2021年秋八年级数学上册课件:阶段能力测试(二)(~)
- 格式:ppt
- 大小:2.39 MB
- 文档页数:13
勤学早• 2021元月调考数学模拟试卷(二)一、选择题(共10小题,每小题3分,共30分)1. 方程4x 2 = 81化成一般形式后,它的一次项系数是()2. 下列图形中,是中心对称图形的有()3. 抛物线y = 4(— 3尸+1的对称轴是直线() 5•在RtAABC 中,ZC 二90° , AC 二3, BC=4,以点C 为圆心,以2. 4个单位长为半径的圆与AB 的公共点的个数为()A. 0B. 1C. 2D.无法确定6.将抛物线y = -l (x+l )2-l 平移后得到抛物线y = -|x 2,下列平移方法正确的是()A.先向左平移1个单位,再向上平移1个单位B •先向左平移1个单位,再向下平移1个单位C. 先向右平移1个单位再向上平移1个单位D •先向右平移1个单位,再向下平移1个单位7•如图,PA, PB 分别与相切于A, B 两点,ZP 二70° ,则ZC 的度数为()A. 55°A.4B. 0C. 81D. -81正方形A. 1O △正六边形 正三角形 B. 2个 C. 3个 二平行四边形 D. 4个 A. x = 3 B. x = -3 C. x = \D. x = -l 4 •同时掷两枚质地均匀的骰子,A. 两枚骰子的点数相同 则下列事件为必然事件的是()B. 两枚骰子的点数之和是9D.两枚骰子的点数之和大于B. C. D.8•屮袋中装有相同的卡片,颜色分别为红色和黄色;乙袋中装有3张相同的卡片,颜色分别 为红色、黃色、绿色.从这两个口袋中各随机抽取1张卡片,取出的两张卡片中至少有一张是 红色的概率是()A. -B. -C. -D.丄 3 2 3 69. 如图所示是函数y =小2+加+。
@工0)的部分图象,与x 轴交于点(3,0),对称轴是直线x 二1.下列结论:® abc >0 ;②a —b+c = O ; ® '*1 — 1 < x< 3H 寸,y < 0 ; am 2+ bin>a + b } (in实数).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个10. 如图,半径为1的00与直线/相切于点A, C 为00上的一点,CB 丄/于点B,则AB+BC 的最大值是()A.2B.” 二、填空题(共6小题,每小题3分,共18分)11. ________________________________________________________ 若点M (a,2)和N (l, b )关于原点对称,则a+b 的值是 _________________________ .12. —个不透明的口袋里有红、黃、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红 球3个,黃球2个,蓝球若干个,已知随机摸出一个球是红球的概率是丄,则随机摸出一个3球是蓝球的概率是 ____________ .13 •某种植物的一个主干长出若干数目的支干,每个支干乂长出同样数H 的小分支,主干、支干、小分支的总数为133,则每个支干长出多少个小分支?设每个支干长出兀个小分支,依 题意列方程,化成一般式为 ______________ .14.如图,将ZkABC 绕点A 顺时针旋转得到AADE,且点D 恰好在AC 上,ZBAE=ZCDE=136° , 则ZC 的度数是 _______________ .15•如图,从一块半径是JiTcm 的圆形铁皮上剪岀一个圆心角为60°的扇形,将剪下的扇形D.2 + #第14题图 第16题图围成一个圆锥,若0A二2cm,则圆锥的高是___________ ・16.如图,△ABC, ADEF均为等边三角形,D、E分别是AB、BC上的点,连接CF,若BD二3AD二3, 且CF丄BC,则CF的长为图2 图2 图3三、解答题(共8小题,共72分)17. (本题8分)解方程x 2-x-l = O.18. (本题8分)如图,AB 为G>0的弦,P 为00 ±一点,0P 〃AB, ZPBA=20°・(1) 求ZP0B 的度数:(2) E 为00 ±一点,AE=PB,直接写出ZEPB 的度数・19. (本题8分)在一个不透明的盒子中,放入2个红球,1个黄球和1个白球•这些球除颜色 外都相同。
北师大版八年级(上)第二单元达标测试卷(二)数 学(考试时间:100分钟 满分:120分)学校: 班级: 考号: 得分:一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列实数中,属于无理数的是( )A .53B C .3.14D22π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.83.若Rt ABC 的两边长a ,b 满足()240a -=,则第三边的长是( )A .5B C .5或7D .54.若27a ab m +=+,29b ab m +=-.则a b +的值为( ) A .4±B .4C .2±D .252b +4=4b ,则20152016•a b 的值是( ) A .12B .12-C .2D .﹣26.下列等式正确的是( )A 3=-B 712± C 4= D .32=- 7.下列说法中正确的是( )A .81的平方根是9B 4CD .64的立方根是4±8 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间91最接近的是( )A .0.4B .0.6C .0.8D .110.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .1411.估计)301182) A .0和1 B .1和2C .2和3D .3和4123236x y z +++=x 、y 、z 为有理数.则xyz =( )A .34B .56 C .712D .1318二、填空题(本大题共6小题,每小题3分,共18分)1311163-⎛⎫-= ⎪⎝⎭__________. 