高中物理专题练习:带电粒子在电场中运动的综合性问题
- 格式:doc
- 大小:205.93 KB
- 文档页数:12
专题12 带电粒子在电场中运动的综合问题一:专题概述示波管的工作原理1.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子束沿直线运动,打在荧光屏中心,在那里产生一个亮斑.2.YY′上加的是待显示的信号电压.XX′上是机器自身产生的锯齿形电压,叫做扫描电压,若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内随时间变化的稳定图象。
(如图1)电场中的力电综合问题1.动力学的观点(1)由于匀强电场中带电粒子所受电场力和重力都是恒力,可用正交分解法.(2)综合运用牛顿运动定律和匀变速直线运动公式,注意受力分析要全面,特别注意重力是否需要考虑的问题.2.能量的观点(1)运用动能定理,注意过程分析要全面,准确求出过程中的所有力做的功,判断选用分过程还是全过程使用动能定理.(2)运用能量守恒定律,注意题目中有哪些形式的能量出现.二:典例精讲1.示波管的工作原理典例1:示波器可以用来观察电信号随时间变化的情况,其核心部件是示波管,其原理图如下, XX'为水平偏转电极,YY'为竖直偏转电极。
以下说法正确的是()A. XX'加图3波形电压、YY'不加信号电压,屏上在两个位置出现亮点B。
XX'加图2波形电压、YY'加图1波形电压,屏上将出现两条竖直亮线C。
XX'加图4波形电压、YY'加图2波形电压,屏上将出现一条竖直亮线D。
XX'加图4波形电压、YY'加图3波形电压,屏上将出现图1所示图线【答案】A2.带电粒子在复合场中的应用问题典例2:美国科学家密立根通过油滴实验首次测得电子的电荷量。
油滴实验的原理如图所示,两块水平放置的平行金属板与电源相连,上、下板分别带正、负电荷。
油滴从喷雾器喷出后,由于摩擦而带电,经上板中央小孔落到两板间的匀强电场中,通过显微镜可以观察到油滴的运动情况,两金属板间的距离为d,忽略空气对油滴的浮力和阻力作用。
高中物理【带电粒子、带电体在电场中运动的综合问题】典型题1.(多选)一带电小球在空中由A点运动到B点的过程中,只受重力、电场力和空气阻力三个力的作用.若重力势能增加5 J,机械能增加1.5 J,电场力做功2 J,则小球() A.重力做功为5 J B.电势能减少2 JC.空气阻力做功0.5 J D.动能减少3.5 J解析:选BD.小球的重力势能增加5 J,则小球克服重力做功5 J,故A错误;电场力对小球做功2 J,则小球的电势能减少2 J,故B正确;小球共受到重力、电场力、空气阻力三个力作用,小球的机械能增加1.5 J,则除重力以外的力做功为1.5 J,电场力对小球做功2 J,则知空气阻力做功为-0.5 J,即小球克服空气阻力做功0.5 J,故C错误;重力、电场力、空气阻力三力做功之和为-3.5 J,根据动能定理,小球的动能减少3.5 J,D正确.2. (多选)如图所示,一根不可伸长的绝缘细线一端固定于O点,另一端系一带电小球,置于水平向右的匀强电场中,现把细线水平拉直,小球从A点由静止释放,经最低点B后,小球摆到C点时速度为0,则()A.小球在B点时速度最大B.小球从A点到B点的过程中,机械能一直在减少C.小球在B点时细线的拉力最大D.从B点到C点的过程中小球的电势能一直增加解析:选BD.小球所受重力和电场力恒定,重力和电场力的合力恒定,小球相当于在重力和电场力的合力及细线的拉力作用下在竖直平面内做圆周运动.当小球运动到重力和电场力的合力和细线的拉力共线时(不是B点),小球的速度最大,此时细线的拉力最大,A、C错误;从A点到C点的过程中,小球所受重力做正功,小球摆到C点时速度为0,所以电场力对小球做负功,小球从A点到B点的过程中,机械能一直在减少,B正确;从B点到C点的过程中,小球克服电场力做功,小球的电势能一直增加,D正确.3.如图所示,在竖直向上的匀强电场中,一根不可伸长的轻质绝缘细绳,一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为 a ,最低点为 b .不计空气阻力,则( )A .小球带负电B .电场力跟重力是一对平衡力C .小球从 a 点运动到 b 点的过程中,电势能减少D .运动过程中小球的机械能守恒解析:选B .小球在竖直平面内做匀速圆周运动,受到重力、电场力和细绳的拉力,电场力与重力平衡,则知小球带正电,故A 错误,B 正确.小球在从a 点运动到b 点的过程中,电场力做负功,小球的电势能增大,故C 错误.由于电场力做功,所以小球在运动过程中机械能不守恒,故D 错误.4.如图所示,高为h 的固定光滑绝缘斜面,倾角θ=53°,将其置于水平向右的匀强电场中,现将一带正电的物块(可视为质点)从斜面顶端由静止释放,其所受的电场力是重力的43倍,重力加速度为g ,则物块落地的速度大小为( )A .25ghB .2ghC .22ghD .532gh 解析:选D .