岩石爆破作用基本原理和作用共173页文档
- 格式:ppt
- 大小:16.84 MB
- 文档页数:87
爆破原理及爆破方法第一节爆破作用原理一、岩体爆破破坏机理爆破是当前破碎岩石的主要手段。
关于岩石等脆性介质爆破破坏机理,有许多假设,按其基本观点,归纳起来有爆轰气体膨胀压力作用破坏论、应力波及反射拉伸破坏论、冲击波和爆轰气体膨胀压力共同作用破坏论三种。
1.爆轰气体膨胀压力作用破坏论该理论认为炸药爆炸所引起脆性介质(岩石)的破坏,使其产生大量高温高压气体,它所产生的推力,作用在药包四周的岩壁上,引起岩石质点的径向位移,由于作用力的不等引起的径向位移,导致在岩石中形成剪切应力,当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石破裂,当爆轰气体的膨胀推力足够大时,会引起自由面四周的岩石隆起,鼓开并沿径向推出。
这种观点完全否认冲击波的动作用,这是不符合实际的。
2.应力波反射拉伸破坏论该理论认为药包爆炸时,强大的冲击波冲击和压缩四周岩石,在岩石中激发成激烈的压缩应力波,当传到自由面反射变成拉伸应力波,其强度超过岩石的极限抗拉强度时,从自由面开始向爆源方向产生拉伸片裂破坏作用。
这种理论只从爆轰的动力学观点出发,而忽视了爆生气体膨胀做功的静作用,因而也具有片面性。
3.冲击波和爆轰气体膨胀压力共同作用破坏论该理论认为爆破时,岩石的破坏是冲击波和爆轰气体膨胀压力共同作用的结果。
但在解释岩石破碎的原因是谁起主导作用时仍存在不同的观点,一种认为冲击波在破碎岩石时不起主要作用,它只是在形成初始径向裂隙时起了先锋作用,但在大量破碎岩石时则主要依靠爆轰气体膨胀压力的推力作用和尖劈作用。
另一种观点则认为爆破时岩石破碎谁起主要作用要取决于岩石的性质,即取决于岩石的波阻抗。
关于高波阻抗的岩石,即致密坚韧的整体性岩石,它对爆炸应力波的传播性能好,波速大。
关于低波阻松软而具有塑性的岩石,爆炸应力波传播的性能较差,波速较低,爆破时岩石的破坏主要依靠爆轰气体的膨胀压力;关于中等波阻抗的中等坚硬岩石,应力波和爆轰气体膨胀压力同样起重要作用。
岩石的爆破破碎机理2008-07-09 17:39一、岩石爆破破碎的主因破碎岩石的炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。
但是岩石破碎的主要原因究竟是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。
1、冲击波拉伸破坏理论(该观点的代表人物日野熊、美国矿业局的戴维尔)当炸药在岩石中爆轰时,生成的高温、高压和高速的冲击波猛烈冲击周围的岩石,在岩石中引起强烈的应力波,它的强度大大超过了岩石的动抗压强度,因此引起周围岩石的过度破碎。
当压缩应力波通过粉碎圈以后,继续往外传播,但是它的强度已大大下降到不能直接引起岩石的破碎。
当它达到自由面时,压缩应力波从自由面反射成拉伸应力波,虽然此时波的强度已很低,但是岩石的抗拉强度大大低于抗压强度,所以仍足以将岩石拉断。
这种破裂方式亦称“片落”。
随着反射波往里传播,“片落”继续发生,一直将漏斗内的岩石完全拉裂为止。
因此岩石破碎的主要部分是入射波和反射波作用的结果,爆炸气体的作用只限于岩石的辅助破碎和破裂岩石的抛掷。
2、爆炸气体的膨胀压理论(该观点的代表人物村田勉等)从静力学的观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同的径向位移,导致在岩石中形成剪切应力。
当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。
当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。
它在很大程度上忽视了冲击波的作用。
3、冲击波和爆炸气体综合作用理论(该观点的代表人物有C.W.利文斯顿、φ.A.鲍姆,伊藤一郎,P.A.帕尔逊、H.K.卡特尔,L.C.朗和N.T.哈根等)这种观点的学者认为:岩石的破碎是由冲击波和爆炸气体膨胀压力综合作用的结果。