14.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 155x +x 53x a没有实数根,那么a 的取值范围是__.16.已知a 、b 是相邻的两个正整数,且a <11﹣1<b ,则a +b 的值是_____. 17.已知:1502222a b c -==ab +c =________. 18.若实数,x y 满足22425x y x y +-=-x yx y+-_________ 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.把下列各数分别填入相应的集合里.3.14、0.121121112…、2113⎛⎫- ⎪⎝⎭、|6|-、-2011、22-、13π、20% 无理数集合:{}… 负整数集合:{}… 分数集合: {}…正数集合: {}…20.我们规定:a ≥b 时,a ★b =a -b ;当a < b 时,a ★b =a 2-b 2. (1)求5★3的值;(2)若m > 0,化简(m +3)★(2m +3); (3)若x ★3=7,求x 的值; 21.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)()()22231532732-+---⨯+-22.对于一个实数m (m 为非负实数),规定其整数部分为a ,小数部分为b ,例如:当3m =时,则3a =,0b =;当 4.5m =时,则4a =,0.5b =.(1)当m π=时,b = ;当11=m 时,a = ; (2)若5a =,630=-b ,则m = ; (3)当97=+m 时,求-a b 的值.23.实数a ,b ,c ,d ,e 在数轴上的位置如图所示.a 是最小的自然数,b 是最大的负整数,c 和d 是互为相反数,e 表示的数是7.(1)用“>”或“<”填空:b 0,c e ,b +c 0; (2)求代数式:|b ﹣e |+|d +c |×2019+2020a的值. 24.已知线段a ,b ,c ,且线段a ,b 满足|a 48+(b 322=0 (1)求a ,b 的值;(2)若a ,b ,c 是某直角三角形的三条边的长度,求c 的值.参考答案三、选择题(本大题共12小题,每小题3分,共36分。
答案一、选择题(本大题共12小题,共36.0分)1.下列根式中是最简二次根式的是A. B. C. D.【答案】D【解析】A、,即该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;C、,则该二次根式中的被开方数中含有能开得尽方的因数所以它不是最简二次根式故本选项错误;D、该二次根式符合最简二次根式的定义故本选项正确.故选D.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.适合下列条件的中,直角三角形的个数为;;;.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】解:,不能构成直角三角形;,不一定是直角三角形;,则,是直角三角形;,能构成直角三角形;能构成直角三角形的个数为2个,故选:A.根据勾股定理的逆定理:如果三角形的三边长满足,那么这个三角形就是直角三角形;三角形内角和为进行分析即可.主要考查了直角三角形的判定,关键是掌握勾股定理的逆定理.3.化简的结果为A. B. C. D.【答案】C【解析】解:原式.故选:C.利用积的乘方以及同底数幂的乘法运算法则将原式变形求出即可.主要考查了二次根式的混合运算,正确利用积的乘方进行运算是解题关键.4.【答案】B5.对任意实数a,则下列等式一定成立的是A. B. C. D.【答案】D【解析】试题分析:根据二次根式的化简、算术平方根等概念分别判断.A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、,故本选项错误.D、故本选项正确.故选D.6.如图所示,的顶点A,B,C在边长为1的正方形网格的格点上,于点D,则BD的长为( )C.B.A.D.【答案】C【解析】解:的面积,由勾股定理得,,则,解得,故选:C.根据图形和三角形的面积公式求出的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.7.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是A. B. C. D.【答案】D【解析】解:A、,不能够成三角形,故此选项错误;B、,不能够成三角形,故此选项错误;C、,不能构成三角形,故此选项错误;D、,能够成三角形,故此选项正确;故选:D.平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.主要考查了平行四边形的性质,关键是掌握平行四边形的对角线互相平分.8.【答案】B9.若代数式在实数范围内有意义,则x的取值范围是A. B. C. D. 且【答案】A【解析】解:由题意得,,解得.故选A.根据被开方数大于等于0,分母不等于0列式计算即可得解.考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10.某校的校园内有一块尺寸如图所示的三角形空地,现计划将这块空地建成一个花园已知每平方米的造价为30元则学校建这个花园需要投资A. 7794元B. 7820元C. 7822元D. 7921元【答案】A【解析】解:作于H,如图,,,在中,,,每平方米学校建这个花园需要投资额元.故选A.作于H,根据邻补角得到,在中,根据的正弦可计算出,再计算每平方米,然后用面积乘以单价即可得到学校建这个花园需要的投资额.考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 6【答案】C【解析】解:如图所示:,,大正方形的面积为13,,小正方形的面积为.故选:C.观察图形可知,小正方形的面积大正方形的面积个直角三角形的面积,利用已知,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.12.如图,平行四边形ABCD的对角线交于点平分交BC于点E,且,连接OE。