对物块受力分析知, 物块不沿斜面下滑, 离开斜面后沿重力、 电场力合力的方向运动,F 合=53mg ,x =53h ,由动能定理得F 合·x =12m v 2,解得v =532gh . 5.(多选)如图所示,ABCD 为竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的14圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B 点.水平面内的M 、N 、B 三点连线构成边长为L 的等边三角形,M 、N 连线过C 点且垂直于BC D .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q .现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k ,重力加速度为g ,则( )A .小球运动到B 点时受到的电场力小于运动到C 点时受到的电场力B .小球在B 点时的电势能小于在C 点时的电势能C .小球在A 点时的电势能等于在C 点时的电势能D .小球运动到C 点时的速度为gR 解析:选AC .根据等量异种点电荷的电场特征,B 点电场强度小于C 点,小球在B 点时受到的电场力小于运动到C 点时受到的电场力,故A 项正确.根据等量异种点电荷的电场特征可知A 、B 、C 三点处于同一个等势面上,所以三点的电势相等,小球在三点处的电势能是相等的,故B 项错误,C 项正确.从A 点到C 点的运动过程只有重力对小球做功,由动能定理可得:mgR =12m v 2C,所以小球在C 点时速度为2gR ,故D 项错误. 6.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘直杆AC ,其下端(C 端)距地面高度h =0.8 m .有一质量为500 g 的带电小环套在直杆上,正以某一速度沿杆匀速下滑.小环离杆后正好通过C 端的正下方P 点处.(g 取10 m/s 2)求:(1)小环离开直杆后运动的加速度大小和方向;(2)小环从C 运动到P 过程中的动能增量;(3)小环在直杆上匀速运动速度的大小v 0.解析:(1)结合题意分析知:qE =mg ,F 合=2mg =ma ,a =2g =10 2 m/s 2,方向垂直于杆向下.(2)设小环从C 运动到P 的过程中动能的增量为ΔE k =W 重+W 电其中W 重=mgh =4 J ,W 电=0,所以ΔE k =4 J.(3)环离开杆做类平抛运动,平行杆方向匀速运动,有22h =v 0t 垂直杆方向匀加速运动,有22h =12at 2,解得v 0=2 m/s. 答案:(1)10 2 m/s 2 垂直于杆向下 (2)4 J (3)2 m/s7.如图所示,矩形区域PQNM 内存在平行于纸面的匀强电场,一质量为m =2.0×10-11 kg 、电荷量为q =1.0×10-5 C 的带正电粒子(重力不计)从a 点以v 1=1×104 m/s 的初速度垂直于PQ 进入电场,最终从MN 边界的b 点以与水平边界MN 成30°角斜向右上方的方向射出,射出电场时的速度v 2=2×104 m/s ,已知MP =20 cm 、MN =80 cm ,取a 点电势为零,如果以a 点为坐标原点O ,沿PQ 方向建立x 轴,则粒子从a 点运动到b 点的过程中,电场的电场强度E 、电势φ、粒子的速度v 、电势能E p 随x 的变化图象正确的是( )解析:选D .因为规定a 点电势为零,粒子进入电场后做类平抛运动,根据电场力做功与电势能的变化的关系,有qEx =ΔE p =0-E p ,故E p =-qEx ,故选项D 正确;因为匀强电场中的电场强度处处相等,故选项A 错误;因为粒子离开电场时的速度v 2=v 1sin 30°=2v 1,电场的方向水平向右,沿电场线的方向电势降低,故选项B 错误;粒子在电场中运动的过程中,由动能定理可知,qEx =12m v 2-12m v 21,所以v 与x 不是线性关系,选项C 错误. 8. (多选)如图所示为匀强电场的电场强度E 随时间t 变化的图象.当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,下列说法中正确的是( )A.带电粒子将始终向同一个方向运动B.2 s末带电粒子回到原出发点C.3 s末带电粒子的速度为零D.0~3 s内,电场力做的总功为零解析:选CD.设第1 s内粒子的加速度大小为a1,第2 s内的加速度大小为a2,由a 可知,a2=2a1,设带电粒子开始时向负方向运动,可见,粒子第1 s内向负方向运动,=qEm1.5 s末粒子的速度为零,然后向正方向运动,至3 s末回到原出发点,粒子的速度为0,vt图象如图所示,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C、D 正确.9.