即两种作用形式在爆破的不同阶段和针对不同岩石所起的作用不同,爆炸冲击波(应力波)使岩石产生裂隙,并将原始损伤裂隙进一步扩展;随后爆炸气体使这些裂隙贯通、扩大形成岩块,脱离母岩。
岩石爆破原理与方法嘿,咱今儿就来讲讲这岩石爆破!你说这岩石啊,那可真是顽固得很呢,就像那怎么都赶不走的倔驴!那咱要怎么对付它呢?这就得靠爆破啦!想象一下,岩石就像是一个坚固的堡垒,而爆破就是我们攻打这个堡垒的秘密武器。
爆破的原理呢,其实就是利用炸药爆炸时产生的巨大能量,让岩石瞬间破碎。
这就好比是给岩石来了一记猛拳,一下子就把它给打散了。
那这炸药是怎么发挥作用的呢?当炸药爆炸的时候,会产生极高的温度和压力,就像一个小太阳在岩石内部爆发一样。
这股强大的力量会迅速向四周扩散,把岩石从内部往外撑开,最后“嘭”的一声,岩石就被炸得七零八落啦!说到爆破的方法,那也是有讲究的。
就像做菜一样,不同的菜有不同的做法,这爆破也得根据岩石的具体情况来选择合适的方法。
有一种叫浅孔爆破的,就像是用小针轻轻地扎一下。
它适合那些不太厚的岩石,在岩石上打几个小孔,把炸药放进去,就能把岩石炸碎啦。
这种方法比较精细,就像绣花一样,一点点地把岩石瓦解。
还有深孔爆破呢,这可就像是用大锤子狠狠地砸下去。
它是在岩石上打很深的孔,放很多炸药进去,然后来个大规模的爆破。
这种方法适合对付那些大块头的岩石,一下子就能把它们炸得稀巴烂。
另外啊,还有预裂爆破,这就像是给岩石划一道口子,让它顺着这条口子裂开。
这样可以减少对周围岩石的破坏,让爆破更加精准。
不过啊,爆破可不是随便就能玩的,这可是个技术活,也是个危险活。
要是不小心弄错了,那可不得了,说不定会引起大灾难呢!就像放鞭炮一样,你要是不小心把鞭炮扔到了不该扔的地方,那后果可不堪设想啊!所以啊,进行岩石爆破的时候,一定要找专业的人来干,他们有经验,知道怎么安全地把岩石给炸了。
而且,爆破前的准备工作也很重要呢!得先好好勘察一下地形,看看周围有没有什么建筑物啊、人啊之类的,可不能伤到他们。
还要计算好炸药的用量,用多了浪费,用少了又炸不碎岩石,这可得好好掂量掂量。
总之啊,岩石爆破这事儿,既有趣又危险。
我们要好好利用它的原理和方法,把那些顽固的岩石给征服了,同时也要注意安全,可别让它反过来伤到我们自己哟!你说是不是这个理儿?。
岩爆的原理岩爆是指岩石在高温和高压环境下发生剧烈爆破的现象。
岩爆的原理主要涉及岩石受到应力的作用,导致弹性能量积累并达到临界点时,岩石发生应力释放和有序破裂。
下面将详细解释岩爆的原理。
在地壳深处存在着许多岩石,受到地球内部和外部的各种力的作用。
这些力有地球内部热液的高温高压、地壳运动的挤压和拉伸力等,使得岩石遭受了极高的应力。
当岩石的应力达到其抗压强度极限时,岩石会突然破裂并释放出巨大的能量,形成岩爆。
岩爆的发生主要取决于岩石的物理和力学性质,以及周围环境的条件。
岩爆的原理可以解释为以下几个方面:1. 弹性能量积累:当岩石受到外部应力时,其会发生弹性变形,形成应变能。
岩石的弹性模量和体积决定了其储存弹性能量的能力。
长期以来,岩石受到复合应力的作用,使得其内部产生了巨大的弹性能量。
2. 应力释放和有序破裂:当岩石内部积累的应力超过其抗压强度时,岩石会发生应力释放和有序破裂。
岩石断裂面的扩展和错动会导致岩石内部应力的剧烈释放,并释放出大量的能量。
3. 管道效应和波动扩散:当岩石发生破裂时,由于断裂面的错动,会形成管道效应。
这种效应使得能量沿着断裂面向外传播,产生巨大的冲击波和爆炸波。
同时,在岩石内部和周围会产生巨大的应力波、压力波和剪切波,使得岩石周围的岩层也受到了破坏和变形。
4. 能量释放和喷发:岩爆的释放能量通常以爆炸的形式表现出来,这种爆炸会产生大量的高温和高压热气体。
这些高温高压气体会迅速膨胀并向周围环境释放,形成岩层喷发和崩塌的现象。
岩爆的原理是复杂的,涉及岩石的物理、化学和力学特性等多个方面。
岩石的类型、温度、压力和湿度等条件都会影响岩爆的发生和规模。
同时,随着岩石内部应力的增加和释放,岩爆也会引发地震、火山喷发等自然灾害。
