材料物理与化学
- 格式:doc
- 大小:80.00 KB
- 文档页数:5
材料物理与化学专业的课程主要包括物理化学类、材料科学类和工程类等。
1. 物理化学类:热力学统计物理、量子力学、固体物理、晶体物理学基础等。
2. 材料科学类:材料概论、材料科学基础、材料工程基础、材料力学性能等。
3. 材料工程类:工程制图、流体流动基础、热量传递、传质过程及其控制、材料及其产品设计等。
4. 实验类:物理实验、化学实验、计算机基本操作实验、电子电工实验、材料科学基础实验等。
此外,还有一些专业课程,如高分子合成化学、高分子凝聚态物理、有机化合物结构分析与鉴定、高等有机化学、材料界面科学、固体化学导论、功能材料学、等离子体化学与技术、生物医用材料、薄膜技术、含能材料燃烧与催化、树脂基复合材料等。
以上信息仅供参考,具体课程安排可以查询学校官网。
材料物理与化学:揭示微观奥秘,推动人类进步导言是一门融合科学,涉及了多个领域的知识,从小到大的颗粒运动到宏观物质的特性变化。
它为人类社会的进步做出了重大贡献,不仅改善了生活品质,也推动了科技发展。
本文将重点探讨的相关概念、应用以及未来的发展趋势。
第一部分:微观世界的奥秘的核心是对微观世界的研究。
在这个级别上,材料的基本组成单元——原子和分子成为了研究的对象。
物理学通过描述和解释原子结构以及其相互作用的规律,揭示了物质的基本性质。
化学则研究了分子结构,反应过程以及新物质的合成。
原子结构的研究首先得益于物理学家J.J.汤姆森和R.A.密立根的发现,他们通过实验证明原子是由带正电荷的原子核和围绕其旋转的电子构成。
这个理论被进一步发展和完善,最终形成了今天我们所熟知的原子模型。
随着技术的进步,科学家们还发现了更多微观粒子的存在,如中子和质子等。
这些发现不仅拓展了我们对物质构成的认知,也为我们理解材料性质的变化提供了更深入的理论基础。
第二部分:材料物理的应用的研究成果在很多领域都有广泛的应用。
顺应时代潮流,我们可以将其中几个研究方向进行简要介绍。
1. 显示技术在现代社会中,我们无处不见各种各样的显示技术。
LED、液晶、OLED等屏幕都依赖于材料物理的研究成果。
通过精确控制材料的物理特性,我们可以制造出高清晰度、高反应速度和节能的显示器件,为人们提供更好的视觉体验。
2. 能源领域随着能源危机的日益严重,寻找替代能源的研究变得尤为重要。
的研究为太阳能电池、燃料电池、光催化剂等领域的发展提供了新的机遇。
通过研究光电材料的性能和光催化反应的机理,我们尝试着开发更高效、更可持续的能源来源。
3. 生物医学的研究也为生物医学的发展做出了巨大贡献。
例如,人工晶体材料的制作让患者重见光明;生物陶瓷、生物医用金属等材料的研究为骨科手术和牙科修复提供了可行的解决方案。
这些应用不仅提高了治疗效果,也改善了患者的生活质量。
第三部分:未来的发展领域仍然有巨大的发展潜力。
材料物理与化学专业材料物理与化学是一门涉及物质结构、性质和功能的学科,它研究的是材料在微观和宏观层面的行为和特性。
在这个专业中,学生将学习如何通过物理和化学的方法来研究和改进材料的性能,以满足人类的需求和挑战。
在材料物理与化学专业中,学生将接受严格的科学训练,并学习各种实验技术和理论模型,以便能够理解和解释材料的行为。
他们将学习如何使用仪器和设备来测量和分析材料的性能,并通过实验和模拟来验证和优化材料的性能。
材料物理与化学专业涉及的领域非常广泛,包括金属、陶瓷、聚合物、半导体等材料的研究和开发。
学生将学习材料的制备方法和工艺,以及如何改变材料的结构和组成,以达到特定的性能要求。
他们还将学习如何利用化学反应和物理变化来改变材料的性质,例如强度、导电性、磁性等。
在材料物理与化学专业中,学生将学习如何设计新的材料,以满足不同领域的需求。
他们将研究材料的结构与性能之间的关系,并通过改变材料的组成和结构来改善其性能。
例如,他们可以通过改变合金的成分来提高其强度和耐腐蚀性,或通过控制聚合物的结构来改变其热稳定性和机械性能。
材料物理与化学专业还与许多其他学科有着密切的联系,如电子学、能源科学、生物医学等。
学生将学习如何将材料应用于不同的领域,并解决实际问题。