(多选)如图所示,竖直放置的两平行金属板间有匀强电场,在两极板间同一等高线上有两个质量相等的带电小球a、b(可以看成质点).将小球a、b分别从紧靠左极板和两极板正中央的位置由静止释放,它们沿图中虚线运动,都能打在右极板上的同一点.从释放小球到刚要打到右极板的运动中,下列说法正确的是()A.它们的运动时间t a>t bB.它们的电荷量之比q a∶q b=2∶1C.它们的电势能减少量之比ΔE p a∶ΔE p b=4∶1D.它们的动能增加量之比ΔE k a∶ΔE k b=4∶1解析:选BC.两小球由同一高度释放,打在同一点,故竖直方向位移相同;在竖直方向上做自由落体运动,故两小球运动时间相同,A错误.在水平方向,s a=2s b,由于时间相同,所以水平方向的加速度a a=2a b,由Eq=F=ma知它们的电荷量之比为2∶1,B正确.电势能的减少量之比为电场力做的功之比,a球所受电场力和水平位移均为b球的两倍,所以它们电势能的减少量之比为4∶1,C正确.动能的增加量等于合外力做的功,合外力对a 球做的功不是对b球做功的4倍,D错误.10.如图甲所示,将一倾角θ=37°的粗糙绝缘斜面固定在地面上,空间存在一方向沿斜面向上的匀强电场.一质量m =0.2 kg ,带电荷量q =2.0×10-3 C 的小物块从斜面底端静止释放,运动0.1 s 后撤去电场,小物块运动的v -t 图象如图乙所示(取沿斜面向上为正方向),g =10 m/s 2. (sin 37°=0.6,cos 37°=0.8),求:(1)电场强度E 的大小;(2)小物块在0~0.3 s 运动过程中机械能增加量.解析:(1)加速时:a 1=Δv 1Δt 1=20 m/s 2 减速时:加速度大小a 2=⎪⎪⎪⎪Δv 2Δt 2=10 m/s 2 由牛顿第二定律得:Eq -mg sin θ-F f =ma 1mg sin θ+F f =ma 2联立得E =3×103 N/C摩擦力F f =0.8 N.(2)方法一:ΔE k =0ΔE p =mgx sin 37°x =0.3 mΔE =ΔE pΔE =0.36 J.方法二:加速距离x 1=v 2t 1=0.1 m 减速距离x 2=v 2t 2=0.2 m 电场力做功W E =Eqx 1=0.6 J摩擦力做功W f =-F f (x 1+x 2)=-0.24 J物块在0~0.3 s 运动过程中机械能增加量ΔE =W E +W f =0.36 J.答案:(1)3×103 N/C (2)0.36 J11.如图所示,LMN 是竖直平面内固定的光滑绝缘轨道,MN 水平且足够长,LM 下端与MN 相切.质量为m 的带正电小球B 静止在水平面上,质量为2m 的带正电小球A 从LM 上距水平面高为h 处由静止释放,在A 球进入水平轨道之前,由于A 、B 两球相距较远,相互作用力可认为零,A 球进入水平轨道后,A 、B 两球间相互作用视为静电作用,带电小球均可视为质点.已知A 、B 两球始终没有接触.重力加速度为g .求:(1)A 球刚进入水平轨道的速度大小;(2)A 、B 两球相距最近时,A 、B 两球系统的电势能E p ;(3)A 、B 两球最终的速度v A 、v B 的大小.解析:(1)对A 球下滑的过程,据机械能守恒得2mgh =12·2m v 20 解得v 0=2gh .(2)A 球进入水平轨道后,两球组成的系统动量守恒,当两球相距最近时共速,有 2m v 0=(2m +m )v解得v =23v 0=232gh 据能量守恒定律得2mgh =12(2m +m )v 2+E p 解得E p =23mgh . (3)当两球相距最近之后,在静电斥力作用下相互远离,两球距离足够远时,相互作用力为零,系统势能也为零,速度达到稳定.则2m v 0=2m v A +m v B12×2m v 20=12×2m v 2A +12m v 2B 解得v A =13v 0=132gh v B =43v 0=432gh . 答案:(1)2gh (2)23mgh (3)132gh 432gh。
权掇市安稳阳光实验学校考点规范练38 带电粒子在电场中的综合问题一、单项选择题1.(2018·河南中原名校第二次联考)如图所示,在两平行金属板有一个静止的电子(不计重力),当两板间的电压分别如图甲、乙、丙、丁所示,电子在板间运动(假设不与板相碰),下列说法正确的是()A.电压是甲图时,在0~T时间内,电子的电势能一直减少B.电压是乙图时,在0~T2时间内,电子的电势能先增加后减少C.电压是丙图时,电子在板间做往复运动D.电压是丁图时,电子在板间做往复运动2.(2019·天津模拟)一匀强电场的电场强度E随时间t变化的图像如图所示,在该匀强电场中,有一个带负电粒子于t=0时刻由静止释放,若带电粒子只受电场力作用,则下列说法正确的是(假设带电粒子不与板相碰)()A.带电粒子只向一个方向运动B.0~2 s内,电场力做功等于0C.4 s末带电粒子回到原出发点D.2.5~4 s内,电场力做功等于03.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b。