为了避免岩爆的发生和减小其危害,对于有潜在岩爆危险的地质环境,应采取措施进行预警和监测,同时采取适当的工程措施来增加岩石的稳定性和抗压能力。
这样可以更好地预防和应对岩爆带来的灾害。
土木工程中的岩石爆破处理技术岩石爆破处理技术在土木工程中扮演着重要的角色。
它是一种通过强力破坏和破碎岩石,以实现土木工程建设目标的方法。
本文将讨论土木工程中的岩石爆破处理技术,包括其原理、应用和环境影响,以及与其他处理方法的比较。
岩石爆破处理技术的原理是利用爆炸物的能量释放来破坏和破碎岩石。
通过合理设计爆炸药量、炮孔布置和引爆方式等参数,爆炸能够在岩石中产生高压波、剪切波和冲击波等力量,使岩石发生破碎和破裂。
这样,控制爆炸过程可以完成岩石的破坏,从而为土木工程建设提供必要的条件。
岩石爆破处理技术在土木工程中有广泛的应用。
它主要用于挖掘、采石、隧道建设、地铁工程和水坝建设等领域。
在挖掘和采石过程中,岩石爆破可以快速、高效地破碎巨大的岩石体,为后续工作提供空间。
在隧道和地铁建设中,岩石爆破可以减少人工挖掘的工作量,加快施工速度。
在水坝建设中,岩石爆破可以清除坝基岩石,确保坝体的稳定性。
然而,岩石爆破处理技术也会对环境产生一定的影响。
首先,爆破会产生噪音和振动。
噪音会对周围居民的生活产生干扰,振动则可能对周围建筑物产生损害。
其次,岩石爆破会产生大量的石尘。
这些石尘可能会对空气质量造成影响,并对人体健康产生潜在风险。
此外,爆破过程中也会产生废弃物和有害化学物质,对土壤和水源造成污染。
为了减少岩石爆破处理技术对环境的影响,可以采取一些措施。
首先,应合理控制爆炸药量和炮孔布置,减少噪音和振动的影响范围。
其次,可以利用技术手段来控制石尘的产生和扩散,如使用喷雾系统和环境监测设备。
此外,还可以选择环境友好的爆炸药物,减少对土壤和水源的污染。
与其他岩石处理方法相比,岩石爆破处理技术具有其独特的优势和局限性。
与机械破碎相比,岩石爆破可以处理大型和坚硬的岩石,工作效率更高。
与化学破碎相比,岩石爆破可以节省能源和成本。
然而,岩石爆破也存在一些局限性,如环境影响较大、选址限制较多等。
综上所述,岩石爆破处理技术在土木工程中是一种重要的方法。
岩石的爆破破碎机理2008-07-09 17:39一、岩石爆破破碎的主因破碎岩石的炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。
但是岩石破碎的主要原因究竟是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。
1、冲击波拉伸破坏理论(该观点的代表人物日野熊、美国矿业局的戴维尔)当炸药在岩石中爆轰时,生成的高温、高压和高速的冲击波猛烈冲击周围的岩石,在岩石中引起强烈的应力波,它的强度大大超过了岩石的动抗压强度,因此引起周围岩石的过度破碎。
当压缩应力波通过粉碎圈以后,继续往外传播,但是它的强度已大大下降到不能直接引起岩石的破碎。
当它达到自由面时,压缩应力波从自由面反射成拉伸应力波,虽然此时波的强度已很低,但是岩石的抗拉强度大大低于抗压强度,所以仍足以将岩石拉断。
这种破裂方式亦称“片落”。
随着反射波往里传播,“片落”继续发生,一直将漏斗内的岩石完全拉裂为止。
因此岩石破碎的主要部分是入射波和反射波作用的结果,爆炸气体的作用只限于岩石的辅助破碎和破裂岩石的抛掷。
2、爆炸气体的膨胀压理论(该观点的代表人物村田勉等)从静力学的观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同的径向位移,导致在岩石中形成剪切应力。
当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。
当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。
它在很大程度上忽视了冲击波的作用。
3、冲击波和爆炸气体综合作用理论(该观点的代表人物有C.W.利文斯顿、φ.A.鲍姆,伊藤一郎,P.A.帕尔逊、H.K.卡特尔,L.C.朗和N.T.哈根等)这种观点的学者认为:岩石的破碎是由冲击波和爆炸气体膨胀压力综合作用的结果。
