浙江专用2019版高考数学大一轮复习第八章立体几何8.1空间几何体的结构三视图和直观图教师用书
- 格式:doc
- 大小:1.14 MB
- 文档页数:17
第1讲空间几何体的结构、三视图和直观图最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知识梳理1.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.4.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.诊断自测1.判断正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以∠A也可能为135°.(4)正方体和球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形,其俯视图为圆心和圆.答案(1)×(2)×(3)×(4)×2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案 A3.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案 C4.(2019·天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()解析先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.答案 B5.正△AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.解析画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D为OA的中点),∴S△O′A′B′=12×22S△OAB=24×34a2=616a2.答案6 16a26.(2019·浙江五校联考)如图,正方体ABCD-A1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点(异于C点),过点A,P,Q的平面截该正方体所得的截面记为M.当CQ=________时(用数值表示),M为等腰梯形;当CQ=4时,M的面积为________.解析连接AP交DC的延长线于点N,当点Q为CC1的中点,即CQ=2时,连接D1N,则D1N过点Q,PQ綉AD1,显然AP=D1Q,M为等腰梯形;当CQ =4时,NQ交棱DD1延长线上一点(设为G),且GD1=4,AG过A1D1的中点,此时M为菱形,其对角线长分别为43和42,故其面积为8 6.答案28 6考点一空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3(2)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.答案(1)A(2)B规律方法(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线解析如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D 正确.答案 D考点二空间几何体的三视图(多维探究)命题角度一由空间几何体的直观图判断三视图【例2-1】一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.答案 B命题角度二由三视图判定几何体【例2-2】(1)(2019·全国Ⅰ卷)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)(2019·北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B. 2C. 3D.2解析(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.(2)由题中三视图知,此四棱锥的直观图如图所示,其中PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长P A=12+12+12= 3.答案(1)B(2)C规律方法(1)由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.(2)根据三视图还原几何体.①对柱、锥、台、球的三视图要熟悉.②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.③根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.提醒对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.【训练2】(1)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为()(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是()解析(1)还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.(2)由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.答案(1)B(2)A考点三空间几何体的直观图【例3】已知等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析如图所示,作出等腰梯形ABCD的直观图:因为OE=(2)2-1=1,所以O′E′=12,E′F=24,则直观图A′B′C′D′的面积S′=1+32×24=22.答案2 2规律方法(1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z 轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.【训练3】(2019·余姚一中检测)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.解析如图1,在直观图中,过点A作AE⊥BC,垂足为E.在Rt△ABE中,AB=1,∠ABE=45°,∴BE=2 2.又四边形AECD为矩形,AD=EC=1.∴BC=BE+EC=22+1.由此还原为原图形如图2所示,是直角梯形A′B′C′D′.在梯形A′B′C′D′中,A′D′=1,B′C′=22+1,A′B′=2.∴这块菜地的面积S=12(A′D′+B′C′)·A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.答案2+2 2[思想方法]1.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想. [易错防范]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.基础巩固题组(建议用时:30分钟)一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案 B2.如图所示的几何体是棱柱的有()A.②③⑤B.③④⑤C.③⑤D.①③解析由棱柱的定义知③⑤两个几何体是棱柱.答案 C3.(2019·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.答案 D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC 投影在面P AD上且为实线,点E的投影点为P A的中点,故B正确.答案 B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.4解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD=(42)2+22=6.答案 C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.答案 A7.(2019·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16.剩余部分的体积V 2=13-16=56.因此,V 1V 2=15. 答案 D8.(2019·东阳调研)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为选项D.答案 D二、填空题9.(2019·台州调研)直观图(如图)中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy原坐标系中四边形为________(填图形形状);面积为________cm2.解析将直观图恢复到平面图形(如图),是OA=2 cm,OC=4 cm的矩形,S OABC=2×4=8(cm2).答案矩形810.(2019·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.解析由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2.答案 211.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析 由题中三视图可知,三棱锥的直观图如图所示,其中P A ⊥平面ABC ,M 为AC 的中点,且BM ⊥AC .故该三棱锥的最长棱为PC .在Rt △P AC 中,PC =P A 2+AC 2=22+22=2 2.答案 2 212.