弹性扭转问题的多互易杂交边界点解法
- 格式:pdf
- 大小:154.76 KB
- 文档页数:5
第四章一、线性弹性理论适定问题的基本方程和边界条件对于线弹性体小变形的线性问题,建立了一组线性方程组可以描述为在S 为边界的域V 上以u ,ε,σ作为求解变量的偏微分方程边值问题:微分提法2变分提法积分提法第四章第四章适定问题:第四章均匀变形状态()()1222111 1d d E c d d E c νν−=−=第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件 适定问题与非适定问题简例蓝色:边界给定量红色:边界未知量6适定问题例一第四章蓝色:边界给定量红色:边界未知量7适定问题例二第四章蓝色:边界给定量红色:边界未知量8适定问题例三边界全部给定面力时约束刚体位移才能求得确定位移边界全部给定面力时给定面力和体积力必须整体平衡第四章蓝色:边界给定量红色:边界未知量9非适定问题例一有多余边界条件情况一般无解第四章蓝色:边界给定量红色:边界未知量10非适定问题例二边界条件识别(逆问题)复杂!第四章 1.3 界面连续条件第四章弹性力学的基本方程和解法一、线性弹性理论适定问题的基本方程和边界条件II I u u =IIIi i u u =位移面力3个条件0t t =+II I 0II II I I =+ji j ji j n n σσIII S IIS +−u3个条件+12∀X ∈S It I I t0)(II I I =−ji ji j n σσ界面连续条件应为边界条件个数的两倍I S第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章第四章。
弹性力学问题中的双重互易杂交边界点法
苗雨;晏飞
【期刊名称】《南阳理工学院学报》
【年(卷),期】2009(001)001
【摘要】杂交边界点法是一种边界类型的纯无网格方法,它同时具有边界元法降维的优势和无网格法无需插值和积分网格的优良特性.但在求解非齐次问题时,不可避免的需要域内积分.本文将双重互易法引入到该方法中,将对非齐次项的域内积分转化成边界积分,形成双重互易杂交边界点法.该方法将问题的解分为通解和特解两部分,通解使用杂交边界点方法求解,特解利用局部径向基函数近似.为了达到特解插值的通用性,本文提出了特解基本形式.该方法是一种边界型纯无网格方法.数值算例表明,该方法是一种计算量小、精度较高的数值方法,适合于求解各种弹性力学问题.【总页数】5页(P52-55,75)
【作者】苗雨;晏飞
【作者单位】华中科技大学土木工程与力学学院,湖北,武汉,430074;华中科技大学控制结构湖北重点实验室,湖北,武汉,430074;华中科技大学土木工程与力学学院,湖北,武汉,430074;华中科技大学控制结构湖北重点实验室,湖北,武汉,430074
【正文语种】中文
【中图分类】O241
【相关文献】
1.双互易杂交边界点法参数及域内节点分布 [J], 樊志华
2.双重互易杂交边界点方法在势问题中的应用 [J], 司马玉洲;朱宏平;苗雨
3.求解二阶椭圆型偏微分方程的双重互易杂交径向边界点法 [J], 汪学海
4.含非均匀体力机械结构弹性力学问题的双互易边界元法 [J], 曾华;周枫林;余江鸿
5.弹性力学问题中一个新的边界积分方程——自然边界积分方程 [J], 牛忠荣;王秀喜;周焕林;张晨利
因版权原因,仅展示原文概要,查看原文内容请购买。
第九章柱体的扭转9.1 扭转问题的位移解法学习思路:本节讨论自由扭转问题的位移解法。
首先建立自由扭转的位移假设:一是刚截面假设;二是扭转的翘曲位移与轴线方向坐标无关。
通过上述假设,将柱体的扭转位移用横截面的翘曲表示,因此使得问题的基本未知量简化成为翘曲函数Φ (x,y)。
基本未知量翘曲函数Φ (x,y)。
确定后,通过基本方程,将应力分量、应变分量用翘曲函数表示。
位移表示的平衡微分方程要求翘曲函数满足调和方程。
因此只要选取的翘曲函数是调和函数,自然满足自由扭转问题的基本方程。
自由扭转问题的边界条件,可以分为两个部分:侧面边界条件和端面边界条件。
对于自由扭转,侧面边界不受力。
根据这一条件,可以转化为翘曲函数与横截面边界的关系。
端面采用合力边界条件,就是端面应力的合力为扭矩T。
这一边界条件,采用翘曲函数表达相当复杂。
学习要点:1. 扭转位移假设;2. 扭转翘曲函数满足的基本方程;3. 扭转边界条件;4. 扭转端面边界条件;当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。
如果横截面翘曲变形不受限制,称为自由扭转;如果横截面翘曲变形受到限制,就是约束扭转。
本章讨论的柱体扭转问题为自由扭转。
对于柱体的自由扭转,假设柱体的位移约束为固定左端面任意一点和相应的两个微分线素,使得柱体不产生刚体位移。
