∥AD,12EF AD=,由90BAD ABC∠=∠=得BC∥AD,又12BC AD=,所以EF BC∥.四边形BCEF为平行四边形,CE∥BF.又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.(2)由已知得BA AD⊥,以A为坐标原点,AB的方向为x轴正方向,AB为单位长,建立如图所示的空间直角坐标系A xyz-,则()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,3P ,(103)PC =-,,,(100)AB =,,, 设()(),,01M x y z x <<则()()1,,,,1,3BM x y z PM x y z =-=--,因为BM 与底面ABCD 所成的角为45°,而()0,0,1=n 是底面ABCD 的法向量,所以cos ,sin 45BM =n ,()222221zx y z =-++, 即()22210x y z -+-=.①又M 在棱PC 上,设PM PC λ=,则,1,33x y z λλ===-.②高频考点六:利用向量求空间距离【典例6】(2018·四川省广安石笋中学校高考模拟(理))如图,在棱长为2的正方体中,M是线段AB上的动点.证明:平面;若点M是AB中点,求二面角的余弦值;判断点M到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析;(2);(3)点到平面的距离为定值.【解析】【分析】(1)利用正方体的性质得,由线面平行的判定定理证明即可.(2)建立空间直角坐标系求出平面和平面的法向量,利用向量的夹角公式求出二面角的余弦值,即可得解.(3)由(1)得点到平面的距离等于上任意一点到平面的距离,结合(2)和点到面的距离公式得点到平面的距离即可.【详解】(1)证明:因为在正方体中,,平面,平面,平面(2)在正方体中,,,两两互相垂直,则建立空间直角坐标系如图所示,则,,,,所以,,,,设向量,分别为平面和平面的法向量,由取,则,,.同理取,则,,.,又二面角的平面角为锐角,二面角的余弦值为(3)由(1)知平面.点到平面的距离等于上任意一点到平面的距离,取点为,结和(2)和点到平面的距离.点到平面的距离定值为【总结提升】利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.【变式探究】(2019·安徽高三期末(文))如图,在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=,AD CD =,PO ⊥底面ABCD .()1求证:AC ⊥底面PBD ; ()2若PBC 是边长为2的等边三角形,求O 点到平面PBC 的距离.【答案】(1)见证明;(2)6 【解析】证明:()1在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=,AD CD =,PO ⊥底面ABCD .AC PO ∴⊥,又BD PO O ⋂=,AC ∴⊥平面PBD .()2以O 为原点,OD 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,AC BD ⊥交于点O ,ABC 90=,AD CD =,PBC 是边长为2的等边三角形, AB BC 2∴==,AC 4422=+=AO CO BO 2===PO 422=-=P(0,∴02),O(0,0,0),()C 2,0,B(2,-0,0),PO (0,=0,,PB (=-0,,(PC 0,=,设平面PBC 的法向量n (x,=y ,z),则PB 20PC 20n n y ⎧⋅=-=⎪⎨⋅==⎪⎩,取x 1=,得n ()1,1,1=--, O ∴点到平面PBC 的距离d =PO 233nn ⋅==.。
高考数学全面突破轮复习必考题型巩固提升学案立体几何中的向量方法Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】立体几何中的向量方法(二)考情分析考查用向量方法求异面直线所成的角,直线与平面所成的角、二面角的大小.基础知识1.空间的角(1)异面直线所成的角如图,已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b.则把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0°的角.(3)二面角的平面角如图在二面角α-l-β的棱上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.2.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2的夹角θ满足cos θ=|cos 〈m1,m2〉|.(2)设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α的夹角θ满足sin θ=|cos〈m,n〉|.(3)求二面角的大小(ⅰ)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB→,CD→〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 注意事项1.(1)异面直线所成的角的范围是⎝ ⎛⎦⎥⎤0,π2;(2)直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2; (3)二面角的范围是[0,π].2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点. 题型一 求异面直线所成的角【例1】已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,高AA 1=2,求 (1)异面直线BD 与AB 1所成角的余弦值;解 (1)如图建立空间直角坐标系A 1-xyz ,由已知条件:B (1,0,2),D (0,1,2), A (0,0,2),B 1(1,0,0).则BD →=(-1,1,0),AB 1→=(1,0,-2)设异面直线BD 与AB 1所成角为θ, cos θ=|cos 〈BD →,AB 1→〉|=1010.(2)VAB 1D 1C =VABCDA 1B 1C 1D 1-4VCB 1C 1D 1=23.【变式1】已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为________.解析 如图建立直角坐标系D -xyz ,设DA =1,由已知条件A (1,0,0),E ⎝⎛⎭⎪⎫0,12,1,B (1,1,0),C (0,1,0),AE →=⎝⎛⎭⎪⎫-1,12,1,BC →=(-1,0,0)设异面直线AE 与BC 所成角为θ. cos θ=|cos 〈AE →,BC →〉|=|AE →·BC →||AE →||BC →|=23.