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正视图与侧视图的面积的比值为________.解析 三棱锥P -ABC 的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案 113.(2019·金华调研)在三棱锥P -ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC .则截面的周长为________.解析 过点G 作EF ∥AC 交P A ,PC 于点E ,F ,过E ,F 分别作EN ∥PB ,FM ∥PB 分别交AB ,BC 于点N ,M ,连接MN ,∴四边形EFMN 是平行四边形,∴EF 3=23,即EF =MN =2,FM PB=FM 6=13,即FM =EN =2,∴截面的周长为2×4=8.答案 8能力提升题组(建议用时:15分钟)14.在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C.④和③D.④和②解析如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.答案 D15.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A.4B.5C.3 2D.3 3解析由三视图知几何体的直观图如图所示,计算可知线段AF最长,且AF=BF2+AB2=3 3.答案 D16.(2019·绍兴一中检测)已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.解析如图,过C′作y′轴的平行线C′D′,与x′轴交于点D′.则C′D′=32asin 45°=62a.又C′D′是原△ABC的高CD的直观图,所以CD=6a.故S△ABC=12AB·CD=62a2.答案62a217.(2019·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD-A′B′C′D′.故该四棱柱的体积V=Sh=12×(1+2)×1×1=32.答案3218.(2019·宁波检测)正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为2,侧棱长为1,则动点从A沿表面移动到E1时的最短路程是________;动点从A沿表面移动到D1时的最短路程为________.解析侧面展开图如图(1),(2),∴从A沿表面到E1的最短路程为AE1=(AE)2+(EE1)2=(22)2+1=3.从A沿表面到D1的最短路程为AD1=(AD)2+(DD1)2=(32)2+1=19.(1)(2)答案319。
(浙江版)2019年高考数学一轮复习专题8.1 空间几何体的结构及其三视图和直观图(讲)【考纲解读】年考查三视图、几何体1与立体几何数学应用的【知识清单】1.空间几何体的结构特征一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.对点练习:有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1 B.2 C.3 D.4【答案】A2空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.【年福建省数学基地校高三复习试卷】一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )D.3.几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方【】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D)2【答案】B【解析】【考点深度剖析】三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.【重点难点突破】考点1:空间几何体的结构特征【1-1】如图几何体中是棱柱的有( )A.1个 B.2个 C.3个 D.4个【答案】C【1-2】下列命题中正确的有__________.①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;②存在一个四个侧面都是直角三角形的四棱锥;③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;④圆台的任意两条母线所在直线必相交;【答案】②④【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;故③错误④根据圆台的定义和性质可知,命题④正确.系或增加线、面等基本元素,然后再依据题意判定.三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【变式1】一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱B两选项中侧棱与底面不一定垂直,选C.【变式2届云南省名校月考一】面上,若球心到过A点的三条棱所在直线的距离分别是考点2 空间几何体的直观图【2-1】利用斜二测画法得到的以下结论,正确的是).①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.【2-2】在如图所示的直观图中,四边形O′A′B,则在xOy坐标系中,四边形ABCO 为________,面积为________ cm 2.【答案】矩形8【领悟技法】按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=S 直观图. 【触类旁通】【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+B. 12+C. 22+ D.1【答案】A【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+1, 1+2的直角梯形. 所以面积S =12(12+故选A.【变式2】如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形【答案】C【解析】将直观图还原得▱OABC,如图,∵O′D′=2O′C′=2 2 (cm),OD=2O′D′=4 2 (cm),C′D′=O′C′=2 (cm),∴CD=2 (cm),OC =CD2+OD2=22+422=6 (cm),OA=O′A′=6 (cm)=OC,故原图形为菱形.综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.考点3 空间几何体的三视图【3-1】【2018届河南省新乡市第一中学高三8月月考】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】 (1)D (2)D【解析】 (1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥OABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D.(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.【3-3】【2018届广东省广州市海珠区高三综合测试一】如图,点,M N 分别是正方体1111ABCD A B C D 的棱1111,A B A D 的中点,用过点,,A M N 和点1,,D N C 的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为( )A. ①③④B. ②④③C. ①②③D. ②③④【答案】D【领悟技法】三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.【触类旁通】【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )【答案】C【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).【答案】D【变式3】【武汉市部分学校2016 届高三调研】)一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为(.....).①长方形;②正方形;③圆;④椭圆.中的A.①②B.②③C.③④D.①④【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【易错试题常警惕】易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【错解】①②⑤【错因】忽视几何体的不同放置对三视图的影响,漏选③.【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.故正确答案为①②③⑤.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例】【2017届河北省石家庄市二模】如图是一个底面半径为1的圆柱被平面截开所得的几ABB A为矩何体,截面与底面所成的角为45 ,过圆柱的轴的平面截该几何体所得的四边形'' AA将其侧面剪开,其侧面展开图形状大致为()形,若沿'A. B.C. D. 【答案】A。