即两种作用形式在爆破的不同阶段和针对不同岩石所起的作用不同,爆炸冲击波(应力波)使岩石产生裂隙,并将原始损伤裂隙进一步扩展;随后爆炸气体使这些裂隙贯通、扩大形成岩块,脱离母岩。
岩爆引言:岩爆是一种地质现象,指的是岩石在地下岩层中受到强大的压力作用,导致岩石破裂和破碎,释放出巨大的能量。
岩爆通常发生在地质活跃的地区,如火山地区和地震带,对周围环境和人类活动都有着重大影响。
本文将介绍岩爆的形成机制、危害和防治措施。
一、岩爆的形成机制1. 岩层压力:岩爆的形成首先是由于地下岩石层受到强大的压力作用。
岩层压力可以来自于地壳运动、地下水位的降低、地震等因素。
当岩石受到压力时,原本稳定的岩石结构会发生破裂。
2. 岩层脆化:岩石在受到压力作用后,会发生脆化现象,即由韧性变为脆性。
这是因为岩石内部存在微小裂隙或断层,在外力作用下,这些裂隙会扩展并连通,使岩石变得脆弱而易于破裂。
3. 岩层释放:当岩石脆性破裂后,岩层中储存的能量会得到释放。
这种能量释放通常以剧烈的爆炸形式表现出来,产生巨大的冲击波和喷射物。
这些冲击波和喷射物能够对周围环境造成严重破坏。
二、岩爆的危害1. 破坏性巨大:岩爆释放的能量巨大,能够造成巨大的物理破坏。
它通常会导致附近建筑物的倒塌、道路的崩塌和地表的起伏不平。
对于火山地区而言,岩爆还可能引发火山喷发,进一步加剧破坏程度。
2. 人员伤亡:岩爆发生时,会产生大量的碎片和颗粒物,并产生强烈的冲击波。
这些碎片和冲击波对人体构成严重威胁,可能造成伤亡和重伤。
在活跃地质区域居住或开展作业的人员需要特别注意岩爆的风险。
3. 失去资源:岩爆破坏了地下岩石层,导致资源的损失。
例如,在矿山开采过程中,岩爆可能导致矿石的丧失,造成经济损失。
对于火山地区而言,岩爆还会摧毁周围的农田和森林,使人们失去生计和收入来源。
三、岩爆的防治措施1. 地质勘探:在规划和建设前,对地质条件进行充分的勘探是关键。
通过对地下岩层的详细调查和分析,可以评估岩爆的潜在风险,制定相应的预防措施,避免岩爆的发生。
2. 工程设计:在建筑物和基础设施的设计中,应考虑到岩爆的风险因素。
合理选择建筑材料和结构设计,提高抗岩爆能力,减少损失。
岩石爆破破岩机理论文导读:岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。
炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。
爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。
破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。
岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。
同样,反射拉伸波也加强了径向裂隙的扩展。
关键词:爆炸,气体膨胀,应力波,爆破,自由面,径向裂隙岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。
炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。
由于爆轰压力瞬间高达数千乃至数万兆帕,从而在岩石表面形成冲击波,并在岩石中传播。
1、爆生气体膨胀作用炸药爆炸生成高温高压气体,膨胀做功引起岩石破坏。
爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。
正是由于相邻岩石质点移动速度不同,造成了岩石中的剪切应力,一旦剪切应力大于岩石的抗剪强度,岩石即发生剪切破坏。
破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。
2、爆炸应力波反射拉伸作用岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。
岩石爆破破碎正是爆生气体和爆炸应力波综合作用的结果。