答案 23题型二 利用向量求直线与平面所成的角【例2】如图所示,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°. (1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D -xyz . 则DA →=(1,0,0),CC ′→=(0,0,1). 连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH →=(m ,m,1)(m >0),由已知〈DH →,DA →〉=60°,即DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉, 可得2m =2m 2+1. 解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1.(1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22, 所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°. (2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°.【变式2】已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.解:设PA =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝ ⎛⎭⎪⎫1,0,12,N ⎝ ⎛⎭⎪⎫12,0,0,S ⎝⎛⎭⎪⎫1,12,0. (1)证明:CM →=(1,-1,12),SN →=⎝ ⎛⎭⎪⎫-12,-12,0,因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)NC →=⎝ ⎛⎭⎪⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·a =0NC →·a =0∴⎩⎪⎨⎪⎧x-y+12z=0,-12x+y=0,取x=2,得a=(2,1,-2).因为|cos〈a,SN→〉|=⎪⎪⎪⎪⎪⎪⎪⎪-1-123×22=22,所以SN与平面CMN所成角为45°.题型三利用向量求二面角【例3】如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.(1)证明因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD.从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.又AD∩PD=D.所以BD⊥平面PAD.故PA⊥BD.(2)解如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1).AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧n·AB→=0,n·PB→=0.即⎩⎨⎧-x+3y=0,3y-z=0.因此可取n=(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0.可取m =(0,-1,-3),则cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.【变式3】 如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.(1)证明:PC ⊥平面BEF ;(2)求平面BEF 与平面BAP 夹角的大小.(1)证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系.∵AP =AB =2,BC =AD =22,四边形ABCD 是矩形,∴A ,B ,C ,D ,P 的坐标为A (0,0,0),B (2,0,0),C (2,22,0),D (0,22,0),P (0,0,2).又E ,F 分别是AD ,PC 的中点,∴E (0,2,0),F (1,2,1). ∴PC →=(2,22,-2),BF →=(-1,2,1),EF →=(1,0,1). ∴PC →·BF →=-2+4-2=0,PC →·EF →=2+0-2=0. ∴PC →⊥BF →,PC →⊥EF →∴PC ⊥BF ,PC ⊥EF .又BF ∩EF =F , ∴PC ⊥平面BEF .(2)解 由(1)知平面BEF 的一个法向量n 1=PC →=(2,22,-2),平面BAP 的一个法向量n 2=AD →=(0,22,0), ∴n 1·n 2=8.设平面BEF 与平面BAP 的夹角为θ, 则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=84×22=22,∴θ=45°.∴平面BEF 与平面BAP 的夹角为45°. 重难点突破【例4】如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值. 解析 (1)略(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0.即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0.可取m =(1,1,1),所以cos 〈m ,n 〉=-155. 故二面角QBPC 的余弦值为-155. 巩固提高1.在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成的角的正弦值为( )A.64 B. -64 C. 104D. -104答案:A解析:取AC 中点E ,连接BE ,则BE ⊥AC ,如图,建立空间直角坐标系Bxyz , 则A (32,12,0),D (0,0,1), 则A D →=(-32,-12,1). ∵平面ABC ⊥平面AA 1C 1C ,BE ⊥AC , ∴BE ⊥平面AA 1C 1C . ∴B E →=(32,0,0)为平面AA 1C 1C 的一个法向量, ∴cos 〈A D →,B E →〉=-64, 设AD 与平面AA 1C 1C 所成的角为α, ∴sin α=|cos|〈A D →,B E →〉|=64,故选A. 2.在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成的角的余弦值是( )A.3010 B. 12 C.3015D.1510答案:A解析:建立如图所示的坐标系,设BC =1,则A (-1,0,0),F 1(-12,0,1),B (0,-1,0),D 1(-12,-12,1),即AF 1→=(12,0,1),BD 1→=(-12,12,1).∴cos 〈AF 1→,BD 1→〉=AF 1→·BD 1→|AF 1→|·|BD 1→|=3010.3.