第八章立体几何与空间向量知识点最新考纲空间几何体的结构特征及三视图和直观图了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征.了解简单组合体,了解中心投影、平行投影的含义.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测法画出它们的直观图.空间几何体的表面积与体积会计算柱、锥、台、球的表面积和体积.空间点、直线、平面之间的位置关系了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理.公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线互相平行.定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.空间中的平行关系、垂直关系理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理.判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;一个平面过另一个平面的垂线,则这两个平面互相垂直.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;如果两个平行平面同时和第三个平面相交,那么它们的交线平行;垂直于同一个平面的两条直线平行;两个平面互相垂直,则一个平面内垂直于交线的直线与另一个平面垂直.空间角理解直线与平面所成角的概念,了解二面角及其平面角的概念.空间向量及其运算了解空间直角坐标系,会用空间直角坐标表示点的位置.了解空间向量的概念,了解空间向量的基本定理及其意义,了解空间向量的正交分解及其坐标表示.了解空间向量的加、减、数乘、数量积的定义,坐标表示的运算.立体几何中的向量方法了解空间两点间的距离公式、向量的长度公式及两向量的夹角公式.了解直线的方向向量与平面的法向量.了解求两直线夹角、直线与平面所成角、二面角的向量方法.第1讲空间几何体的结构特征及三视图和直观图1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且相等多边形互相平行侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相相交于延长线交等,垂直于底面一点于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.直观图(1)画法:斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看到的线画实线,看不到的线画虚线.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)在正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )答案:(1)×(2)×(3)×(4)×(5)×(6)×[教材衍化]1.(必修2P19T2改编)下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.(必修2P8A组T1(1)改编)在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.(P15练习T1改编)已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③[易错纠偏]棱柱的概念不清致误.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.空间几何体的结构特征(1)下列说法正确的是( )A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台(2)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3【解析】(1)底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,D错.(2)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰,才得到是圆台的旋转体;命题③对;命题④错,必须用平行于圆锥底面的平面截圆锥才可以得到一个圆锥和一个圆台.【答案】(1)B (2)B空间几何体概念辨析问题的常用方法1.给出下列命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③长方体一定是正四棱柱.其中正确的命题个数是( )A.0 B.1C.2 D.3解析:选A.①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③显然错误.2.下列说法正确的是( )A.以半圆的直径所在直线为旋转轴旋转形成的曲面叫做球B.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线解析:选D.球面和球是两个不同的概念,以半圆的直径所在直线为旋转轴旋转形成的曲面叫做球面,球面围成的几何体叫做球,A错误.对于B,如图,满足有两个面平行,其余四个面都是等腰梯形,但它不是棱台,故B错.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.C错误.由母线的概念知,选项D正确.空间几何体的三视图(高频考点)空间几何体的三视图是每年高考的热点,题型为选择题或填空题,难度适中,属于中档题.主要命题角度有:(1)由空间几何体的直观图识别三视图;(2)由空间几何体的三视图还原直观图;(3)由空间几何体的部分视图画出剩余部分视图.角度一由空间几何体的直观图识别三视图(2020·某某省名校协作体高三联考)“牟合方盖”是我国古代数学家X徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )【解析】根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.【答案】 B角度二由空间几何体的三视图还原直观图某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.32B.2 3C.22D.2【解析】由三视图还原为如图所示的四棱锥A-BCC1B1,从图中易得最长的棱长为AC1=AC2+CC21=(22+22)+22=23,选B.【答案】 B角度三由空间几何体的部分视图画出剩余部分视图将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【解析】由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.【答案】 B三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.1.(2020·瑞安四市联考)如图,在正方体ABCDA1B1C1D1中,点P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )解析:选D.如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点消失了,其余各点均在,从而其侧视图为D.2.(2020·某某期中)如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可判断这四个几何体依次为( )A.三棱台、三棱柱、圆锥、圆柱B.三棱台、三棱锥、圆锥、圆台C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台解析:选C.如题图(1)三视图复原的几何体是放倒的三棱柱;(2)三视图复原的几何体是四棱锥;(3)三视图复原的几何体是圆锥;(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、四棱锥、圆锥、圆台.故选C.3.(2020·某某高校招生选考试题)如图,在三棱锥ABCD中,侧面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=43,则该三棱锥三视图的正视图为( )解析:选C.由题意,三棱锥三视图的正视图为等腰三角形,△BCD中,BC⊥CD,BC=6,BD=43,所以CD=23,设C在BD上的射影为E,则123=CE·43,所以CE=3,DE =CD2-CE2=3,故选C.空间几何体的直观图如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )A.正方形B.矩形C.菱形 D.一般的平行四边形【解析】如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2 cm,所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,故四边形OABC是菱形,因此选C.【答案】 C(变条件、变问法)若本例中直观图为如图所示的一个边长为1 cm的正方形,则原图形的周长是多少?解:将直观图还原为平面图形,如图.可知还原后的图形中OB=22,AB=12+(22)2=3(cm),于是周长为2×3+2×1=8(cm).原图与直观图中的“三变”与“三不变”1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为( )A .平行四边形B .梯形C .菱形D .矩形解析:选D.由斜二测画法可知在原四边形ABCD 中DA ⊥AB ,并且AD ∥BC ,AB ∥CD ,故四边形ABCD 为矩形.2.在等腰梯形ABCD 中,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:因为OE = (2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.