例如,他们可以研究新型太阳能电池材料,以提高能量转换效率,或开发新型药物传递系统,以改善药物的吸收和释放性能。
材料物理与化学专业的毕业生具有广泛的就业机会。
他们可以在科研机构、大学和工业企业等领域从事科学研究和开发工作。
他们可以参与新材料的设计和合成,或负责材料性能测试和分析。
他们还可以在材料制造和加工领域从事工程设计和管理工作,或在材料应用和技术推广方面发挥作用。
材料物理与化学专业是一门充满挑战和机遇的学科。
通过学习这门专业,学生将获得深入了解材料性质和行为的知识和技能,并能够应用这些知识和技能来解决实际问题。
他们将为人类社会的发展和进步做出贡献,并为未来的科学研究和技术创新奠定基础。
材料物理与化学080501
材料物理与化学是研究材料的物理化学性质和其结构、性能、制备、加工、运用等有关问题的一门学科。
它涵盖了钢铁、铜铝、高分子材料、光电材料、复合材料等很多领域。
材料物理和化学研究的内容包括材料的物理和化学性质以及其与其他物质的关系。
物理涉及热力学、电磁学、光学、力学、原子物理学、等离子体物理学等领域,而化学则涉及分子结构、原子结构、化学键等化学知识。
材料物理和化学的交叉研究,可以有效地解决材料科学中的一些难题,比如说材料强度、耐腐蚀性、导电性、导热性等问题。
材料物理和化学学科的发展历程可以追溯到19世纪中叶,当时科学家们开始研究材料中的原子结构和分子结构,并发展出分子动力学、晶体学、热力学、传热学等一系列关于材料物理和化学的基础理论。
20世纪初期,随着电子显微镜和X射线衍射技术的发展,科学家们可以直接观察材料中的原子和分子结构,进一步推动了材料物理和化学学科的发展。
现如今,材料物理和化学的研究领域已经十分广泛,涉及领域越来越广泛,包括新型金属、非晶合金、纳米材料、高温超导材料、多孔材料、光电材料和生物材料等。
材料物理和化学学科为工业和科技领域的发展做出了巨大的贡献。
举个例子,当今全球一些最先进的技术和产品,比如高铁列车、光电显示器、太阳能电池板、智能手机等等,离不开材料物理和化学学科的支持。
总的来说,材料物理和化学是一门与人类发展息息相关
的学科, 较为复杂,是一门需要不断更新的学科。
随着科技的进步,材料物理和化学学科也会越来越重要,给工业和科技领域带来更多变化和创新。
材料物理与化学第一篇:材料物理学介绍材料物理学是物理学的一个分支,主要研究各种材料的物理性质,从而用来设计、开发和制造新的材料和器件。
在材料物理学中,人们主要研究物质的电、磁、声、热等性质,研究材料的塑性、蠕变、疲劳等力学性质,探究材料的表面和界面结构、颗粒尺寸、孔隙度等微观物理化学特性。
此外,还研究材料在不同温度下的热膨胀系数、热导率、热容等热学性质。
材料物理学不仅仅是研究各种材料的物理性质,还可以通过物理的手段来改变材料的性质。
比如利用离子注入、退火、电子束辐照等方法来改变材料的晶格结构、电学性质、光学性质等,在要求高性能的电子器件、光电器件和材料科学等领域具有广泛的应用。
总之,材料物理学的研究对于促进新材料技术的发展和实际应用具有重要的意义。
未来,材料物理学会在能源材料、纳米材料、光电材料等领域继续展开深入研究和应用。
第二篇:材料化学介绍材料化学是材料科学的一门基础学科,主要研究材料的结构、性质和制备方法,从而设计和制造新型材料。
在材料化学中,人们主要研究材料的基本组成、晶体结构、物理性质和化学反应机制,以及材料的制备、表征和性能测试方法。
此外,还研究材料的表面性质、分子间作用力、光电性质等微观物理、化学特性。
材料化学的研究重点在于理解材料的内部结构和性质,以及材料在各种条件下的变化规律。
基于这些知识,研究人员可以设计出更好的材料,例如在能量存储、传输和转换的应用中,使用新材料可以提高充电速率、减少电池的体积和重量等。
总体来说,材料化学的研究对于材料科学的发展和新型材料的设计具有重要的作用。
未来,材料化学的发展会在纳米材料、高分子材料、生物材料等领域继续展开深入研究和应用。
第三篇:材料物理化学的应用材料物理化学是将物理学和化学应用于材料科学的一个重要领域。
它的发展和应用使得新型材料的研究和应用成为可能。