如图,在四棱锥P -ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为( )答案:A解析:以D 为原点,DA 、DC 所在直线分别为x 、y 轴建系如图:设M (x ,y,0),设正方形边长为a ,则P (a 2,0,32a ),C (0,a,0),则|MC |=x 2+y -a 2,|MP |=x -a 22+y 2+32a 2.由|MP |=|MC |得x =2y ,所以点M 在正方形ABCD 内的轨迹为直线y =12x 的一部分.4.已知在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是________.答案:43解析:如图建立空间直角坐标系Dxyz , 则A 1(2,0,4),A (2,0,0),B 1(2,2,4),D 1(0,0,4), AD 1→=(-2,0,4),AB 1→=(0,2,4),AA 1→=(0,0,4),设平面AB 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AD 1→=0,n ·AB 1→=0,即⎩⎪⎨⎪⎧ -2x +4z =0,2y +4z =0,解得x =2z 且y =-2z ,不妨设n =(2,-2,1),设点A 1到平面AB 1D 1的距离为d ,则d =|AA 1→·n ||n |=43. 5.已知在几何体A -BCED 中,∠ACB =90°,CE ⊥平面ABC ,平面BCED 为梯形,且AC =CE =BC =4,DB =1.(1)求异面直线DE 与AB 所成角的余弦值;(2)试探究在DE 上是否存在点Q ,使得AQ ⊥BQ ,并说明理由.解:(1)由题知,CA ,CB ,CE 两两垂直,以C 为原点,以CA ,CB ,CE 所在直线分别为x ,y ,z 轴建立空间直角坐标系.则A (4,0,0),B (0,4,0),D (0,4,1),E (0,0,4),∴DE →=(0,-4,3),AB →=(-4,4,0),∴cos 〈DE →,AB →〉=-225, ∴异面直线DE 与AB 所成角的余弦值为225. (2)设满足题设的点Q 存在,其坐标为(0,m ,n ),则A Q →=(-4,m ,n ),B Q →=(0,m -4,n ),E Q →=(0,m ,n -4),Q D →=(0,4-m,1-n ).∵AQ ⊥BQ ,∴m (m -4)+n 2=0,① ∵点Q 在ED 上,∴存在λ∈R(λ>0)使得EQ →=λQD →,∴(0,m ,n -4)=λ(0,4-m,1-n ),∴m =4λ1+λ,②n =4+λ1+λ.③ 由①②③得(λ+41+λ)2=16λ1+λ2, ∴λ2-8λ+16=0,解得λ=4.∴m =165,n =85. ∴满足题设的点Q 存在,其坐标为(0,165,85).。
创新设计(浙江专用)2017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法练习的全部内容。
专题四立体几何第2讲立体几何中的向量方法练习1。
(2016·山东卷)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(2)已知EF=FB=错误!AC=2错误!,AB=BC,求二面角F-BC-A的余弦值.(1)证明设FC中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF。
又EF∥OB,所以GI∥OB。
在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC。
(2)解连接OO′,则OO′⊥平面ABC。
又AB=BC,且AC是圆O的直径,所以BO⊥AC。
以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2错误!,0),C(-2错误!,0,0).过点F作FM垂直OB于点M,所以FM=FB2-BM2=3,可得F(0,错误!,3)。
故错误!=(-2错误!,-2错误!,0),错误!=(0,-错误!,3).设m=(x,y,z)是平面BCF的一个法向量。
专题四立体几何与空间向量第一讲空间几何体的三视图、表面积及体积考点一空间几何体的三视图一、基础知识要记牢三视图的排列规则是:“长对正、高平齐、宽相等”.二、经典例题领悟好[例1] (1)(2017·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧视图为( )(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B分析空间几何体的三视图的要点(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的形状,即可得到结果.比较复杂的三视图问题常常借助于长方体确定空间几何体的形状. 三、预测押题不能少1.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2解析:选B 在正方体中还原该四棱锥如图所示, 从图中易得最长的棱为AC 1=AC 2+CC 21=22+22+22=2 3.考点二 空间几何体的表面积与体积 一、基础知识要记牢常见的一些简单几何体的表面积和体积公式圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l )(其中r 为底面半径,l 为圆柱的高); 圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中r 为底面半径,l 为母线长); 圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl )(其中r 和r ′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高); 锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′,S 分别为上、下底面面积,h 为高);球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径).二、经典例题领悟好[例2] (1)(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24π C.28π D .32π(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63π C.42π D .36π[解析] (1)由三视图知该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得r =2,c =2πr =4π,h =4, 由勾股定理得:l =22+232=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.