因为冲击波对岩石的破碎作用时间短,而爆生气体的作用时间长,爆生气体的膨胀促进了裂隙的发展;同样,反射拉伸波也加强了径向裂隙的扩展。
岩体内最初裂隙的形成是由冲击波或应力波造成的,随后爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂隙进一步扩展。
第5章 岩石爆破基本原理第1节 爆破破碎原理炸药在岩体内爆炸瞬间释放出巨大的能量,使岩体产生不同程度的变形和破坏。
为了达到低能耗、高效率破碎岩体的目的,并能有效地控制爆破产生的各种危害,就必须了解爆炸荷载作用下岩体的变形与破坏规律,分析爆破破碎原理,指导爆破设计与施工。
只有这样,才能合理地确定爆破参数和有效地控制爆破作用。
由于炸药的爆炸反应是高温、高压和高速的瞬态过程,岩体性质和爆破条件复杂多变,加之爆破工作具有较大的危险性,因此给直接观测和研究岩体的爆破破坏过程造成了极大的困难。
迄今为此,人们对岩体爆破作用过程仍然了解得不透彻,尚不能形成一套完整而系统的爆破理论。
尽管如此,随着长期实践经验的积累和现代科学技术的发展,借助先进的爆破测试技术以及模拟爆破试验,对爆破作用原理的研究取得了较大的进展,提出了多种岩体爆破机理的观点,在一定程度上反映了岩体的爆破破坏规律,具有一定的指导意义和实用价值。
一、爆破作用的基本原理1. 爆破破坏作用的基本观点爆破破坏作用的观点很多,大致可归纳为如下三种:(1) 爆轰气体破坏作用的观点。
从静力学的观点出发,认为药包爆炸后,产生大量的高温、高压气体。
这种气体膨胀产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移。
当药包埋深不大时,在最小抵抗线方向(即地表方向),岩1石移动的阻力最小,运动速度最高。
由于存在不同速度的径向位移,在岩体中形成剪切应力,当这种剪切应力超过岩石的动态抗剪强度时就会引起岩石破裂。
在爆轰气体膨胀推力作用下,自由面附近的岩石隆起、开裂,并沿径向方向推出,如图5—1。
这种观点不考虑冲击波的破碎作用。
(2) 应力波破坏作用观点。
从爆炸动力学的观点出发,认为药包爆炸产生强烈的冲击波,冲击、压缩周围的岩体,造成邻近药包的岩体局部压碎,之后冲击波衰减为压应力波继续向外传播。
当压应力波传播到岩体界面(自由面)时,产生反射拉应力波,若此拉应力波超过岩石的动态抗拉强度时,从界面开始向爆源方向产生拉伸片裂破坏,如图5—2所示。
岩石爆破机理岩石爆破机理是指通过引爆爆炸剂,利用高温高压波来破坏岩石体的一种技术。
岩石爆破主要应用于矿山、铁路、公路等工程领域,在工程建设中具有不可替代的作用。
岩石爆破的机理可以分为三个阶段。
首先是能量释放阶段。
当炸药引爆后,化学反应会产生大量的热能和气体,使炸药的体积瞬间膨胀,形成高压气体。
这些气体以极高的速度向四周扩散,并向岩体传递动能。
其次是能量传递阶段。
高速扩散的气体和爆炸波经过瞬时的相互作用,使高温、高压的爆炸波向周围的岩石体传递能量。
能量在岩石体内迅速传播,导致岩石内部出现严重的应力集中,有些区域的应力值甚至超过了岩石强度的极限。
最后是破裂扩展阶段。
在超过岩石强度极限的作用下,岩石裂缝开始扩展,形成一个新的界面。
裂缝的扩展会引起更多应力集中,导致更多岩石的破碎。
随着裂缝的扩展,岩石的破坏面逐渐增大,最终整个岩体被炸碎成了可便于运输和处理的小块岩石。
需要注意的是,岩石爆破的机理涉及许多参数的影响,如炸药种类和量、爆轰波的能量、岩石强度和裂隙结构等。
合理的设计和选择炸药量以及爆破参数,是保证爆破效果和决定爆破成本的重要因素。
此外,岩石爆破也会对环境产生一定的影响,如爆炸噪声和振动等。
为了避免对环境造成过多的破坏,需要在爆破前进行周围环境的评估和监测,并采取相应的防护措施。
综上所述,岩石爆破机理是应用基本物理原理实现大规模岩石破碎的一种技术。
通过合理的设计和参数选择,可以取得良好的爆破效果,同时也需要注意对环境的保护与治理。
作为一种高效的矿业采石或建筑物拆除方法,岩石爆破在减少劳动力和时间成本上具有重要意义。