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习能力提升训练题(含答案)一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=23.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零4.已知===,则=()A.B.C.D.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.47.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣29.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.12.若式子有意义,则x的取值范围是.13.若分式的值为0,则x的值是.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.15.约分的结果是.16.若关于x的方程=无解,则m的值是.17.分式方程=1的解是x=.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是.19.若解关于x的方程产生增根,则m的值为.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质;(2)下列分式中,属于真分式的是;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.22.约分(1)(2)23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)24.计算:.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.26.(1)解方程:.(2)解不等式组:.27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来;(2)你认为哪个方案节省工程款,请说明你的理由.参考答案:一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.解:分母含有字母的式子是分式,整式2,x+3,中,抽到x+3做分母时组成的都是分式,共有3×2=6种情况,其中x+3分母的情况有2种,所以能组成分式的概率==.故选:A.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=2解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.3.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零解:由3x﹣1≠0,得x≠,故把x=﹣a代入分式中,当x=﹣a且﹣a≠时,即a≠﹣时,分式的值为零.故选:C.4.已知===,则=()A.B.C.D.解:∵===,∴b=2a,d=2c,f=2e,把b=2a,d=2c,f=2e代入===,故选:C.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=解:A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4解:解方程﹣=5,得:x=,∵分式方程的解为正数,∴a+2>0,即a>﹣2,又x≠1,∴≠1,即a≠2,则a>﹣2且a≠2,∵关于y的不等式组有解,∴a﹣1≤y<6﹣2a,即a﹣1<6﹣2a,解得:a<,综上,a的取值范围是﹣2<a<,且a≠2,则符合题意的整数a的值有﹣1、0、1,3个,故选:C.7.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个解:(1)方程两边都乘2得2﹣x+1=2x,错误;(2)由于不确定x+1是否为0,所以不能两边都除以,错误;(3)方程两边都乘x﹣1得x(x﹣1)﹣1=﹣1,错误.故选:A.8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.9.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m解:如图,设圆形跑道总长为2s,又设甲乙的速度分别为v,v′,再设第一次在C点相遇,根据题意得:化简得:,解此方程得S=0(舍去)或S=240.所以2S=480米.经检验是方程的解;故选:C.二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.解:由分析可得第n项的分母应为x n+1,分子为:,第n个分式是,故答案为:.12.若式子有意义,则x的取值范围是x≠3.解:∵式子有意义,∴x的取值范围是:x﹣3≠0,解得:x≠3.故答案为:x≠3.13.若分式的值为0,则x的值是﹣1.解:由分式的值为0,得x+1=0且x﹣1≠0.解得x=﹣1,故答案为:﹣1.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.解:==,故答案为:.15.约分的结果是﹣.解:=﹣=﹣,故答案为:.16.若关于x的方程=无解,则m的值是1.解:去分母得:x﹣1=m,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=1,故答案为:117.分式方程=1的解是x=1.解:=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是y2﹣y+1=0.解:设=y,则原方程化为y+﹣=0两边都乘以y,得y2﹣y+1=0,故答案为:y2﹣y+1=0.19.