[答案] (1)C (2)B1求几何体的表面积及体积问题,关键是空间想象能力,能想出、画出空间几何体,高往往易求,底面放在已知几何体的某一面上.2求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.三、预测押题不能少2.(1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π, ∴r 2=4,r =2,故选B.(2)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为_______.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2考点三 球与多面体的切接问题 一、基础知识要记牢(1)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,可采用“补形法”成为一个球内接长方体.(2)正四面体的内切球与外接球半径之比为1∶3. 二、经典例题领悟好[例3] (1)(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π23(2)(2018届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .36π B.112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B.[答案] (1)B (2)B处理球与棱柱、棱锥切、接问题的思路(1)过球及多面体中的特殊点(一般为接、切点)或线作截面,化空间问题为平面问题. (2)利用平面几何知识寻找几何体中元素间关系,确定球心位置. (3)建立几何量间关系求半径r . 三、预测押题不能少3.(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )4C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:32[知能专练(十三)]一、选择题1.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )解析:选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽度为32,与题中所给的侧视图的宽度1不相等,因此选C. 2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径为( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积为( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为 22+12=5,所以S 侧=4×⎝ ⎛⎭⎪⎫12×2×5=45,V =13×22×2=83.5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,如图所示,其下面是一个底面为等腰直角三角形的直三棱柱,上面是一个底面为等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为2+4×22×2=12,故选B.6.如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的面积为23,则其侧视图的面积为( )A.32 B.33 C.34D.36解析:选B 由题意知,该三棱锥的正视图为△VAC ,作VO ⊥AC 于O ,连接OB (图略),设底面边长为2a ,高VO =h ,则△VAC 的面积为12×2a ×h =ah =23.又三棱锥的侧视图为Rt △VOB ,在正三角形ABC 中,高OB =3a ,所以侧视图的面积为12OB ·VO =12×3a ×h =32ah =32×23=33.7.《九章算术》的商功章中有一道题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆的半径为r ,若以尺为单位,则2 000×1.62=3r 2⎝⎛⎭⎪⎫10+3+13,解得r =9(尺),∴底面圆周长约为2×3×9=54(尺),换算单位后为5丈4尺,故选B.8.(2017·丽水模拟)已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为( )A. 3 B .2 3 C .3 3D .4 3解析:选 B 分析题意可知,该几何体是由如图所示的三棱柱ABC A 1B 1C 1截去四棱锥A BEDC 得到的,故其体积V =34×22×3-13×1+22×2×3=23,故选B.9.(2017·贵阳质检)三棱锥P ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳模拟)已知三棱锥P ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ABC 的外接球的表面积为4πR 2=80π3,故选D. 二、填空题11.已知某几何体的三视图如图所示,则该几何体的表面积为________,体积为________.解析:由三视图得该几何体为如图所示的三棱锥,其中底面ABC 为直角三角形,∠B =90°,AB =1,BC =2,PA ⊥底面ABC ,PA =2,所以AC =PB =5,PC =3,PC 2=PB 2+BC 2,∴∠PBC =90°,则该三棱锥的表面积为12×1×2+12×1×2+12×2×5+12×2×5=2+25,体积为13×12×1×2×2=23.答案:2+2 5 2312.(2017·诸暨质检)某几何体的三视图如图所示,则该几何体最长的一条棱的长度为________,体积为________.解析:根据三视图,可以看出该几何体是一个底面为正三角形,一条侧棱垂直底面的三棱锥,如图所示,其中底面△BCD 是正三角形,各边长为2,侧棱AD ⊥底面BCD ,且AD =2,底面△BCD 的中垂线长DE =3,∴AC =AB =22,V 三棱锥A BCD =13×S △BCD ×AD =13×12×2×3×2=233,即该几何体最长的棱长为22,体积为233.答案:2 2 233 13.一个直棱柱(侧棱与底面垂直的棱柱)被一个平面截去一部分后,所剩几何体的三视图如图所示,则截去的几何体为________(从备选项中选择一个填上:三棱锥、四棱锥、三棱柱、四棱柱),截去的几何体的体积为________.解析:作出直观图可得截去的几何体为底面为直角边长分别为1和2的直角三角形,高为4的三棱锥,其体积V =13×1×22×4=43. 答案:三棱锥 4314.(2018届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π15.(2017·洛阳模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则该几何体的表面积为________.