不计空气阻力,则下列说法正确的是()A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒4.(2018·辽宁三校高三第三次调研考试)如图所示,矩形区域PQNM内存在平行于纸面的匀强电场,一质量为m=2.0×10-11 kg、电荷量为q=1.0×10-5 C的带正电粒子(重力不计)从a点以v1=1×104 m/s的初速度垂直于PQ进入电场,最终从MN边界的b点以与水平边界MN成30°角斜向右上方射出,射出电场时的速度v2=2×104 m/s,已知MP=20 cm、MN=80 cm,取a点电势为零,如果以a点为坐标原点O,沿PQ方向建立x轴,则粒子从a点运动到b点的过程中,电场的电场强度E、电势φ、粒子的速度v、电势能E p随x的变化图像正确的是()5.(2018·江西宜春调研)如图所示,O、A、B、C为一粗糙绝缘水平面上的四点,不计空气阻力,一电荷量为-Q的点电荷固定在O点,现有一质量为m、电荷量为-q的小金属块(可视为质点),从A点由静止沿它们的连线向右运动,到B点时速度最大,其大小为v m,小金属块最后停止在C点。
高三专题:带电粒子在电场中的运动轨迹问题【规律总结】①两个切线方向电场线的切线方向:____________________________轨迹的切线方向:______________________________②判断电性应根据:________________________________③判断a、E、F根据:______________________________④判断v、E K的大小根据:___________________________⑤判断E p的大小根据:______________________________⑥判断电势的高低根据:______________________________【典型题目】1、某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N,以下说法正确的是()A.粒子必定带正电荷B.粒子在M点的加速度大于它在N点的加速度C.粒子在M点的加速度小于它在N点的加速度D.粒子在M点的动能小于它在N点的动能2、实线为三条未知方向的电场线,从电场中的M点以相同的速度飞出a、b两个带电粒子,a、b的运动轨迹如右图中的虚线所示(a、b只受电场力作用),则()A.a一定带正电,b一定带负电B.电场力对a做正功,对b做负功C.a的速度将减小,b的速度将增大D.a的加速度将减小,b的加速度将增大3、如右图所示,实线表示匀强电场中的电场线,一带电粒子(不计重力)经过电场区域后的轨迹如图中虚线所示,a、b是轨迹上的两点,关于粒子的运动情况,下列说法中可能正确的是()A.该粒子带正电荷,运动方向为由a至bB.该粒子带负电荷,运动方向为由a至bC.该粒子带正电荷,运动方向为由b至aD.该粒子带负电荷,运动方向为由b至a4、如图所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点,若带电粒子在运动中只受电场力作用,根据此图能做出正确判断的是()A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的速度何处较大D.带电粒子在a、b两点的电势能何处较大5、如右图所示,实线是匀强电场的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上两点,若带电粒子在运动中只受电场力作用,则由此图可作出正确判断的是()A.带电粒子带负电荷B.带电粒子带正电荷C.带电粒子所受电场力的方向向左D.带电粒子做匀变速运动6、一带电粒子沿着右图中曲线JK穿过一匀强电场,a、b、c、d为该电场的电势面,其中φa<φb<φc<φd,若不计粒子受的重力,可以确定()A.该粒子带正电B.该粒子带负电C.从J到K粒子的电势能增加D.粒子从J到K运动过程中的动能与电势能之和不变7、如下图所示,实线为方向未知的三条电场线,虚线分别为等势线1、2、3,已知MN=NQ,a、b两带电粒子从等势线2上的O点以相同的初速度飞出.仅在电场力作用下,两粒子的运动轨迹如下图所示,则()A.a一定带正电,b一定带负电B.a加速度减小,b加速度增大C.MN电势差|U MN|等于NQ两点电势差|U NQ|D.a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小8、如下图,一带负电粒子以某速度进入水平向右的匀强电场中,在电场力作用下形成图中所示的运动轨迹.M和N是轨迹上的两点,其中M点在轨迹的最右点.