材料物理化学的研究和应用有助于实现新材料的制备和改进,可以制造出使用特定功能和性质的新型材料,例如高强度的金属合金、复合材料和珍稀材料等。
材料物理与化学专业材料物理与化学专业是一个以物理学与化学为基础的学科,专注于探索材料形成、结构及性质的本质和变化机理,为材料工程、材料设计和制备提供理论基础,开发新的材料和新的技术。
材料物理与化学专业的主要内容包括:材料物理与化学基础理论、固体表面与界面物理、分子自组装材料、纳米材料、量子材料、聚合物材料、能源材料、生物材料及有机/无机复合材料的结构、组成、性能行为关系及其可控制备的基础理论。
材料物理与化学专业的教学以理论课程基础教学为主,其中必修的理论课程有:物理热力学、材料物理、物理化学、物质结构与反应性、固体化学、材料技术学、材料力学、材料物理实验等。
此外,该专业还涉及到材料表征技术的基础知识和实验室技能,例如:材料表面光谱技术、红外光谱技术、X射线衍射技术、原子力显微镜技术、扫描电子显微镜技术、核磁共振技术等等。
二、材料物理与化学专业就业方向材料物理与化学专业毕业生能够在材料行业、製藥行業及科研院所就业担任研究人员,毕业生也可以在监管机关、设计机构等机构从事材料检测、评估及经营管理工作。
材料物理与化学专业毕业生还可以进行材料技术的推广开发及运用,或是从事材料生产制造、科学实验室操作、材料检测服务等工作。
专业毕业生也可以在教育行业从事教育科研工作,或是从事科学和技术出版、咨询工作。
三、材料物理与化学专业在研究领域的应用材料物理与化学专业的研究可以涉及到材料物理、化学、固体表面与界面物理、量子材料、分子自组装材料、纳米材料、能源材料、聚合物材料、生物材料等领域。
材料物理与化学专业的研究可以应用于多种新型、高性能材料的开发,例如:功能材料、智能材料、超级电容材料、超硬材料、电力材料、微电子材料、航空航天材料、高强度结构材料等。
此外,其研究也可以用于材料性能的改进,如材料组织构型及结构定型研究以及材料耐久性、环境适应性等。
材料物理与化学材料物理与化学是一个跨学科领域,它涉及到材料的结构、性能、制备和应用等方面。
在这个领域中,物理和化学的知识密切相关,相互交织,共同推动着材料科学的发展。
材料物理与化学的研究不仅对于材料科学的发展具有重要意义,也对于工程技术的进步和社会发展起到了重要的作用。
在材料物理与化学中,研究人员通过对材料的结构和性能进行深入的分析和研究,可以揭示材料的微观结构与宏观性能之间的关系,为材料的设计、制备和改性提供了重要的理论依据。
同时,材料物理与化学的研究也为新材料的开发和应用提供了重要的技术支持,推动着材料科学的不断进步。
在材料物理与化学中,研究人员通过对材料的物理性质和化学性质进行综合分析,可以揭示材料的内在规律,为材料的改性和应用提供了重要的科学依据。
同时,材料物理与化学的研究也为材料的性能优化和应用拓展提供了重要的技术支持,推动着材料科学的不断发展。
材料物理与化学的研究内容涉及到材料的结构与性能、材料的制备与改性、材料的应用与评价等方面。
在材料的结构与性能研究中,研究人员通过对材料的晶体结构、缺陷结构、表面结构等进行深入的分析和研究,揭示了材料的微观结构与宏观性能之间的关系。
在材料的制备与改性研究中,研究人员通过对材料的合成方法、成分配比、工艺参数等进行深入的探讨和优化,实现了材料性能的改良和优化。
在材料的应用与评价研究中,研究人员通过对材料的性能测试、应用环境模拟、寿命预测等进行深入的研究和评价,为材料的应用提供了科学的依据和技术支持。
总之,材料物理与化学是一个重要的跨学科领域,它涉及到材料的结构、性能、制备和应用等方面。
在这个领域中,物理和化学的知识密切相关,相互交织,共同推动着材料科学的发展。
材料物理与化学的研究不仅对于材料科学的发展具有重要意义,也对于工程技术的进步和社会发展起到了重要的作用。
希望通过本文的介绍,能够让大家对材料物理与化学有一个更加深入的了解,为相关领域的研究和应用提供有益的参考。
材料物理与化学材料物理与化学是一门研究材料结构、性能和制备过程的学科,通过理论和实验研究,探索材料的物理和化学特性以及其在各个领域中的应用。