柱体右端面作用一力偶T,侧面不受力。
设柱体左端面形心为坐标原点,柱体轴线为z轴建立坐标系。
柱体扭转时发生变形,设坐标为z 的横截面的扭转角为α,则柱体单位长的相对扭转角为。
而横截面的扭转角α = ϕ z。
对于柱体的自由扭转,首先考察柱体的表面变形。
观察可以发现,柱体表面横向线虽然翘曲,但是各个横向线的翘曲是基本相同的,而且横向线的轮廓线形状基本不变。
根据上述观察结论,对柱体部位移作以下的假设:1.刚截面假设。
柱体扭转当横截面翘曲时,它在Oxy平面上的投影形状保持不变,横截面作为整体绕z 轴转动,如图所示。
奇异杂交边界点法求解扭转问题苗雨;晏飞;郑伟峰【摘要】提出了一种新的边界类型的无网格方法--奇异杂交边界点法用于求解扭转问题,该方法是以修正变分原理和移动最小二乘近似为基础,同时利用无网格法局部边界积分方程中的局部化思想,计算时仅仅需要边界上离散点的信息,因此它同时具有边界元法和无网格法的优良特性.本文将该方法同双重互易法结合用来求解扭转问题,将该问题的解分为通解和特解两部分,其中通解使用奇异杂交边界点方法求解,特解则利用局部径向基函数近似,彻底避免了域内积分.使用刚体位移法处理方法中的强奇异积分,同时提出了一种自适应的积分方案,解决了边界类型方法中存在的"边界层效应".数值计算表明,本文方法具有较高的精度和收敛性.【期刊名称】《土木工程与管理学报》【年(卷),期】2007(024)003【总页数】4页(P45-48)【关键词】奇异杂交边界点法;双重互易法;扭转问题【作者】苗雨;晏飞;郑伟峰【作者单位】华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,控制结构湖北省重点实验室,湖北,武汉,430074;中国科学院,岩土力学重点实验室,湖北,武汉,430071;华中科技大学,土木工程与力学学院,湖北,武汉,430074;华中科技大学,控制结构湖北省重点实验室,湖北,武汉,430074;河南省禹州市公路管理局,河南,禹州,461670【正文语种】中文【中图分类】O343.1弹性扭转是弹性理论中最重要的空间问题,目前只是对一些简单的边界形状,如椭圆、等边三角形、矩形和扇形等求出解析解。
对稍微复杂的形状,因边界不规则,使得其弹性分析较为困难。
弹性扭转问题实际上是泊松方程求解问题。
由于只有少量的泊松方程有解析解,因此寻求该类方程高精度的数值解成为理论研究的重要内容。
用传统的边界元方法求解泊松方程[1,2]时,除了需要边界单元划分外,对域内分布源函数需要域内单元划分来计算域内积分,这带来了应用上的不便。
第五章弹性力学的求解方法和一般性原理一.内容介绍通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。
本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。
弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。
面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。
根据这一要求,本章的主要任务有三个:一是综合弹性力学的基本方程,并按边界条件的性质将问题分类;二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。
弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。
应该注意的是对于应力解法,基本方程包括变形协调方程。
三是介绍涉及弹性力学求解方法的一些基本原理。
主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。
如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。
二. 重点1.弹性力学基本方程与边界条件分类;2.位移解法与位移表示的平衡微分方程;3. 应力解法与应力表示的变形协调方程;4. 混合解法;5. 逆解法和半逆解法;6. 解的唯一性原理、叠加原理和圣维南原理知识点弹性力学基本方程边界条件位移表示的平衡微分方程应力解法体力为常量时的变形协调方程物理量的性质逆解法和半逆解法解的迭加原理弹性力学基本求解方法位移解法位移边界条件变形协调方程混合解法应变能定理解的唯一性原理圣维南原理§5.1 弹性力学的基本方程及其边值问题学习思路:通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。
本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。
弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。