若解关于x的方程产生增根,则m的值为3.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为=.解:设A种树苗的单价为x元,则B种树苗的单价为(x﹣10)元,所以用600元购买A 种树苗的棵数是,用450元购买B种树苗的棵数是.由题意,得=.故答案是:=.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.;(2)下列分式中,属于真分式的是C;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.解:(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故ABD选项是假分式.故选C.(3)=m﹣1+22.约分(1)(2)解:(1)原式==;(2)原式===.23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)解:①原式=2﹣﹣1+9﹣1=9﹣;②原式=4x2﹣12x+9﹣(4x2﹣9)=4x2﹣12x+9﹣4x2+9=﹣12x+18;③原式=﹣••(﹣)=;④原式=x2﹣2xy+y2+x2﹣xy+2xy﹣2y2=2x2﹣xy﹣y2.24.计算:.解:原式=,=,=,=﹣1.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.26.(1)解方程:.(2)解不等式组:.解:(1)去分母,得1=3(x﹣3)﹣x.(1分)去括号,得1=3x﹣9﹣x.(2分)解得x=5.(3分)经检验,x=5 是原方程的解.(4分)(2)解不等式(1)得:x≥1;…(1分)解不等式(2)得:x<5;…(2分)所以不等式组的解集为1≤x<5.…(4分)27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴∴甲公司单独完成需10周,乙公司单独完成需15周.28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来甲、乙两队合作4天;(2)你认为哪个方案节省工程款,请说明你的理由.解:(1)根据题意及所列的方程可知被损毁的部分为:甲、乙两队合作4天;故答案为:甲、乙两队合作4天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=20.经检验:x=20是原分式方程的解.这三种施工方案需要的工程款为:(A)1.1×20=22(万元);(B)0.8×(20+5)=20(万元);(C)4×1.1+20×0.8=20.4(万元).综上所述,B方案可以节省工程款。
第十五章 分式选拔卷(考试时间:90分钟 试卷满分:120分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2021·南昌市心远中学八年级期末)关于分式()271x x -+,下列说法不正确的是( )A .当1x =-时,分式没有意义B .当7x >时,分式的值为正数C .当7x <时,分式的值为负数D .当7x =时,分式的值为零2.(2021·山西祁县·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式是最简分式,那么我们称这个分式为“和谐分式”.下列分式中,属于“和谐分式”的是( )A .222a b a b --B .211x x -+C .22x y x y +-D .222()a b a b -+3.(2021·浙江拱墅·)你听说过著名的牛顿万有力定律吗?任何两个物体之间都有吸引力,如果设两个物体的质量分别为m 1,m 2,它们之间的距离是d ,那么它们之间的引力就是f =122gm m d (g 为常数),人在地面上所受的重力近似地等于地球对人的引力,此时d 就是地球的半径R .天文学家测得地球的半径约占木星半径的445,地球的质量约占木星质量的1318,则站在地球上的人所受的地球重力约是他在木星表面上所受木星重力的( ) A .52倍B .25倍C .25倍D .4倍4.(2021·成都市八年级期中)老师设计了接力游戏,用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示: 老师22211x x x x x-÷--→甲22211x x x x x --⋅-→乙22211x x x x x --⋅-→丙2(2)11x x x x x --⋅-→丁22x - 接力中,自己负责的一步出现错误的是() A .只有乙B .甲和丁C .乙和丙D .乙和丁5.(2021·安徽太湖·七年级期末)在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x 瓶消毒液,则可列方程是( ) A .12012054x x -=+B .12012054x x -=-C .12012054x x +=+D .12012054x x+=- 6.(2020·浙江杭州·八年级期中)设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=;②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大. 其中正确的有( )个.A .1B .2C .3D .47.(2021·安徽霍邱·七年级期末)已知关于x 的分式方程10327333x k x x --=---的解满足2<x <5,则k 的取值范围是( )A .﹣7<k <14B .﹣7<k <14且k ≠0C .﹣14<k <7且k ≠0D .﹣14<k <7 8.(2021·浙江越城·七年级期末)已知关于x 的分式方程3x m x +-﹣1=1x 无解,则m 的值是( )A .﹣2B .﹣3C .﹣2或﹣3D .0或39.(2021·长沙市开福区青竹湖湘一外国语学校)若2a ≠,则我们把22a-称为a 的“友好数”,如3的“友好数”是2223=--,2-的“友好数”是212(2)2=--,已知13a =,2a 是1a 的“友好数”,3a 是2a 的“友好数”,4a 是3a 的“友好数”,……,依此类推,则2021a =( )A .3B .2-C .12D .4310.(2021·重庆巴蜀中学)若a 为整数,关于x 的不等式组2(1)4340x xx a +<+⎧⎨-<⎩有解,且关于x 的分式方程11222ax x x-+=--有正整数解,则满足条件的a 的个数( ) A .1B .2C .3D .4二、填空题:本题共8个小题,每题3分,共24分。