不计重力,下列表述正确的是()A.粒子在M点的速率最大B.粒子所受电场力沿电场方向C.粒子在电场中的加速度不变D.粒子在电场中的电势能始终在增加9、如下图为一匀强电场,某带电粒子从A点运动到B点.在这一运动过程中克服重力做的功为2.0 J,电场力做的功为1.5 J.则下列说法正确的是()A.粒子带负电B.粒子在A点的电势能比在B点少1.5 JC.粒子在A点的动能比在B点多0.5 JD.粒子在A点的机械能比在B点少1.5 J10、如下图所示,图中实线表示一匀强电场的电场线,一带负电荷的粒子射入电场,虚线是它的运动轨迹,a、b是轨迹上的两点,若粒子所受重力不计,则下列判断正确的是()A.电场线方向向下B.粒子一定从a点运动到b点C.a点电势比b点电势高D.粒子在a点的电势能大于在b点的电势能11、下图中虚线为匀强电场中与场强方向垂直的等间距平行直线,两粒子M、N质量相等,所带电荷的绝对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如右图中两条实线所示.点a、b、c为实线与虚线的交点.已知O点电势高于c点,若不计重力,则()A.M带负电荷,N带正电荷B.N在a点的速度与M在c点的速度大小相同C.N在从O点运动至a点的过程中克服电场力做功D.M在从O点运动至b点的过程中,电场力对它做的功等于零12.如图所示,虚线a、b、c表示电场中的三个等势面与纸平面的交线,且相邻等势面之间的电势差相等.实线为一带正电荷粒子仅在电场力作用下通过该区域时的运动轨迹,M、N是这条轨迹上的两点,则下列说法中正确的是()A.三个等势面中,a的电势最高B.对于M、N两点,带电粒子通过M点时电势能较大C.对于M、N两点,带电粒子通过M点时动能较大D.带电粒子由M运动到N,加速度增大13、如图,虚线a、b和c是静电场中的三个等势面,它们的电势分别为φa、φb、和φc,φa﹥φb﹥φc。
高中物理【带电粒子在电场中的运动】专题训练1[A 组 基础达标练]1.如图所示,两平行的带电金属板水平放置。
若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态。
现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动解析:两平行金属板水平放置时,带电微粒静止,则mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,静电力方向也逆时针旋转45°,但大小不变,此时静电力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确。
答案:D2.如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中的O 点自由释放后,分别抵达B 、C 两点。
若AB =BC ,则它们带电荷量之比q 1∶q 2等于( )A .1∶2B .2∶1C .1∶ 2D.2∶1解析:竖直方向有h =12gt 2,水平方向有l =qE 2m t 2,联立可得q =mgl Eh ,所以有q 1q 2=21,B正确。
答案:B3.在电场强度大小为E 的匀强电场中,将一个质量为m 、电荷量为q 的带电小球由静止开始释放,带电小球沿与竖直方向成θ角的方向做直线运动。
关于带电小球的电势能和机械能的判断,正确的是( )A .若sin θ<qEmg,则电势能一定减少,机械能一定增加B .若sin θ=qEmg ,则电势能、机械能一定不变C .若sin θ=qEmg ,则电势能一定增加,机械能一定减少D .若tan θ=qEmg,则电势能可能增加,机械能一定增加解析:若sin θ<qEmg ,静电力可能做正功,也可能做负功,所以电势能可能减少也可能增加,机械能可能增加也可能减少,A 项错误;若sin θ=qEmg ,则静电力与速度方向垂直,静电力不做功,电势能、机械能一定不变,B 项正确,C 项错误;若tan θ=qEmg ,则静电力沿水平方向,静电力和重力的合力与速度方向同向,静电力做正功,电势能一定减少,机械能一定增加,故D 项错误。