解析:由三视图可知该几何体为一个球体的34,故该几何体的表面积等于球的表面积的34,加上以球的半径为半径的圆的面积,即S =34×4πR 2+πR 2=16π. 答案:16π16.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD =23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A BCD =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:33 17.如图是某三棱柱被削去一个底面后的直观图、侧视图与俯视图.已知CF =2AD ,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示,则该几何体的体积为________.解析:取CF 中点P ,过P 作PQ ∥CB 交BE 于Q ,连接PD ,QD ,则AD∥CP ,且AD =CP .所以四边形ACPD 为平行四边形,所以AC ∥PD .所以平面PDQ ∥平面ABC .该几何体可分割成三棱柱PDQ CAB 和四棱锥D PQEF ,所以V =V PDQ CAB +V D PQEF=12×22sin 60°×2+13×1+2×22×3=3 3.答案:3 3 [选做题] 1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B. 2.四棱锥P ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5 C.92 D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ABCD是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.3.(2017·兰州模拟)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2,即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ABC =13×12×12×12×32×5=60 3. 答案:60 3 第二讲点、直线、平面之间的位置关系考点一 空间线面位置关系的判断一、基础知识要记牢 空间线线、线面、面面的位置关系的认识和判定是学习立体几何的基础,要在空间几何体和空间图形中理解、表述位置关系,发展空间想象能力.二、经典例题领悟好[例1] (1)(2017·全国卷Ⅲ)在正方体ABCD A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC(2)(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)[解析] (1)法一:由正方体的性质,得A 1B 1⊥BC 1,B 1C ⊥BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1CD .又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1.法二:∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B 、D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.(2)对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.[答案] (1)C (2)②③④解决空间线面位置关系的判断问题的常用方法(1)根据空间线面垂直、平行关系的判定定理和性质定理逐一判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.三、预测押题不能少1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ.又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C、D中均有AB∥平面MNQ.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQ∥AB.因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MNQ.故选A.考点二空间线面平行、垂直关系的证明一、基础知识要记牢(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(5)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(6)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(7)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(8)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(9)三垂线定理及逆定理:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.二、经典例题领悟好[例2] 如图,在四棱锥PABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明] (1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,而且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD,∴PA⊥CD.∴CD⊥平面PAD.∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF.∴CD⊥EF.又BE∩EF=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,即空间向平面的转化:面面⇔线面⇔线线.三、预测押题不能少2.由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,因为ABCDA1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,因为O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为E,M分别为AD,OD的中点,所以EM∥AO.因为AO⊥BD,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E⊂平面A1EM,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.[知能专练(十四)]一、选择题1.