答案:22核心素养系列14 直观想象——构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( )A.16B.26C.36D.12【解析】 几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,正视图和侧视图中分别有一个直角.正视图和侧视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A.【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】 第一步,根据题意,画正方体,在正方体内画出俯视图,如图①. 第二步,找直角,在俯视图、正视图和侧视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥A BCD ,如图②.[基础题组练]1.下列说法正确的有( )①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个B.2个C.3个D.4个解析:选A.①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.2.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴、x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.如图所示,上面的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( )A.①②B.②③C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.4.(2020·某某学军中学高三期中)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )解析:选D.分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D.5.(2020·某某十校联考)某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为( )A.152B.6+ 3C.32+3 3 D.4 3解析:选A.侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.6.(2020·某某模拟)一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )A.33B.17C.41D.42解析:选C.依题意,题中的几何体是四棱锥E ABB 1A 1,如图所示(其中ABCD A 1B 1C 1D 1是棱长为4的正方体,C 1E =1),EA =32+42+42=41,EA 1=12+42+42=33,EB =32+42=5,EB 1=12+42=17,AB =BB 1=B 1A 1=A 1A =4,因此该几何体的最长棱的棱长为41,选C.7.有一个长为5 cm ,宽为4 cm 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积S =5×4=20(cm 2),所以其直观图的面积S ′=24S =52(cm 2).答案:5 2 cm 28.如图所示的Rt △ABC 绕着它的斜边AB 旋转一周得到的图形是________.解析:过Rt △ABC 的顶点C 作线段CD ⊥AB ,垂足为点D ,所以Rt △ABC 绕着它的斜边AB 旋转一周后得到是以CD 作为底面圆的半径的两个圆锥的组合体.答案:两个圆锥的组合体9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是________.解析:由三视图知,该几何体是如图所示的四棱锥P ABCD ,易知四棱锥P ABCD 的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4.答案:410.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱的特征及侧(左)视图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正(主)视图的面积为2 3.答案:2 311. 如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,图为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=62(cm).由正视图可知AD=6 cm,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=(62)2+62=63(cm).12.如图所示,在侧棱长为23的正三棱锥VABC中,∠AVB=∠BVC=∠CVA=40°,过点A作截面AEF,求△AEF的周长的最小值.解:如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求△AEF的周长的最小值.取AA1的中点D,连接VD,则VD⊥AA1,∠AVD=60°.在Rt△VAD中,AD=VA·sin 60°=3,所以AA1=2AD=6,即△AEF的周长的最小值为6.[综合题组练]1.(2020·某某市五校联考)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )解析:选A.因为一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是以正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为A.2.某四面体的三视图如图,则其四个面中最大的面积是( )A .2B .2 2 C.3D .2 3解析:选D.在正方体ABCD A 1B 1C 1D 1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1BCB 1,如图所示,其四个面的面积分别为2,22,22,23,故选D.3.正方体ABCD A 1B 1C 1D 1中,点E 为棱BB 1的中点(如图),用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A ,E ,C 1的平面与棱DD 1相交于点F ,且点F 是棱DD 1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.4.如图,三棱锥V ABC 的底面为正三角形,侧面VAC 与底面垂直,且VA =VC ,已知其正(主)视图的面积为23,则其侧(左)视图的面积为________.解析:设三棱锥V ABC 的底面边长为a ,侧面VAC 的边AC 上的高为h ,则ah =43,其侧(左)视图是由底面三角形ABC 边AC 上的高与侧面三角形VAC 边AC 上的高组成的直角三角形,其面积为12×32a ×h =12×32×43=33.答案:335.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体; (2)画出其侧视图,并求该平面图形的面积. 解:(1)正六棱锥. (2)其侧视图如图: 其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,所以该平面图形的面积S =12·3a ·3a =32a 2.6.某几何体的三视图如图所示.(1)判断该几何体是什么几何体? (2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个14圆柱后得到的几何体.(2)直观图如图所示:。
§8.1空间几何体的三视图、表面积和体积考纲解读考点考纲内容要求浙江省五年高考统计2013 2014 2015 2016 20171.三视图和直观图1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,会用斜二测法画出它们的直观图.3.会用平行投影画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式.4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化.了解、理解12,2分5(文),3分3,3分3(文),3分2,3分2(文),3分11,6分9(文),6分3,4分2.空间几何体的表面积会计算球、柱、锥、台的表面积(不要求记忆公式).掌握3,2分11,3分3.空间几何体的体积会计算球、柱、锥、台的体积(不要求记忆公式).12,2分5(文),2分3(文),2分2,2分2(文),2分11,3分14,4分9(文),3分分析解读 1.三视图与直观图的识别及二者的相互转化是高考考查的热点,考查几何体的展开图、几何体的三视图的画法.2.考查柱、锥、台、球的结构特征,以性质为载体,通过选择题、填空题的形式呈现.3.考查柱、锥、台、球的表面积与体积的计算,主要是与三视图相结合,也可与柱、锥、球的接切问题相结合,不规则几何体的表面积与体积的计算也有可能考查.4.预计2019年高考试题中,对三视图与直观图的识别以及求由三视图所得几何体的表面积和体积的考查是必不可少的.柱、锥、台、球的结构特征可能以选择题、填空题的形式出现,它们的表面积与体积的计算还是会与三视图相结合,或以组合体的形式出现,复习时应引起重视.五年高考考点一三视图和直观图1.