5岩石爆破理论5.1岩石爆破破坏基本理论炸药爆炸引起岩石破坏,这是一个高能转化释放、传递作功的过程。
在这个过程中,岩石受力情况极其复杂,而历时又极为短暂,因此要正确地解释岩石爆破破碎机理,就极为困难,人们已作了多年的努力,仍没有一个确切全面的唯一的解释,而是各执一词。
但将多类解释的基本观点与理论依据归类,可概括为三大假说:5.1.1 爆生气体膨胀作用理论这种理论是从静力学的观点出发,认为:岩石的破碎主要是由爆炸气体产物的膨胀压力引起。
(1) 炸药爆炸时,产生高压膨胀气体,在周围介质中形成压应力场。
炸药爆炸生成大量气体产物,在爆热的作用下,处于高温高压的状态,而急剧膨胀,这些膨胀气体以极高的压力作用于周围介质,而形成压应力场。
(2) 气体膨胀推力使质点产生径向位移,而产生径向压应力,其衍生拉应力,产生径向裂隙。
很高的压应力场,势必使周围岩石质点发生径向移动,这种位移又产生径向压应力,形成径向压应力的传递;质点在受径向压应力时,将产生径向压缩变形,而在切向伴随有拉伸变形生产,这个拉伸应变就是径向压应力所衍生的切向拉应力所产生。
当岩石的抗拉强度低于此切向拉应力时,就将产生径向裂隙;岩石的抗拉强度远远地小于抗压强度(常为其1/10~1/15),所以拉伸破坏极易发生,而形成径向裂隙。
(3) 质点移动所受阻力不等,引起剪切应力,而导致径向剪切破坏。
质点位移受到周围介质的阻碍,阻力不平衡在介质中就会引起剪切应力,若药包附近有自由面时,质点位移的阻力在最小抵抗线方向最小,其质点位移速度最高,偏离最小抵抗线方向阻力增大,质点位移速度降低,这样在阻力不等的不同方向上,不等的质点位移速度,必然产生质点间的相对运动而产生剪切应力。
在剪切应力超过岩石抗剪强度的地方,将发生径向剪切破坏。
(4) 当介质破裂,爆炸气体尚有较高的压力时,则推动破裂块体沿径向朝外运动,形成飞散。
上述破坏发生将消耗大量的爆炸能,如果爆炸气体还有足够大的压力,则将推动破碎岩块作径向外抛运动,若压力不够就可能仅是松动爆破破坏,而没有抛散,甚至只是内部爆破。
岩石爆破技术在矿山开采中的应用一、引言岩石爆破技术是矿山开采中不可或缺的一项技术,它能够快速、高效地将矿石开采出来。
随着科技的不断发展,岩石爆破技术也在不断地更新,越来越被广泛地应用于矿山开采中。
本文将详细介绍岩石爆破技术在矿山开采中的应用,包括岩石爆破技术的基本原理、岩石爆破技术在矿山开采中的优势、岩石爆破技术在不同类型的矿山中的应用等方面。
二、岩石爆破技术的基本原理岩石爆破技术是指利用一定的爆炸能量,将岩石破碎、炸裂并分离出有用矿石的一种技术。
岩石爆破技术的基本原理是利用爆炸物在矿山中释放出的能量,产生高压气体和冲击波,使岩石破碎、炸裂并分离出有用矿石。
岩石爆破技术的主要参数包括爆炸物的种类、爆炸物的量、爆炸物的密度、爆炸物的形状和矿石的物理力学性质等。
其中,爆炸物的种类主要有炸药、高分子材料和气体等;爆炸物的量和密度会影响爆炸物释放的能量大小,从而影响岩石破碎的效果;爆炸物的形状则会影响爆炸物释放的能量分布情况;矿石的物理力学性质则会影响岩石破碎的难易程度。
三、岩石爆破技术在矿山开采中的优势岩石爆破技术在矿山开采中有许多优势,主要包括以下几个方面:1. 高效。
相比传统的机械开采方式,岩石爆破技术能够更加高效地将矿石开采出来,节省了人力和时间成本。
2. 适用范围广。
岩石爆破技术适用于各种类型的矿山,包括金属矿山、非金属矿山、煤矿等。
3. 成本低。
相比传统的机械开采方式,岩石爆破技术的成本更低,能够为矿山企业节约大量的成本。
4. 安全性高。
岩石爆破技术在操作过程中需要严格遵守相关的安全规定和标准,因此其安全性相对较高。
四、岩石爆破技术在不同类型的矿山中的应用1. 金属矿山金属矿山是指含有金属矿物的矿山。
在金属矿山中,岩石爆破技术是一种常用的开采方式,它能够快速、高效地将金属矿石开采出来。
在金属矿山中,岩石爆破技术需要根据不同的矿石类型和矿山地质条件进行调整和优化。
例如,在硬质岩石中,需要使用高能量的爆炸物,以确保矿石能够被完全破碎;而在软质岩石中,则需要使用低能量的爆炸物,以避免对矿石造成过度损伤。