材料科学的发展促进了现代工业的进步和科技的发展,对人类社会做出了重要贡献。
1. 材料物理材料物理是研究材料的物理性质和性能的学科。
它主要关注材料的结构、形态、成分以及其在外界条件下的物理行为特性。
例如,材料的导电性、磁性、光学性质等都是材料物理学研究的内容。
材料物理学的发展不仅丰富了我们对材料的认识,还为材料的设计与应用提供了重要的理论依据。
2. 材料化学材料化学是研究材料的化学性质和性能的学科。
它主要关注材料的组成、结构以及其在化学反应中的行为特性。
例如,材料在不同环境下的稳定性、降解性等都是材料化学研究的内容。
材料化学学科的发展使得人们能够通过合成和改性材料来满足不同领域的需求,如电子、医药、能源等。
3. 材料物理与化学的交叉研究材料物理与化学的研究相辅相成,相互交叉。
材料物理学的发展需要材料化学提供各种合成方法,而材料化学的研究也需要材料物理学的支持来解释其中的原理。
通过材料物理与化学的交叉研究,我们可以更加深入地了解材料的性质和行为,为开发新材料以及改进现有材料的性能提供理论指导。
4. 材料物理与化学的应用材料物理与化学的研究成果在各个领域中都有着广泛的应用。
例如,材料物理与化学在电子器件制造中的应用可以改善和提高电子材料的导电性能和稳定性,从而促进电子产品的发展。
在能源领域,材料物理与化学的研究可以用于开发高效的太阳能材料、储能材料等,以解决全球能源紧缺问题。
总结:材料物理与化学作为一门交叉学科,研究材料的结构、性能和制备过程,对现代工业和科技的发展起到了重要的推动作用。
通过深入研究材料的物理和化学特性,可以不断改进材料的性能,满足不同领域对材料的需求,并为人类社会的进步做出贡献。
在未来,材料物理与化学的研究将继续深入,并为各个领域的发展提供新的理论基础和实践应用。
材料物理与化学
材料物理与化学是一门研究材料结构、性能及其应用的学科,它既涉及到物质
的基本结构和性质,也包括了材料的加工、制备和应用。
在现代科技发展的背景下,材料物理与化学的研究显得尤为重要,它不仅关乎着新材料的开发与应用,也对于解决环境问题、提高能源利用效率等方面具有重要意义。
首先,材料物理与化学研究的对象包括金属材料、非金属材料、半导体材料等
多种材料。
通过对这些材料的结构、性能和相互作用机制的研究,可以为材料的设计、改性、应用提供科学依据。
例如,通过对材料的微观结构和晶体缺陷的研究,可以改善材料的力学性能和耐热性能,提高材料的使用寿命。
其次,材料物理与化学的研究对于新材料的开发具有重要意义。
随着科技的不
断进步,人们对材料的性能要求也越来越高,传统材料已经不能满足现代科技的需求。
因此,通过对新材料的研究,可以开发出更加高性能、环保、节能的新材料,从而推动科技的发展和社会的进步。
另外,材料物理与化学的研究还对环境保护和能源利用具有重要意义。
材料的
生产和使用过程中会产生大量的废弃物和污染物,而且一些传统材料的生产过程也会消耗大量的能源。
因此,通过材料物理与化学的研究,可以开发出更加环保、可循环利用的新材料,减少对环境的污染。
同时,通过研究材料的光、电、热等性能,可以开发出更加高效的能源材料,提高能源利用效率。
总的来说,材料物理与化学是一门具有重要意义的学科,它不仅对材料的研究
和开发具有重要意义,也对环境保护和能源利用具有重要意义。
在未来的发展中,材料物理与化学的研究将会更加深入,为人类的生活和科技的发展带来更多的惊喜和改变。
材料物理与化学专业攻读硕士学位研究生培养方案一、培养目标为培养德、智、体全面发展的材料物理与化学高层次人才,要求本专业硕士研究生达到:1、具有坚定正确的政治方向,热爱社会主义祖国,拥护中国共产党的领导,拥护党的基本路线,自觉遵纪守法,品德优良。
2、具有严谨的治学态度,在材料物理与化学学科内掌握坚实的基础理论和系统的专门技术知识,了解材料科学领域的前沿动态,具有较高的实验技能,具有独立从事科研、教学和专门技术工作的能力。
熟练掌握一门外国语。
3、身心健康。