2021-2022学年安徽省合肥市长丰县八年级第一学期段考数学试卷(二)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.如图,△ABC≌△DEF,BC=5,EC=3,则CF的长为()A.1B.2C.3D.53.如图,已知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是()A.AAS B.SAS C.ASA D.HL4.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,则这根木条不应钉在()A.E,F两点处B.B,D两点处C.H,F两点处D.A,F两点处5.如图,直线EF经过AC中点O,交AB于点E,交CD于点F,下列哪个条件不能使△AOE≌△COF()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF6.将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10°B.15°C.20°D.25°7.已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣18.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图所示的方法进行测量,其中OA=OD,OB=OC,测得AB=4厘米,EF=6厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.3厘米D.4厘米9.在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l 上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,1)B.(2,0)C.(2,﹣1)D.(2,3)10.如图,AB=AC,点D、E分别在AC、AB上,且AE=AD,连接EC,BD,EC交BD 于点M,连接AM,过点A分别作AF⊥CE,AG⊥BD,垂足分别为F、G,则下列结论错误的是()A.△EBM≌△DCMB.若S△BEM=S△ADM,则E是AB的中点C.MA平分∠EMDD.若E是AB的中点,则BM+AC<EM+BD二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的函数y=﹣x+3+m是正比例函数,则m=.12.如图,将△AOB沿x轴方向向右平移得到△CDE,点B的坐标为(3,0),DB=1,则点E的坐标为.13.如图,△ABD≌△ACE,∠A=53°,∠B=22°,则∠COD的度数为.14.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A →B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t (s).(1)AP的长为cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=s.三、(本大题共2小题,每小题8分,满分16分)15.如图,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)若∠ACB=90°,求证:BC∥DE.16.如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.四、(本大题共2小题,每小题8分,满分16分)17.如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A8,A12.(2)写出点A4n的坐标(n为正整数).(3)蚂蚁从点A2020到点A2021的移动方向是.(填“向上”、“向右”或“向五、(本大题共2小题,每小题10分,满分20分)19.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.20.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF∥AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.六、(本题满分12分)21.如图1,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD(不与点A,D重合)上的一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=20°,求∠C的度数.(2)求证:∠C﹣∠B=2∠DEF.(3)如图2,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD上一点,EF⊥AD交BC延长线于点F,∠ACB=m°,∠B=n°,直接写出∠F的度数(用含m,n的代数式七、(本题满分12分)22.如图,在平面直角坐标系中,点A(2,0),B(0,6),C(﹣6,0),D是线段AB 上一点,CD交y轴于点E,且S△BCE=2S△AOB.(1)求直线AB的函数表达式.(2)求点D的坐标.(3)猜想线段CE与线段AB的关系,并说明理由.八、(本题满分14分)23.