2.已知一个多边形的每一个内角与其相邻外角的角度
之比都是7:2,则这个多边形是__九___边形,共有__2_7__
条对角线.
解析:设这个多边形的一个内角为7x°,则与其相邻 的外角为2x°,因为每一个内角与其相邻的外角之和为 180°, 所以7x°+2x°= 180° ,解得x=20,外角为40°. 边对数角为线3的6条0°数÷为40°9( 29=-39), 则27 这. 个多边形是九边形.
内角=
,
知识回顾
1.什么是多边形? 2.什么是多边形的对角线?多边形的对角线具有什么性 质? 3.什么是正多边形? 4.由三角形内角和定理可以得到哪些推论? 5.三角形外角具有什么性质?
学习目标
1.了解并掌握多边形内角和与外角和公式. 2.理解多边形内角和与外角和公式的推导过程. 3.灵活运用多边形的内角和与外角和定理解决实际问题.
通过以上的探究,我们发现多边形的内角和与边数之间 ∴∠A1,∠A2,∠A3所相邻的外角和为270°.
性质:多边形的外角和等于360°. 上述总和与六边形的内角和、外角和有什么关系? (2)四边形的内角和为360°,
了内解角有并 = 掌密握多切边, 形内的角和关与外系角和公.从式. n边形的一个顶点出发,可以作出(n-
例2 一个多边形的各内角都等于120°,它是几边形?
解:设这个多边形的边数为n,
因为各内角都等于120°,所以内角和为120°×n.
由内角和公式得:(n-2)× 180°.
则120° ×n=(n-2)× 180° ,解得n=6.
所以它是六边形.
你能从多边形外角和的 角度想出另外的解法吗?
例2 一个多边形的各内角都等于120°,它是几边形? 方法二 解:设这个多边形的边数为n, 因为各内角都等于120 ° ,所以各外角都 等于180 °-120 °=60 °. 由外角和性质得:n×60°=360°, 解得n=6. 所以它是六边形.