二、研究方向1、功能材料先进磁性材料、功能陶瓷材料与器件、光电子功能材料、低维宽禁带半导体材料、多孔功能材料、玻璃非晶体材料、磁性半导体与自旋电子学、铁电、光电功能材料的制备与物性等;2、纳米材料纳米复合材料、碳纳米材料、纳米薄膜材料、纳米晶染料敏化太阳能电池、纳米光催化材料,一维纳米氧化物材料,纳米材料与器件、纳米储能材料等;3、材料微结构表征材料的电子显微表征、x射线表征、原子力显微表征、正电子表征等;4、计算材料学声光超常材料、热电与铁电材料、光催化材料等新型功能材料的设计与计算等;5、材料表面处理、工艺及应用离子束材料改性、表面纳米化、材料表面腐蚀与防护、特种结构材料损伤与检测、科技考古中材料的物理与化学研究等。
三、学习年限本专业硕士研究生实行以三年制为基础的弹性学制,最长学习年限不超过四年,其中课程学习1.5年。
本专业不允许提前毕业。
四、课程设置(见附表)及学分要求本专业学术型硕士研究生应修学分总数为42学分,其中:课程学分总数30学分(包括公共必修课5分;学科必修课5分;研究方向选修课不少于6学分;其余为选修课学分);实践环节2学分;学位论文10学分。
跨专业入学和以同等学力入学的研究生,须补修2门本科生必修课并取得合格以上成绩,该成绩不计入学分。
五、学位论文1、论文选题:论文应在导师指导下选择学科前沿领域课题,在理论和方法方面应具备一定的新意,观点明确,思路清晰,文字流畅,论据扎实,学风严谨。
2、开题报告:学术型的硕士研究生,从第一学期开始与导师共同商定学习计划和论文题目,在导师的指导下有计划地进行理论课程学习、阅读文献和必要的调查研究等,并向课题组或教研室作开题报告,经过讨论,认为选题合适,在理论或应用上具有一定意义,且实验方案合理,路线切实可行,方能正式开展科学实验。
参加论文开题报告的老师应不少于三名(包括导师)。
经指导小组讨论通过后,方可正式进行搜集资料、专题研究和论文撰写工作。
3、论文撰写:进入论文撰写阶段后,导师应不定期检查论文进展情况;学位论文完成并经指导小组审查通过后,在论文答辩前一个月提交给2位论文评阅人评阅。
评阅人须是具备教授、副教授或相当职称的同行专家。
评阅意见在合格以上者,方可进入论文答辩环节。
4、答辩资格:本专业学术型硕士研究生在读期间应完成课程的学习并修满学分,完成实习实践环节并参与至少一项课题研究,参加8次以上学术交流活动(包括参加国内外学术会议、听取学术报告等)。
在学习期间必须至少有一篇学术论文以第一作者在核心及以上学术刊物上发表,或用英文写一篇全文论文,并在国际会议的论文集上发表,方才获得答辩资格。
5、论文答辩:论文答辩委员会由5人组成。
经全体委员三分之二以上(含三分之二)同意,论文方为通过。
通过答辩后,授予工学硕士学位。
六、其他必修环节1、实践环节:学术型硕士研究生在校期间应在导师指导下深入企事业开展社会实践、专业实习或进行跨学科相关联专业实验方法和技术学习等实践活动,总时间不得少于三个月。
为了扩大知识面,活跃学术思想,培养独立工作能力,学术型硕士研究生必须经常听学术报告,撰写读书报告和研究报告,作学术报告,参加学术讨论。
积极参加学术讲座,学术会议,调查研究,收集资料或去外单位进行论文的部分工作。
参加实习实践和学术交流活动的情况需详细填写在《武汉大学学术型硕士研究生实习实践考核表》和《武汉大学硕士研究生学术活动考核表》上,并提交实习实践总结报告。
经学院审核合格并报研究生院培养处审批备案后方可计2学分,并进入答辩环节。
2、中期考核学术型的硕士研究生,在第三学期末或第四学期初进行中期考核,向课题组或教研室作中期进展报告,考核合格,方能继续完成学术型的硕士研究生学位论文工作。
中期考核实行淘汰制,根据研究生学习及科研情况,结合专业成绩,确认其具体流向,大致包括硕博连读、继续攻读硕士学位以及退学三种情况。
七、培养方式1、学术型的硕士研究生,可以通过双向选择的方式,在入学时选定指导教师。
导师对研究生要既教书又育人,必须在政治思想上、学风上、治学态度上加强对研究生的教育,严格要求,全面负责。
同时要发扬民主,贯彻百家争鸣的方针,鼓励研究生在学术上大胆创新。
研究生必须积极参加形势政策教育活动、公益劳动及体育锻炼。
2、充分发挥校内外专家学者的集体培养优势,成立导师为主的培养小组。