物理带电粒子在电场中的运动专项习题及答案解析及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求:(1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:00442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响)【答案】(12h g 2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π=【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh =000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=3.3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos 2d R a R L ≥+= ;min 0(632)3L T v π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin LR α= ,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos 2d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min23L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离.质量m 1的不带电绝缘滑块静止在A 点,质量m 2、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,,.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N //s ; 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x5.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动偏移距离2012y at =加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.6.如图所示,在竖直面内有两平行金属导轨AB 、CD .导轨间距为L ,电阻不计.一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动.棒与导轨垂直,并接触良好.导轨之间有垂直纸面向外的匀强磁场,磁感强度为B .导轨右边与电路连接.电路中的三个定值电阻阻值分别为2R 、R 和R .在BD 间接有一水平放置的电容为C 的平行板电容器,板间距离为d ,电容器中质量为m 的带电微粒电量为q 。
带电粒子在电场中运动的综合问题同步训练一、选择题1.(多选)如图所示,这是匀强电场的电场强度E随时间t变化的图象。
当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法正确的是( )A.带电粒子将始终向同一个方向运动B.2 s末带电粒子回到原出发点C.3 s末带电粒子的速度为0D.0~3 s内,电场力做的总功为02. (多选)(荆门市上学期1月调考)如图(a)所示,A、B表示真空中水平放置的相距为d的平行金属板,板长为L,两板加电压后板间的电场可视为匀强电场。
现在A、B两板间加上如图(b)所示的周期性的交变电压,在t=0时恰有一质量为m、电荷量为q的粒子在板间中央沿水平方向以速度v0射入电场,忽略粒子的重力,则下列关于粒子运动状况的表述正确的是( )A.粒子在垂直于板的方向上的分运动可能是往复运动B.粒子在垂直于板的方向上的分运动是单向运动C.只要周期T和电压U0的值满足一定条件,粒子就可沿与板平行的方向飞出D.粒子不可能沿与板平行的方向飞出3. (多选)(阳泉市上学期期末)在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m的带电小球,另一端固定于O点,把小球拉至A点,此时细线与电场线平行,然后把小球从A点无初速度释放,经最低点B后到达B的另一侧C点时速度为0,则( )A.小球在B点时速度最大B.小球从A点到B点再到C点的过程中,机械能一直在减少C.小球在B点时的绳子拉力最大D.从B点到C点的过程中小球的电势能一直增加4. (郑州市第二次质量预测)水平地面上方分布着水平向右的匀强电场,一光滑绝缘轻杆竖直立在地面上,轻杆上有A、B两点。
轻杆左侧固定一带正电的点电荷,电荷量为+Q,点电荷在轻杆A、B 两点的中垂线上,一个质量为m,电荷量为+q的小球套在轻杆上,从A点由静止释放,小球由A点运动到B点的过程中,下列说法正确的是( )A.小球受到的电场力先减小后增大B.小球的运动速度先增大后减小C.小球的电势能先增大后减小D.小球的加速度大小不变5.(多选)(山东潍坊二模)如图1所示,长为8d、间距为d的平行金属板水平放置,O 点有一粒子源,能持续水平向右发射初速度为v 0,电荷量为+q ,质量为m 的粒子。