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各组中的两个图形属于全等图形的是()A.B.C.D.【分析】利用全等图形的定义进行判断即可.解:A、两个图形属于全等图形,故此选项符合题意;B、两个图形不属于全等图形,故此选项不符合题意;C、两个图形不属于全等图形,故此选项不符合题意;D、两个图形不属于全等图形,故此选项不符合题意;故选:A.2.如图,△ABC≌△DEF,BC=5,EC=3,则CF的长为()A.1B.2C.3D.5【分析】利用全等三角形的性质可得EF=BC=5,然后利用等式性质求得答案即可.解:∵△ABC≌△DEF,∴EF=BC=5,∵EC=3,∴CF=3,故选:C.3.如图,已知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是()A.AAS B.SAS C.ASA D.HL【分析】根据HL证明Rt△ABD和Rt△CDB全等即可.解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:D.4.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,则这根木条不应钉在()A.E,F两点处B.B,D两点处C.H,F两点处D.A,F两点处【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在H、F两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:C.5.如图,直线EF经过AC中点O,交AB于点E,交CD于点F,下列哪个条件不能使△AOE≌△COF()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF【分析】根据题意和各个选项中的条件,可以判断是否使得△AOE≌△COF,从而可以解答本题.解:由题意可得,AO=CO,∠AOE=∠COF,当添加条件∠A=∠C时,△AOE≌△COF(ASA),故选项A不符合题意;当添加条件AB∥CD时,则∠A=∠C,△AOE≌△COF(ASA),故选项B不符合题意;当添加条件AE=CF时,无法判断△AOE≌△COF,故选项C符合题意;当添加条件OE=OF时,△AOE≌△COF(SAS),故选项D不符合题意;故选:C.6.将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10°B.15°C.20°D.25°【分析】根据三角形的外角性质计算,得到答案.解:∵∠FDC是△ADF的外角,∴∠AFD=∠FDC﹣∠A=45°﹣30°=15°,故选:B.7.已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣1【分析】由点A,A'间的关系,可得出点A'的坐标为(﹣1,4),由点A'在直线y=x+b 上,利用一次函数图象上点的坐标特征可得出关于b的方程,解之即可得出b的值.解:∵点A(2,4)沿水平方向向左平移3个单位长度得到点A',∴点A'的坐标为(﹣1,4).又∵点A'在直线y=x+b上,∴4=﹣1+b,∴b=5.故选:C.8.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图所示的方法进行测量,其中OA=OD,OB=OC,测得AB=4厘米,EF=6厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.3厘米D.4厘米【分析】只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=4(厘米),∵EF=6厘米,∴圆柱形容器的壁厚是×(6﹣4)=1(厘米),故选:A.9.在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l 上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,1)B.(2,0)C.(2,﹣1)D.(2,3)【分析】根据经过点A的直线l∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.解:如图所示,∵a∥x轴,点C是直线a上的一个动点,点A(0,3),∴设点C(x,3),∵当BC⊥直线l时,BC的长度最短,点B(2,1),∴x=2,∴点C的坐标为(2,3).故选:D.10.如图,AB=AC,点D、E分别在AC、AB上,且AE=AD,连接EC,BD,EC交BD 于点M,连接AM,过点A分别作AF⊥CE,AG⊥BD,垂足分别为F、G,则下列结论错误的是()A.△EBM≌△DCMB.若S△BEM=S△ADM,则E是AB的中点C.MA平分∠EMDD.若E是AB的中点,则BM+AC<EM+BD【分析】根据题目的已知条件,先证明△ABD≌△ACE,得出∠B=∠C,再根据已知得到BE=CD,从而证明△EBM≌△DCM,又得出对应角或对应边相等,再逐一判断即可.解:①∵AB=AC,AE=AD,∠BAD=∠CAE,∴△BAD≌△CAE,∴∠B=∠C,∵AB=AC,AE=AD,∴BE=CD,∵∠BME=∠CMD,∴△EBM≌△DCM,故A正确;②∵△EBM≌△DCM,∴EM=DM,∵AE=AD,AM=AM,∴△AEM≌△ADM,∵S△BEM=S△ADM,∴S△BEM=S△AEM,∴BE=AE,∴点E是AB的中点,故B正确;③∵△AEM≌△ADM,∴∠AME=∠AMD,∴MA平分∠EMD,故C正确;④延长ME至点N,使NE=ME,连接AN,∵E是AB的中点,∴AE=BE,∵∠AEN=∠BEM,∴△AEN≌△BEM,∴BM=AN,在△ANC中,∵AN+AC>CN,∴BM+AC>NE+CE,∴BM+AC>EM+BD,故D错误;故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的函数y=﹣x+3+m是正比例函数,则m=﹣3.