(2017浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3答案 A2.(2017北京文,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.60B.30C.20D.10答案 D3.(2017课标全国Ⅱ理,4,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π答案 B4.(2017课标全国Ⅰ理,7,5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16答案 B5.(2017北京理,7,5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3B.2C.2D.2答案 B6.(2016课标全国Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π答案 C7.(2015课标Ⅱ,6,5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A. B. C. D.答案 D8.(2015重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为( )A.+πB.+πC.+2πD.+2π答案 A9.(2015安徽,7,5分)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2答案 B10.(2014江西,5,5分)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )答案 B11.(2013湖南,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( )A.1B.C.D.答案 C12.(2013浙江,12,4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于cm3.答案2413.(2017山东理,13,5分)由一个长方体和两个圆柱体构成的几何体的三视图如下图,则该几何体的体积为.答案2+教师用书专用(14—23)14.(2014湖北,5,5分)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①答案 D15.(2014北京,7,5分)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1答案 D16.(2015陕西,5,5分)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D17.(2014福建,2,5分)某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱答案 A18.(2014辽宁,7,5分)某几何体三视图如图所示,则该几何体的体积为( )A.8-2πB.8-πC.8-D.8-答案 B19.(2013课标全国Ⅱ,7,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )答案 A20.(2013广东,5,5分)某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.C.D.6答案 B21.(2013重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为( )A. B. C.200 D.240答案 C22.(2013陕西,12,5分)某几何体的三视图如图所示,则其体积为.答案23.(2013辽宁,13,5分)某几何体的三视图如图所示,则该几何体的体积是.答案16π-16考点二空间几何体的表面积1.(2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm2答案 D2.(2016课标全国Ⅲ,9,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36B.54+18C.90D.81答案 B3.(2016课标全国Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )A.17πB.18πC.20πD.28π答案 A4.(2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A.1B.2C.4D.8答案 B5.(2015课标Ⅱ,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π答案 C6.(2017课标全国Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π7.(2017课标全国Ⅰ文,16,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.答案36π教师用书专用(8—11)8.(2014重庆,7,5分)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72答案 B9.(2015北京,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+B.4+C.2+2D.5答案 C10.(2014安徽,7,5分)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+B.18+C.21D.18答案 A11.(2013福建,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π考点三空间几何体的体积1.(2015浙江,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3C. cm3D. cm3答案 C2.(2017课标全国Ⅲ理,8,5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.C.D.答案 B3.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.1答案 A4.(2016课标全国Ⅲ,10,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4πB.C.6πD.答案 B5.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛答案 B6.(2015湖南,10,5分)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=( )A. B.C. D.答案 A7.(2015山东,7,5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. B. C. D.2π答案 C8.(2014课标Ⅱ,6,5分)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. B. C. D.答案 C9.(2014湖北,8,5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )A. B. C. D.答案 B10.(2016浙江,14,4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.答案11.(2017课标全国Ⅰ理,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案412.(2017天津理,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案π13.(2015天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.答案π14.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.答案15.(2017课标全国Ⅱ文,18,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为2,求四棱锥P-ABCD的体积.解析本题考查线面平行的判定和体积的计算.(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)取AD的中点M,连接PM,CM.由AB=BC=AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD.因为CM⊂底面ABCD,所以PM⊥CM.设BC=x,则CM=x,CD=x,PM=x,PC=PD=2x.取CD的中点N,连接PN,则PN⊥CD,所以PN=x.因为△PCD的面积为2,所以×x×x=2,解得x=-2(舍去)或x=2.于是AB=BC=2,AD=4,PM=2.所以四棱锥P-ABCD的体积V=××2=4.16.(2016江苏,17,14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?解析(1)由PO1=2 m知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以正四棱锥P-A1B1C1D1的体积V锥=·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,O1O=4h(m).连接O1B1.因为在Rt△PO1B1中, O1+P=P,所以+h2=36,即a2=2(36-h2).