高中物理专题练习:带电粒子在电场中运动的综合性问题时间:60分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分.其中1~6为单选,7~10为多选)1.如图所示,有三个质量相等,分别带正电、负电和不带电小球,从平行板电场中的P点以相同的初速度v0垂直进入电场,它们分别落到A、B、C三点( )A.落到A点的小球带正电,落到B点的小球不带电B.三小球在电场中运动的时间相等C.三小球到达正极板时动能关系:E k A>E k B>E k CD.三小球在电场中运动的加速度关系:a A>a B>a C答案 A解析带负电的小球受到的合力为mg+F电,带正电的小球受到的合力为mg-F电′,不带电小球仅受重力mg,根据牛顿第二定律可得带负电的小球加速度最大,其次为不带电小球,最小的为带正电的小球,故小球在板间运动时间t=xv,x C<x B<x A,所以t C<t B<t A,又h C=h B=h A,故aC>a B>a A,B、D错误;故落在C点的小球带负电,落在A点的小球带正电,落在B点的小球不带电,A 正确;因为重力对三个小球做功相同,电场对带负电的小球C做正功,对带正电的小球A做负功,对不带电的B球不做功,根据动能定理可得三小球落在板上的动能大小关系为E k C>E k B>E k A,C错误.2.(山东菏泽模拟)如图所示,两极板水平放置的平行板电容器间形成匀强电场,两极板间相距为d.一带负电的微粒从上极板M的边缘以初速度v0射入,沿直线从下极板的边缘射出.已知微粒的电量为q、质量为m.下列说法正确的是( )A.微粒运动的加速度不为0 B.微粒的电势能减小了mgdC.两极板间的电势差为mgd qD.N极板的电势高于M板的电势答案 C解析由题意分析可知,微粒所受电场力方向竖直向上,与重力平衡,微粒做匀速直线运动,加速度为零,A错误;微粒穿过平行板电容器过程,重力做功mgd,微粒的重力势能减小,动能不变,根据能量守恒定律知,微粒的电势能增加了mgd,B错误;微粒的电势能增加量ΔE=mgd,又ΔE=qU,得到两极板的电势差U=mgdq,C正确;电场力方向竖直向上,微粒带负电,故电场强度方向竖直向下,M板的电势高于N板的电势,D错误.3.(2017·海南高考)如图所示,平行板电容器的两极板竖直放置并分别与电源的正、负极相连,一带电小球经绝缘轻绳悬挂于两极板之间,处于静止状态.现保持右极板不动,将左极板向左缓慢移动.关于小球所受的电场力大小F和绳子的拉力大小F T,下列判断正确的是( )A.F逐渐减小,F T逐渐减小B.F逐渐增大,F T逐渐减小C.F逐渐减小,F T逐渐增大D.F逐渐增大,F T逐渐增大答案 A解析匀强电场的电场强度E=Ud,因为两极板分别与电源的正、负极相连,所以两极板间的电压U不变,将左极板向左缓慢移动,距离d增大,电场强度减小,电场力F=qE也减小,带电小球的受力分析如图所示,可知细绳的拉力F T=mg2+F2,由于F减小,mg不变,所以拉力FT减小,A正确.4.(湘东五校联考)一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下,带电油滴仅受重力和电场力作用.带电油滴从a运动到b的过程中,能量变化情况为( )A.动能减小B.电势能增加C.重力势能和电势能之和增加D.动能和重力势能之和增加答案 D解析由带电油滴从a运动到b的轨迹可知,带电油滴所受的合力竖直向上,即油滴的电场力方向竖直向上,所以油滴带负电荷,合外力与位移的夹角小于90°,合外力做正功,带电油滴的动能增大,A错误;由b点电势比a点电势高,且油滴带负电,可知油滴在a点的电势能比在b 点的大,即从a到b油滴的电势能减小,B错误;油滴从a运动到b,电势能减小,重力势能增大,动能也增大,又油滴的电势能、重力势能与动能之和不变,则油滴重力势能和电势能之和减小,动能和重力势能之和增大,C错误,D正确.5.(昆明质检)如图所示,竖直平面内有两个固定的电荷量相等的正点电荷,两点电荷的连线处于水平方向,O为连线的中点,P、M为连线的垂直平分线上的两点,且PO=OM=h.现将一带负电的小球从P点静止释放,重力加速度为g,下列说法正确的是( )A.从P到O的过程中,小球的电势能一直增大B.从P到O的过程中,小球的加速度一直增大C.从O到M的过程中,小球的机械能先增大后减小D.到达M点时,小球的速度大小为2gh答案 D解析从P到O的过程中,电场力做正功,小球的电势能一直减小,A错误;由于在P、M的连线上,O点的电场强度为零,无限远处电场强度为零,但不知道电场强度最大处的位置,故将一带负电的小球从P点静止释放,从P到O的过程中,小球的加速度可能一直增大,可能先增大后减小,也可能一直减小,B错误;带负电的小球从O到M的过程中,克服电场力做功,根据功能关系,小球的机械能一直减小,C错误;由于P、M两点关于两点电荷的连线对称,故两点电势相等,带负电的小球在P、M两点的电势能相等,对带负电的小球从P点到M点的过程,由能量守恒定律,mg·2h=12mv2,解得到达M点时小球的速度大小为v=2gh,D正确.6.