下列四个命题中,正确命题的个数是( )①若平面α∥平面β,直线m∥平面α,则m∥β;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;④直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0 B.1C.2 D.3解析:选B ①若平面α∥平面β,直线m∥平面α,则m∥β或m⊂β,故①不正确;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β或相交,故②不正确;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;此命题中,若B∈β,且AB与l异面,同时AB⊥l,此时AB与β相交,故③不正确;命题④是正确的.2.(2017·泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是( ) A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α解析:选C a,b是互不垂直的两条异面直线,把它放入正方体中如图,由图可知A不正确;由l∥a,且l⊥b,可得a⊥b,与题设矛盾,故B不正确;由a⊂α,且b⊥α,可得a⊥b,与题设矛盾,故D不正确,故选C.3.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A .①②B .①②③C .①D .②③解析:选B 对于①,∵PA ⊥平面ABC ,∴PA ⊥BC .∵AB 为⊙O 的直径,∴BC ⊥AC ,又∵PA ∩AC =A ,∴BC ⊥平面PAC ,又PC ⊂平面PAC ,∴BC ⊥PC .对于②,∵点M 为线段PB 的中点,∴OM ∥PA ,∵PA ⊂平面PAC ,OM ⊄平面PAC ,∴OM ∥平面PAC .对于③,由①知BC ⊥平面PAC ,∴线段BC 的长即是点B 到平面PAC 的距离.故①②③都正确.4.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β解析:选B 画出一个长方体ABCD A 1B 1C 1D 1.对于A ,C 1D 1∥平面ABB 1A 1,C 1D 1∥平面ABCD ,但平面ABB 1A 1与平面ABCD 相交;对于C ,BB 1⊥平面ABCD ,BB 1∥平面ADD 1A 1,但平面ABCD 与平面ADD 1A 1相交;对于D ,平面ABB 1A 1⊥平面ABCD ,CD ∥平面ABB 1A 1,但CD ⊂平面ABCD .5.(2017·成都模拟)把平面图形M 上的所有点在一个平面上的射影构成的图形M ′称为图形M 在这个平面上的射影.如图,在长方体ABCD EFGH 中,AB =5,AD =4,AE =3,则△EBD 在平面EBC 上的射影的面积是( )A .234 B.252 C .10 D .30解析:选A 连接HC ,过D 作DM ⊥HC ,交HC 于M ,连接ME ,MB ,因为BC ⊥平面HCD ,又DM ⊂平面HCD ,所以BC ⊥DM ,因为BC ∩HC =C ,所以DM ⊥平面HCBE ,即D 在平面HCBE 内的射影为M ,所以△EBD 在平面HCBE 内的射影为△EBM ,在长方体中,HC ∥BE ,所以△MBE 的面积等于△CBE 的面积,所以△EBD 在平面EBC上的射影的面积为12×52+32×4=234,故选A. 6.已知E ,F 分别为正方体ABCD A 1B 1C 1D 1的棱AB ,AA 1上的点,且AE =12AB ,AF =13AA 1,M ,N 分别为线段D 1E 和线段C 1F 上的点,则与平面ABCD 平行的直线MN 有( )A .1条B .3条C .6条D .无数条解析:选D 取BH =13BB 1,连接FH ,则FH ∥C 1D 1,连接HE ,D 1H ,在D 1E 上任取一点M ,过M 在平面D 1HE 中作MG ∥HO ,交D 1H 于点G ,其中OE =13D 1E ,过O 作OK ⊥平面ABCD 于点K ,连接KB ,则四边形OHBK 为矩形,再过G 作GN ∥FH ,交C 1F 于点N ,连接MN ,由于MG ∥HO ,HO ∥KB ,KB ⊂平面ABCD ,GM ⊄平面ABCD ,所以GM ∥平面ABCD ,同理,GN ∥FH ,可得GN ∥平面ABCD ,由面面平行的判定定理得,平面GMN ∥平面ABCD ,则MN ∥平面ABCD ,由于M 为D 1E 上任一点,故这样的直线MN 有无数条.二、填空题7.已知α,β,γ是三个不重合的平面,a ,b 是两条不重合的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填可能条件的序号).解析:由定理“一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行”可得,横线处可填入条件①或③.答案:①或③8.(2018届高三·江南十校联考)如图,正方体ABCD A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确结论的序号是________.解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确.过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,连接RS ,当则M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③正确.综上所述,正确结论的序号是①③.答案:①③9.(2017·温州模拟)如图,在四面体ABCD 中,E ,F 分别为AB ,CD 的中点,过EF 任作一个平面α分别与直线BC ,AD 相交于点G ,H ,则下列结论正确的是________.①对于任意的平面α,都有直线GF ,EH ,BD 相交于同一点;②存在一个平面α0,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③对于任意的平面α,都有S △EFG =S △EFH ;④对于任意的平面α,当G ,H 在线段BC ,AD 上时,几何体AC EGFH 的体积是一个定值. 解析:对①,G ,H 分别为相应线段中点时,三线平行,故①错.对②,三线相交时,交点会在BD 上,作图可知②错.对③,如图1,取BD ,AC 的中点I ,J ,则BC ,AD 都与平面EIFJ 平行,故A ,H 到平面EIFJ 的距离相等,B ,G 到平面EIFJ 的距离相等,而E 为AB 的中点,故A ,B 到平面EIFJ 的距离相等,从而G ,H 到平面EIFJ 的距离相等.连接GH 交EF 于K ,则K 为GH 的中点,从而G ,H 到EF 的距离相等,故两三角形的面积相等.③正确.对④,如图2,当H 为D 时,G 为C ,此时几何体的体积为三棱锥A CDE 的体积,为四面体体积的一半.