于是仓库的容积V=V柱+V锥=a2·4h+a2·h=a2h=(36h-h3),0<h<6,从而V'=(36-3h2)=26(12-h2).令V'=0,得h=2或h=-2(舍).当0<h<2时,V'>0,V是单调增函数;当2<h<6时,V'<0,V是单调减函数.故h=2时,V取得极大值,也是最大值.因此,当PO1=2 m时,仓库的容积最大.教师用书专用(17—23)17.(2016山东,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.+πB.+πC.+πD.1+π答案 C18.(2014陕西,5,5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A. B.4π C.2π D.答案 D19.(2013课标全国Ⅰ,6,5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )A. cm3B. cm3C. cm3D. cm3答案 A20.(2013课标全国Ⅰ,8,5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π答案 A21.(2013湖北,8,5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4答案 C22.(2014江苏,8,5分)设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为V1、V2,若它们的侧面积相等,且=,则的值是.答案23.(2014山东,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则= .答案三年模拟A组2016—2018年模拟·基础题组考点一三视图和直观图1.(2018浙江杭州二中期中,5)一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为( )A.1B.C.D.2答案 C2.(2016浙江宁波“十校”联考,3)如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为( )A.2B.C.2D.答案 C3.(2017浙江名校协作体,12)某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是,该几何体的表面积是.答案2;考点二空间几何体的表面积4.(2018浙江“七彩阳光”联盟期初联考,3)某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A.8+4B.6++2C.6+4D.6+2+2答案 A5.(2018浙江高考模拟卷,13) 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是,表面积是.答案;1++6.(2017浙江宁波二模(5月),12)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2;体积是cm3.答案38;12考点三空间几何体的体积7.(2018浙江镇海中学期中,3)某几何体的三视图如图所示,则该几何体的体积是( )A.15B.20C.25D.30答案 B8.(2018浙江浙东北联盟期中,3)某几何体的三视图如图所示,则该几何体的体积为( )A.+πB.+πC.+2πD.+2π答案 A9.(2017浙江台州4月调研卷(一模),4)某空间几何体的三视图如图所示,其中俯视图是半径为1的圆,则该几何体的体积是( )A.πB.C.D.答案 A10.(2018浙江镇海中学期中,11)某圆锥的侧面展开图是面积为3π,且圆心角为的扇形,则此圆锥的母线长为,体积为.答案3;B组2016—2018年模拟·提升题组一、选择题1.(2018浙江温州适应性测试,3)某几何体的三视图如图所示,则该几何体的体积是( )A.+πB.+πC. D.答案 A2.(2016浙江名校(衢州二中)交流卷五,3)已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为2,则该几何体的表面积是( )A. B.2π C.4π D.答案 C二、填空题3.(2018浙江“七彩阳光”联盟期中,12)某几何体的三视图如图所示,则该几何体的体积为;表面积为.答案;24+8+84.(2018浙江9+1高中联盟期中,15)某几何体的三视图如图所示,则俯视图的面积为;此几何体的体积为.答案+2;π+5.(2018浙江高考模拟训练冲刺卷一,14)一个几何体的三视图如图所示,正视图与俯视图为全等的矩形,侧视图为正方形和一个圆,则该几何体的表面积为;体积为.答案32+(-1)π;12-π6.(2017浙江绍兴质量调测(3月),12)已知某几何体的三视图如图所示,则该几何体的表面积为,体积为.答案2+2;7.(2017浙江金华十校调研,12)某几何体的三视图如图所示,则该几何体的体积为,表面积为.答案12+π;38+π8.(2017浙江吴越联盟测试,11)一个多面体的三视图如图所示,则其表面积为,体积为.答案20;C组2016—2018年模拟·方法题组方法1 三视图的解题策略1.(2016浙江镇海中学期中,5)一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为( )答案 C方法2 求空间几何体的表面积的解题策略2.(2018浙江名校协作体期初,11)一个棱长为2的正方体被一个平面截去一部分后,剩下部分的三视图如图所示,则该几何体的表面积为,体积为.答案18+2;3.(2017浙江“七彩阳光”新高考研究联盟测试,13)一个几何体的三视图如图所示,则该几何体最长的棱的长度为;体积为.答案;方法3 求空间几何体体积的解题策略4.(2018浙江重点中学12月联考,6)已知某几何体的三视图如图所示,则该几何体的体积为( )A.2B.C.D.3答案 C5.(2017浙江宁波期末,12)一个几何体的三视图如图所示,则这个几何体的表面积是,体积是.答案16+2;66.(2017浙江名校协作体期初,10)一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为,体积为.答案28+4;8。
2019年高考数学讲练测【浙江版】【测】第八章立体几何第01节空间几何体的结构及其三视图和直观图班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.在一个几何体的三视图中,主视图和左视图如图所示,则相对应的左视图能够为( )2. 下列三种叙述,其中准确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个D.3个3. 若某几何体的三视图如图所示,则这个几何体的直观图能够是( ).4.【河南省南阳市高三第三次联考】已知三棱锥的俯视图与侧视图如图所示,俯视图是变长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )5.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )6. 已知某几何体的体积为π4,它的正视图、侧视图均为边长为1的正方形(如图所示),则该几何体的俯视图能够为( )7.【安徽蚌埠市期末】点B 是点A (1,2,3)在坐标平面yoz 内的射影,则OB 等于( )A.13 B.14 C. 32 D.138.【四川卷】一个几何体的三视图如图所示,则该几何体的直观图能够是( )图1-39. 【新课标全国卷Ⅱ】一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图能够为( )10. 【江西卷】一几何体的直观图如图,下列给出的四个俯视图中准确的是 ( )11. 如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34 C.612D.6412.【北京卷】在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2),若S1、S2、S3分别是三棱锥D-ABC在xOy、yOz、zOx坐标平面上的正投影图形的面积,则( )A.S1=S2=S3 B.S2=S1且S2≠S3C.S3=S1且S3≠S2 D.S3=S2且S3≠S1二、填空题(本大题共4小题,每小题5分,共20分。
2019高考数学一轮复习第8章立体几何第1讲空间几何体的结构特征及三视图和直观图分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第8章立体几何第1讲空间几何体的结构特征及三视图和直观图分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第8章立体几何第1讲空间几何体的结构特征及三视图和直观图分层演练文的全部内容。