【分析】根据正比例函数的定义得到3+m=0,然后解方程可得m的值.解:∵关于x的函数y=﹣x+3+m是正比例函数,∴3+m=0,解得m=﹣3.故答案为:﹣3.12.如图,将△AOB沿x轴方向向右平移得到△CDE,点B的坐标为(3,0),DB=1,则点E的坐标为(4,0).【分析】直接利用对应点的变化,进而得出平移距离,即可得出答案.解:∵B的坐标为(3,0),∴OB=3,∵DB=1,∴OD=3﹣1=2,∴D(2,0)∴△AOB向右平移了2个单位长度,∴点E的坐标为:(4,0).故答案为:(4,0).13.如图,△ABD≌△ACE,∠A=53°,∠B=22°,则∠COD的度数为83°..【分析】根据全等三角形的性质得出∠C=∠B,再求出答案即可.解:∵△ABD≌△ACE,∴∠C=∠B=22°,∵∠A=53°,∴∠BEC=∠A+∠C=22°+53°=75°,∴∠COD=∠BOE=180°﹣∠B﹣∠BEC=180°﹣22°﹣75°=83°.故答案为:83°.14.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A →B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t (s).(1)AP的长为2t(0≤t≤)cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=s.【分析】(1)根据点P从点A出发,沿A→B方向以2cm/s的速度运动即可得AP=2t;(2)由SAS证明△ABC≌△EDC(SAS),即可得AB=ED=5cm,证△ACP≌△ECQ(ASA),得AP=EQ=2t,当0≤t≤时,t=5﹣2t,解出即可.解:(1)∵点P从点A出发,沿A→B方向以2cm/s的速度运动,设点P的运动时间为t(s).∴AP的长为2(0≤t≤)cm.故答案为:2t(0≤t≤);(2)在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴AB=ED=5cm,∠A=∠E,当线段PQ经过点C时,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),∴AP=EQ,∵AP的长为2tcm(0≤t≤).DQ=tcm,∴t=5﹣2t,解得:t=.故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.如图,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)若∠ACB=90°,求证:BC∥DE.【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据全等三角形的性质得出∠E=∠ACB=90°,即可得出∠BCE=∠E,根据平行线的判定得出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵△ABC≌△DAE,∴∠ACB=∠E,∵∠ACB=90°,∴∠BCE=∠E=90°,∴BC∥DE.16.如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.【分析】(1)取AB的中点D,连接CD即可;(2)根据网格即可画出△CBE.使△CBE≌△CBD.解:(1)如图,线段CD即为所求;(2)如图,△CBE即为所求.四、(本大题共2小题,每小题8分,满分16分)17.如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.【分析】证明BC=EF=6,根据三角形的三边关系即可得到结论.【解答】结:∵BF=CE,∴BF+CF=CE+CF,即BC=EF=6.∵AB=4,∴6﹣4<AC<6+4,∴AC边的取值范围为:2<AC<10.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4(2,0),A8(4,0),A12(6,0).(2)写出点A4n的坐标(n为正整数)(2n,0).(3)蚂蚁从点A2020到点A2021的移动方向是向上.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A8(4,0),A12(6,0);故答案为:(2,0),(4,0),(6,0);故答案为:2,1,4,1,6,1;(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);故答案为:(2n,0);(3)因为每四个点一个循环,所以2021÷4=505…1.所以从点A2020到点A2021的移动方向是向上.故答案为:向上.五、(本大题共2小题,每小题10分,满分20分)19.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.【分析】根据∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角边”证明△ABE 和△BCF全等,根据全等三角形对应边相等可得AE=BF,BE=CF,于是得到结论.解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠EAB=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=5cm,BE=CF=6cm,∴EF=5+6=11(cm).20.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF∥AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.【分析】(1)根据平行线的性质得到∠EAM=∠FBM,∠E=∠BFM,即可利用AAS证明△AEM≌△BFM,再根据全等三角形的性质即可得解;(2)根据平行线的性质得出∠BFM=90°,再根据平角的定义得到∠BFD=90°,进而得出∠AEC=∠BFD,即可利用ASA证明△ACE≌△BDF,根据全等三角形的性质得到CE=DF,再根据线段的和差即可得解.