当如图2所示时,只需证V C EFG =V D EFH ,由③可得,只需证C ,D 到截面的距离相等,因为F 为CD 的中点,所以C ,D 到截面的距离相等.故④正确.答案:③④ 三、解答题10.(2016·山东高考)在如图所示的几何体中,D 是AC 的中点,EF ∥DB.(1)已知AB =BC ,AE =EC ,求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点,求证:GH ∥平面ABC . 证明:(1)因为EF ∥DB , 所以EF 与DB 确定平面BDEF . 如图,连接DE .因为AE =EC ,D 为AC 的中点, 所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D , 所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF , 所以AC ⊥FB .(2)如图,设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的图1图2中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,BC∩DB=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.11.(2017·嘉兴模拟)如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.(1)求证:AB⊥平面ADE;(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.证明:(1)因为AE⊥平面ECD,CD⊂平面ECD,所以AE⊥CD.又因为AB∥CD,所以AB⊥AE.在矩形ABCD中,AB⊥AD,因为AD∩AE=A,AD⊂平面ADE,AE⊂平面ADE,所以AB⊥平面ADE.(2)连接AN交BD于F点,连接FM,因为AB∥CD且AB=2DN,所以AF=2FN,又AM=2ME,所以EN∥FM,又EN⊄平面BDM,FM⊂平面BDM,所以EN∥平面BDM.12.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点.(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC.证明:(1)∵E,G,F分别为MB,PB,PC的中点,∴EG∥PM,GF∥BC.又∵四边形ABCD是正方形,∴BC∥AD,∴GF∥AD.∵EG,GF在平面PMA外,PM,AD在平面PMA内,∴EG∥平面PMA,GF∥平面PMA.又∵EG,GF都在平面EFG内且相交,∴平面EFG∥平面PMA.。
专题四 立体几何 第2讲 立体几何中的向量方法练习1.(2016·山东卷)在如图所示的圆台中,AC 是下底面圆O 的直径,EF是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.(1)证明 设FC 中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI ,所以GH ∥平面ABC .(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O的直径,所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意得B (0,23,0),C (-23,0,0).过点F 作FM 垂直OB 于点M ,所以FM =FB 2-BM 2=3,可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的一个法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0.可得⎩⎨⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33, 因为平面ABC 的一个法向量n =(0,0,1),所以cos 〈m ,n 〉=m ·n |m ||n |=77. 所以二面角F -BC -A 的余弦值为77.2.(2015·山东卷)如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE, ∠BAC =45° ,求平面FGH与平面ACFD 所成的角(锐角)的大小.(1)证明 法一 连接DG ,CD ,设CD ∩GF =O ,连接OH ,在三棱台DEF-ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD ,又OH ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .法二 在三棱台DEF -ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED .因为BD ⊂平面ABED ,所以BD ∥平面FGH .(2)解 设AB =2,则CF =1.在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC ,又FC ⊥平面ABC ,所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点.所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1), 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1). 设n =(x ,y ,z )是平面FGH 的一个法向量,则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0. 可得平面FGH 的一个法向量n =(1,-1,2).因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0).所以cos 〈GB →,n 〉=GB →·n |GB →|·|n|=222=12. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.3.(2016·四川卷)如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .E 为边AD 的中点,异面直线PA 与CD 所成的角为90°.(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角P -CD -A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 解 (1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面PAB ),点M 即为所求的一个点.理由如下:由已知,BC ∥ED ,且BC =ED .所以四边形BCDE 是平行四边形.