第1讲空间几何体的结构特征及三视图和直观图一、选择题1.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()解析:选B.侧视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故应选B.2.已知一个几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.球D.四棱柱解析:选B.由已知中的三视图可得该几何体是三棱柱,故选B.3.将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析:选D.根据几何体的结构特征进行分析即可.4.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:选D.A,B的正视图不符合要求,C的俯视图显然不符合要求,故选D.5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为错误!,则该几何体的俯视图可以是()解析:选C.由正视图和侧视图及体积易得几何体是四棱锥P.ABCD,其中ABCD是边长为2的正方形,PA⊥平面ABCD,且PA=2,此时V P.ABCD =13×22×2=错误!,则俯视图为Rt△PAB,故选C.6.(2018·兰州适应性考试)如图,在正方体ABCDA1B1C1D1中,点P是线段A 1C1上的动点,则三棱锥P.BCD的俯视图与正视图面积之比的最大值为() A.1 B.错误!C.错误!D.2解析:选D.正视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其正视图均是三角形且点P在正视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S正视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以错误!的最大值为错误!=2,故选D.二、填空题7.如图,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.解析:直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.答案: 2+错误!8.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB=错误!=13(cm).答案:139.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为2错误!,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V.ABCD的高.因为底面面积为16,所以AO=22.因为一条侧棱长为2错误!,所以VO=错误!=错误!=6.所以正四棱锥V。
一、选择题(本大题共10小题,每小题4分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【2018届北京市通州区三模】某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为()A. B. C. D.【答案】C【解析】2.【2018届湖北省荆州中学全真模拟(二)】已知某几何体的三视图(单位:)如图所示,则该几何体的体积是A. B. C. D.【答案】B【解析】3.【2018届重庆市巴蜀中学适应性(九)】在直三棱柱中,,是直线上一动点,则的最小值是()A. B. C. D.【答案】C【解析】将二面角展成,则四点共面,最小值就是平面内的长,在中,,,由余弦定理可得,故选C.4.【2018届四川省成都市龙泉第二中学高三10月月考】一个几何体的三视图如图所示,则该几何体的表面积为( )A. 3πB. 4πC. 24π+D. 34π+ 【答案】D5.【2018届河北省唐山市迁安市第三中学高三上期中】在三棱锥A-BCD 中,AC =BD =3,AD =BC =4,AB =CD =m ,则m 的取值范围是( ) A . (1,5) B . (1,7) C . (,7) D . (,5)【答案】D 【解析】将三棱锥放置于长方体中,如图所示:6.【四川卷】一个几何体的三视图如图所示,则该几何体的直观图可以是( )图1-3【答案】D【解析】根据三视图原理,该几何体上部为圆台,下部为圆柱.7.【新课标全国卷Ⅱ】一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )【答案】A【解析】在空间直角坐标系O -xyz 中画出三棱锥,由已知可知三棱锥O -ABC 为题中所描叙的四面体,而其在zOx 平面上的投影为正方形EBDO ,故选A.8.【2018届浙江省余姚中学模拟卷(二)】点是棱长为的正方体的棱切球上的一点,点是的外接圆上的一点,则线段的取值范围是( )A .B .C .D .【答案】D 【解析】9.小蚂蚁的家住在长方体1111ABCD A BC D -的A 处,小蚂蚁的奶奶家住在1C 处,三条棱长分别是11AA =,2AB =, 3AD =,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家1C 的最短距离是( )A. 【答案】B【解析】从A 点出发,沿长方体的表面到C ′有3条不同的途径,分别从与顶点A 相邻的三个面出发,根据,,,故最短距离是故选B.10.正方体1111ABCD A BC D -的棱长为1,点,E F 分别是棱1111,D C B C 的中点,过,E F 作一平面α,使得平面//α平面11AB D ,则平面α截正方体的表面所得平面图形为( ) A. 三角形 B. 四边形 C. 五边形 D. 六边形 【答案】D【解析】由题意,在正方体1111ABCD A BC D 中, ,E F 分别为棱1111,D C B C 的中点, 取111,,,BB AB AD A D 的中点,,,G H M N ,可得正六边形EFGHMN ,此时平面11//AB D 平面EFGHMN ,故选D. 二、填空题(本大题共7小题,共36分.把答案填在题中的横线上.)11.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm ,O′C′=2 cm ,则原图形是 形.【答案】菱形12.【2018届湖北省稳派教育第二次联考】正四面体A —BCD 的所有棱长均为12,球O 是其外接球,M ,N 分别是△ABC 与△ACD 的重心,则球O 截直线MN 所得的弦长为___________.【答案】【解析】13.【全国名校联盟2018年适应性考试(五)】已知四棱锥P ABCD -体积为 PA ⊥平面ABCD ,底面ABCD 是菱形,且2AB =, 60BAD ∠=,则四棱锥中最长棱的大小为__________.【解析】底面ABCD 是菱形, 2AB =, 60BAD ∠=︒212222ABDABCD S S∴==⨯⨯=菱形AC =PA ⊥平面ABCD1133P ABCD ABCD V S PA PA -∴==⨯=菱形3PA ∴=最长棱为PC =14.【2018届浙江省余姚中学模拟卷(二)】某几何体的三视图如图所示,则该几何体最长边长是_____该几何体的体积是_______。
浙江专用2019版高考数学大一轮复习第八章立体几何8.1空间几何体的结构三视图和直观图教师用书1.多面体的结构特征2.旋转体的形成3.空间几何体的三视图(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度变为原来的一半.【知识拓展】1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图均为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( × ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是( ) A .相等的角在直观图中仍然相等 B .相等的线段在直观图中仍然相等 C .正方形的直观图是正方形D .若两条线段平行,则在直观图中对应的两条线段仍然平行 答案 D解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.(2016·天津)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )答案 B解析由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.3.(教材改编)如图,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图中,A′C′∥y′轴,B′C′∥x′轴,还原后原图AC∥y轴,BC∥x轴.直观图还原为平面图形是直角三角形.故选D.4.(2016·嘉兴市高三下学期教学测试(二))某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm 3,表面积为________cm 2.答案π2 11π4解析 由三视图知该几何体为一个半球被割去14后剩下的部分,其球半径为1,所以该几何体的体积为12×34×43π×13=π2(cm 3),表面积为12×34×4π×12+34×π×12+2×14×π×12=11π4(cm 2).题型一 空间几何体的结构特征 例1 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ④存在每个面都是直角三角形的四面体; ⑤棱台的侧棱延长后交于一点. 其中正确命题的序号是________. 答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.(1)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3(2)给出下列四个命题:①有两个侧面是矩形的图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案(1)B (2)①②③解析(1)命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题②错,因为这条腰必须是垂直于两底的腰;命题③对;命题④错,必须用平行于圆锥底面的平面截圆锥才可以,故选B.