导师小组在研究生入学后一个月内根据研究生的实际情况及课题要求,制订合理的培养计划,对课程学习、实践活动、学术活动及科学研究等列出具体要求。
3、对于特别优秀的硕士研究生,可推荐其进行海外联合培养。
材料物理与化学专业(专业代码080501)攻读硕士学位研究生课程计划表类别课程编码课程名称英文课程名称学分学时开课学期备注学位课公共必修课第一外国语First Foreign Language 2 72 15学分中国特色社会主义理论与实践研究Theory and Practice of Socialismwith Chinese Characteristics2 36 1自然辩证法概论Dialectics of Nature 1 18 1学科必修课高等材料学Advanced Materials Science 3 54 1 5学分材料科学与工程前沿Frontiers in Materials Science andEngineering2 36 1研究方向选修课高等量子力学Advanced Quantum Mechanics 3 54 1不少于6学分凝聚态物理Condensed Matter Physics 3 54 2固体物理实验Experiments of Solid State Physics 2 72 2固体理论Quantum Theory of the SolidState3 54 2晶体学中的对称群Crystallographic SymmetryGroup3 54 1高分辨与分析电子显微学High-Resolution ElectronMicroscopy and Analysis3 54 2磁性物理与磁性材料Magnetism and MagneticMaterials3 54 2电子陶瓷及其应用Electronic Ceramics andApplications2 36 2纳米材料学Nano Materials 2 36 2高等材料化学Advanced Materials Chemistry 2 36 2现代物理实验方法Experimental Methods forAdvanced Physics2 36 1光电子功能材料与器件Photoelectronic FunctionalMaterials and Devices2 36 2专业选修课计算材料学Computational Materials 2 36 1智能与生物材料Smart and Biomaterials 2 36 2材料的表面与界面Surface and Interface in Materials 2 36 2电介质物理Dielectric Physics 2 36 2核技术在材料中的应用Application of Nuclear Technologyin Materials2 36 2薄膜物理Thin-film Physics 2 36 2材料表面工程学Materials Surface Science andEngineering2 36 2先进复合材料Advanced Composite Materials 2 36 2 宏观材料学Macro Material Science 2 36 2电子衍射与衍衬理论Electronic Diffraction andDiffraction Contrast Theory3 54 1固体结构分析Structural Analysis of Solids 3 54 1非晶态功能材料Amorphorons FunctionalMaterials2 36 2材料先进制备技术Advanced Technologies forMaterial Preparation2 36 1补修课固体物理(I)Solid State Physics (I) 54 2 不计学分材料科学基础Introduction to Materials Science 54 1实践环节实习、实践与学术交流 2其它学习项目学术活动环节在校内听8次以上的学术报告,并参与讨论。
论文开题报告环节在第2学期末由导师组织同行专家对学生的开题报告进行评审,经讨论认可后,正式进入专题研究和论文撰写工作。
论文答辩环节通过论文评审的学生按学校要求组织论文答辩。