从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE .所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)法一 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A ,所以CD ⊥平面PAD .于是CD ⊥PD .从而∠PDA 是二面角P -CD -A 的平面角.所以∠PDA =45°.由PA ⊥AB ,可得PA ⊥平面ABCD .设BC =1,则在Rt △PAD 中,PA =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2).设平面PCE 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0.得⎩⎪⎨⎪⎧x -2z =0,x +y =0.设x =2,解得n =(2,-2,1).设直线PA 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13. 所以直线PA 与平面PCE 所成角的正弦值为13. 法二 由已知,CD ⊥PA ,CD ⊥AD ,PA ∩AD =A ,所以CD ⊥平面PAD .从而CD ⊥PD .所以∠PDA 是二面角P -CD -A 的平面角.所以∠PDA =45°.设BC =1,则在Rt △PAD 中,PA =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH .易知PA ⊥平面ABCD ,从而PA ⊥CE .且PA ∩AH =A ,于是CE ⊥平面PAH .又CE ⊂平面PCE ,所以平面PCE ⊥平面PAH . 过A 作AQ ⊥PH 于Q ,则AQ ⊥平面PCE .所以∠APH 是PA 与平面PCE 所成的角.在Rt △AEH 中,∠AEH =45°,AE =1,所以AH =22. 在Rt △PAH 中,PH =PA 2+AH 2=322. 所以sin ∠APH =AH PH =13.4.(2016·全国Ⅰ卷)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D-AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.(1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,且DF ∩EF =F ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°, 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.5.(2016·广州二模)如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E -BF -C 的正弦值.法一 (1)证明 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0). 因而E (0,12,32),F ⎝ ⎛⎭⎪⎫32,12,0, 所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0), 因此EF →·BC →=0.从而EF →⊥BC →,所以EF ⊥BC .(2)解 平面BFC 的一个法向量为n 1=(0,0,1).设平面BEF 的法向量n 2=(x ,y ,z ),又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32. 由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角,则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=15,∴cos θ=55, 因此sin θ=25=255,即所求二面角的正弦值为255. 法二 (1)证明 过E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC 可证出△EOC ≌△FOC .所以∠EOC =∠FOC =π2, 即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,EO ,FO ⊂平面EFO ,因此BC ⊥平面EFO ,又EF ⊂平面EFO ,所以EF ⊥BC .(2)解 过O 作OG ⊥BF ,垂足为G ,连接EG .由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,BF ⊂平面BDC ,∴BF ⊥EO ,又OG ⊥BF ,又EO ∩OG =O ,所以BF ⊥平面EOG ,又EG ⊂平面EOG ,所以EG ⊥BF .因此∠EGO 为二面角EBFC 的平面角.在△EOC 中,EO =12EC =12BC ·cos 30°=32, 由△BGO ∽△BFC 知,OG =BOBC ·FC =34, 因此tan ∠EGO =EO OG =2,从而sin ∠EGO =255,即二面角E BF C 的正弦值为255.6.(2016·北京二模)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE .求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.(1)证明 在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE .又因为AB ⊄平面PDE ,DE ⊂平面PDE ,所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG ,所以AB ∥FG .(2)解 因为PA ⊥底面ABCDE ,所以PA ⊥AB ,PA ⊥AE .如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0.令z =1,则y =-1. 所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则cos 〈n ,BC →〉=n ·BC →|n ||BC →|=-12.∴sin α=12,因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1),即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ.因为n 是平面ABF 的法向量,所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0.解得λ=23,所以点H 的坐标为⎝ ⎛⎭⎪⎫43,23,23.所以PH =⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2.。