(2) 对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,侧棱垂直于底面,故④正确. 综上,命题①②③不正确. 题型二 简单几何体的三视图 命题点1 已知几何体,识别三视图例2 (2016·济南模拟)如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如图所示,则其正视图和侧视图正确的是( )答案 D解析 正视图的轮廓线是矩形DCFG ,点E 在平面DCFG 上的投影为DG 的中点,且边界BE ,BG 可视,故正视图为选项B 或D 中的正视图,侧视图的轮廓线为直角梯形ADGE ,且边界BF 不可视,故侧视图为选项D 中的侧视图,故选D. 命题点2 已知三视图,判断几何体的形状例3 (2016·全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 答案 A解析 由该几何体的三视图可知,这个几何体是把一个球挖掉它的18得到的(如图所示).设该球的半径为R ,则78×43πR 3=283π,得R =2.所以它的表面积为4π×22-18×4π×22+3×14×π×22=17π.故选A.命题点3 已知三视图中的两个视图,判断第三个视图例4 (2016·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )答案 D解析 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD ⊥平面BCD ,故选D.思维升华三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(1)(2016·全国丙卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.81(2)如图是一几何体的直观图、正视图和俯视图,则该几何体的侧视图为( )答案 (1)B (2)B解析 (1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5.(2)由直观图、正视图和俯视图可知,该几何体的侧视图应为平面PAD ,且EC 投影在平面PAD 上,故B 正确.题型三 空间几何体的直观图例 5 (1)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2 B.38a 2 C.68a 2 D.616a 2 (2) 如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形 答案 (1)D (2)C解析 (1)如图①②所示的实际图形和直观图,由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. (2)如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=22+22=6(cm),∴OA =OC ,故四边形OABC 是菱形.故选C.思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.如图所示,△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,则△ABC 的面积为________.答案62a 2解析 建立如图所示的坐标系xOy ″,△A ′B ′C ′的顶点C ′在y ″轴上,边A ′B ′在x 轴上,把y ″轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a ,所以S △ABC =12×a ×6a =62a 2.9.空间几何的三视图典例 将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )错解展示解析 结合正方体中各顶点投影,侧视图应为一个正方形,中间两条对角线. 答案 C 现场纠错解析 侧视图中能够看到线段AD 1,应画为实线,而看不到B 1C ,应画为虚线.由于AD 1与B 1C 不平行,投影为相交线,故应选B. 答案 B纠错心得 确定几何体的三视图要正确把握投影方向,可结合正方体确定点线的投影位置,要学会区分三视图中的实虚线.1.(2016·北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12 D .1 答案 A解析 由三视图知,三棱锥如图所示,由侧视图得高h =1,又底面面积S =12×1×1=12.所以体积V =13Sh =16.2.(2015·课标全国Ⅰ) 圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A .1B .2C .4D .8答案 B解析 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.3.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π 答案 C解析 由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =32+22=4,所以圆锥的侧面积为S 锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.4.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①② B.②③ C.②④ D.③④ 答案 C解析 由几何体的结构可知,只有圆锥、正四棱锥两个几何体的正视图和侧视图相同,且不与俯视图相同.5.(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1 B. 2 C. 3 D .2 答案 C解析 根据三视图,可知该几何体的直观图为如图所示的四棱锥V -ABCD ,其中VB ⊥平面ABCD ,且底面ABCD 是边长为1的正方形,VB =1.所以四棱锥中最长棱为VD .连接BD ,易知BD =2,在Rt△VBD 中,VD =VB 2+BD 2= 3.6. (2016·慈溪模拟)一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点C 1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①② B.①③ C.③④ D.②④ 答案 D解析 由点A 经正方体的表面,按最短路线爬行到达顶点C 1位置,共有6种展开方式,若把平面ABB 1A 1和平面BCC 1B 1展开到同一个平面内,在矩形中连接AC 1会经过BB 1的中点,故此时的正视图为②.若把平面ABCD 和平面CDD 1C 1展开到同一个平面内,在矩形中连接AC 1会经过CD 的中点,此时正视图会是④.其他几种展开方式对应的正视图在题中没有出现或者已在②④中,故选D.7.如图所示,四边形A ′B ′C ′D ′是一水平放置的平面图形的斜二测画法的直观图,在斜二测直观图中,四边形A ′B ′C ′D ′是一直角梯形,A ′B ′∥C ′D ′,A ′D ′⊥C ′D ′,且B ′C ′与y ′轴平行,若A ′B ′=6,D ′C ′=4,A ′D ′=2,则原平面图形的面积为______.答案 20 2解析 由题意得,直观图的面积S 直=12×(4+6)×2=10,则原平面图形的面积S 原=22S 直=20 2.8.已知某几何体的三视图如图所示,则该几何体的表面积等于________.答案 64+32 2解析 由三视图可知该几何体为直三棱柱截去一个三棱锥,因为SB =42,AC =42,则其表面积等于4×8+12×42×(8+4)+12×4×(8+4)+12×4×4+12×4×42=64+32 2. 9. 如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的正视图与侧视图的面积的比值为________.答案 1解析 设正方体的棱长为a ,则三棱锥P -ABC 的正视图与侧视图都是三角形,且面积都是12a 2,故面积的比值为1.10. 如图所示,点O 为正方体ABCD -A ′B ′C ′D ′的中心,点E 为平面B ′BCC ′的中心,点F 为B ′C ′的中点,则空间四边形D ′OEF 在该正方体的各个面上的投影可能是下图中的________.(填出所有可能的序号)答案 ①②③解析 空间四边形D ′OEF 在平面DCC ′D ′上的投影是①,在平面BCC ′B ′上的投影是②,在平面ABCD 上的投影是③,故填①②③. 11.某几何体的三视图如图所示.(1)判断该几何体是什么几何体? (2)画出该几何体的直观图.解 (1)该几何体是一个正方体切掉两个14圆柱后得到的几何体.(2)直观图如图所示.12.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,求a +b 的最大值. 解 如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C =7,则它的正视图投影长为A 1B =6,侧视图投影长为A 1D =a ,俯视图投影长为A 1C 1=b ,则a 2+b 2+(6)2=2·(7)2,即a 2+b 2=8,又a +b2≤a 2+b 22,当且仅当“a =b =2”时等号成立.所以a+b ≤4,即a +b 的最大值为4.*13.已知正三棱锥V -ABC 的正视图和俯视图如图所示.(1)画出该正三棱锥的侧视图和直观图; (2)求出侧视图的面积. 解 (1)如图.(2)侧视图中VA =42-23×32×232=12=23,则S △VBC =12×23×23=6.。