【解答】(1)解:∵BF∥AE,∴∠EAM=∠FBM,∠E=∠BFM,在△AEM和△BFM中,,∴△AEM≌△BFM(AAS),∴AE=BF,∵AE=5,∴BF=5;(2)证明:∵BF∥AE,∴∠AEC=∠BFM,∵∠AEC=90°,∴∠BFM=90°,∴∠BFD=180°﹣90°=90°,∴∠AEC=∠BFD,由(1)知AE=BF,在△ACE和△BDF中,,∴△ACE≌△BDF(ASA),∴CE=DF,∴DF﹣CF=CE﹣CF,即CD=FE.六、(本题满分12分)21.如图1,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD(不与点A,D重合)上的一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=20°,求∠C的度数.(2)求证:∠C﹣∠B=2∠DEF.(3)如图2,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD上一点,EF⊥AD交BC延长线于点F,∠ACB=m°,∠B=n°,直接写出∠F的度数(用含m,n的代数式表示).【分析】(1)首先求出∠EDF=90°﹣∠DEF=70°,得出∠BAD=70°﹣40°=30°,再利用三角形内角和定理可得答案;(2)由(1)同理可知∠C﹣∠B=∠ADB﹣∠ADF,而∠ADB=∠EFD+∠DEF=90°+∠DEF,∠ADF=90°﹣∠DEF,代入即可;(3)用m、n的代数式表示∠BAD==,∠ADC=∠B+∠BAD=n°+,从而解决问题.【解答】(1)解:∵EF⊥BC,∴∠EFD=90°,∴∠DEF+∠EDF=90°,∵∠DEF=20°,∴∠EDF=90°﹣∠DEF=70°,∵∠BAD=∠EDF﹣∠B,∠B=40°,∴∠BAD=70°﹣40°=30°,∵AD平分∠BAC,∴∠BAC=2∠BAD=2×30°=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣60°=80°;(2)证明:∵∠C=∠ADB﹣∠DAC,∠B=∠ADF﹣∠BAD,∴∠C﹣∠B=∠ADB﹣∠DAC﹣∠ADF+∠BAD,∵AD平分∠BAC,∴∠DAC=∠BAD,∴∠C﹣∠B=∠ADB﹣∠ADF,∵EF⊥BC,∴∠EFD=90°,∵∠ADB=∠EFD+∠DEF=90°+∠DEF,∠ADF=90°﹣∠DEF,∴∠C﹣∠B=90°+∠DEF﹣(90°﹣∠DEF)=2∠DEF,∴∠C﹣∠B=2∠DEF;(3)解:∵∠BAC=180°﹣∠ACB﹣∠B,∠ACB=m°,∠B=n°,∴∠BAC=180°﹣m°﹣n°,∵AD平分∠BAC,∴∠BAD==,∴∠ADC=∠B+∠BAD=n°+,即∠EDF=n°+,∵∠DEF=90°,∴∠F=90°﹣[n°+],=()°.七、(本题满分12分)22.如图,在平面直角坐标系中,点A(2,0),B(0,6),C(﹣6,0),D是线段AB 上一点,CD交y轴于点E,且S△BCE=2S△AOB.(1)求直线AB的函数表达式.(2)求点D的坐标.(3)猜想线段CE与线段AB的关系,并说明理由.【分析】(1)设直线AB的函数解析式为:y=kx+b,代入A、B坐标;(2)设E(0,t),根据S△BCE=2S△AOB,得×6×(6﹣t)=12,从而E(0,2),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得出直线CE的解析式,与直线AB联立即可;(3)通过SAS证明△COE≌△BOA,得CE=AB,∠OCE=∠OBA.解:(1)设直线AB的函数解析式为:y=kx+b,则,∴,∴直线AB的函数解析式为:y=﹣3x+6;(2)设E(0,t),∵A(2,0),B(0,6),∴OA=2,OB=6,∴S△AOB==6,∵S△BCE=2S△AOB,∴S△BCE=12,∴×6×(6﹣t)=12,解得t=2,∴E(0,2),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得:,∴,∴直线CE的函数解析式为:y=x+2,当x+2=﹣3x+6时,∴x=,则y=,∴D(,);(3)猜想:CE=AB,CE⊥AB,理由如下:∵OE=OA=1,OC=OB=3,∠COE=∠BOA=90°,∴△COE≌△BOA(SAS),∴CE=AB,∠OCE=∠OBA,∵∠OBA+∠BAO=90°,∴∠OCE+∠BAO=90°,∴∠CDA=90°,∴CE⊥AB.八、(本题满分14分)23.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.【分析】(1)根据AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE,进而可以解决问题;(2)结合(1)证明∠COF=∠BAC=48°,进而可以解决问题;(3)连接AO,证明△ADO≌△AEG,可得AG=AO,∠DAO=∠EAG,然后证明∠COF =∠OAG,根据AG∥BD,可得∠AOF=∠OAG,再根据等腰三角形的性质即可解决问题.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠AFB=∠CFO,∴∠COF=∠BAC=48°,∴∠COD=180°﹣∠COF=180°﹣48°=132°,答:∠COD的度数为132°.(3)证明:如图,连接AO,∵△BAD≌△CAE,∴∠ADB=∠AEC,∵AD=AE,GE=OD,在△ADO和△AEG中,,∴△ADO≌△AEG(SAS),∴AG=AO,∠DAO=∠EAG,∵AG=OC,∴OA=OC,∵∠OAG=∠DAO+∠DAG,∴∠OAG=∠EAG+∠DAG=∠DAE=∠BAC,由(2)知:∠COF=∠BAC,∴∠COF=∠OAG,∵AG∥BD,∴∠AOF=∠OAG,∴∠COF=∠AOF,∵OA=OC,∴BD⊥AC.。