(河北五个一名校联盟联考)如图所示,离地H高处有一个质量为m、电荷量为+q的物体处于电场强度随时间变化规律为E=E0-kt(E0、k均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知μqE0<mg.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑H2后脱离墙面,此时速度大小为gH2,物体最终落在地面上.则下列关于物体的运动说法不正确的是( )A.当物体沿墙壁下滑时,物体先做加速运动再做匀速直线运动B.物体从脱离墙壁到落地之前的运动轨迹是一段曲线C.物体克服摩擦力所做的功W=38 mgHD.物体与墙壁脱离的时刻为t=E 0 k答案 A解析在竖直方向上,由牛顿第二定律有mg-μqE=ma,随着电场强度E的减小,加速度a 逐渐增大,故物体做变加速运动,当E=0时,加速度增大到重力加速度g,此后物体脱离墙面,物体脱离墙面时的速度向下,之后所受合外力与初速度不在同一条直线上,所以运动轨迹为曲线,A错误,B正确;物体从开始运动到刚好脱离墙面时电场力一直不做功,由动能定理得mg H 2-W=12m⎝⎛⎭⎪⎫gH22,物体克服摩擦力所做的功为W=38mgH,C正确;当物体与墙壁脱离时所受的支持力为零,即电场力为零,此时电场强度为零,所以有E 0-kt =0,解得时间为t =E 0k,D 正确.7.(银川一中模拟)如图所示,匀强电场分布在边长为L 的正方形区域ABCD 内,M 、N 分别为AB 和AD 的中点,一个初速度为v 0、质量为m 、电荷量为q 的带负电粒子沿纸面射入电场,带电粒子的重力不计.如果带电粒子从M 点垂直电场方向进入电场,则恰好从D 点离开电场,若带电粒子从N 点垂直BC 方向射入电场,则带电粒子( )A .从BC 边界离开电场B .从AD 边界离开电场C .在电场中的运动时间为L v 0D .离开电场时的动能为12mv 20答案 BD解析 从M 到D 过程粒子做类平抛运动,则沿v 0方向有:L =v 0t ,垂直v 0方向:12L =12at 2,又a =F m ,解得:F =mv 20L ,当带电粒子从N 点垂直BC 方向射入电场,粒子做匀减速直线运动,设粒子匀减速运动的位移为x 时速度减至零,根据动能定理得:-Fx =0-12mv 20,解得x =L 2,粒子运动到位移为L2处,又沿原路返回,所以粒子最终从AD 边离开电场,A 错误,B 正确;设粒子在电场中运动的时间为t ′,则L 2=v 02·t ′2,t ′=2Lv 0,C 错误;离开电场时电场力做功为零,故离开电场时的动能为:E k =12mv 20,故D 正确.8.如图所示,有一沿水平方向的匀强电场,其电场强度为E.一带电小球,以大小为v0的初速度竖直向上进入该匀强电场;小球运动一段时间后,速度大小仍然为v0且方向沿电场方向,则在这一过程中,下列说法正确的是( )A.小球在运动过程中机械能守恒B.小球在电场中所受到的合力F与水平方向成45°角C.电场力所做的功一定大于重力做的功D.电势能的减少量一定等于重力势能的增加量答案BD解析根据机械能守恒的条件可知A错误;设小球的质量为m、电荷量为q,小球在水平方向上的加速度为a x=qEm,速度为v x=a x t,竖直方向上速度为v y=v0-gt,到达B点时v x=v0,v y=0,所以有v0=a x t,0=v0-gt,故a x=g,qE=mg,由此可知小球在电场中所受到的合力F与水平方向成45°角,故B正确;由动能定理qEx-mgh=0,x、h分别是小球在水平方向上和竖直方向上的位移,可得x=h,W G=-W E,ΔE pG=-ΔE pE,故C错误,D正确.9.(浙江宁波模拟)如图所示,MPQO为有界的竖直向下的匀强电场,电场强度为E,ACB为光滑固定的半圆形轨道,轨道半径为R,A、B为其水平直径的两个端点,AC为14圆弧.一个质量为m、电荷量为-q(q>0)的带电小球,从A点正上方高为H处由静止释放,并从A点沿切线进入半圆形轨道.不计空气阻力及一切摩擦,关于带电小球的运动情况,下列说法正确的是( )A.小球一定能从B点离开轨道B.小球在AC部分可能做匀速圆周运动C.若小球能从B点离开,上升的高度一定小于HD.小球到达C点的速度可能为零答案BC解析小球受到的重力竖直向下,电场力竖直向上,如果到达B点时重力做的正功大于电场力做的负功,小球能离开半圆轨道,否则不能,A错误;若电场力等于重力,小球在AC部分做匀速圆周运动,B正确;因电场力做负功,有机械能损失,若小球能从B点离开,上升的高度一定小于H,C正确;若小球到达C点的速度为零,则电场力大于重力,小球在到达C点之前就已经脱离轨道,D错误.10.(福建质检)如图所示,M、N两点处于同一水平面,O为M、N连线的中点,过O点的竖直线上固定一根绝缘光滑细杆,杆上A、B两点关于O点对称.第一种情况,在M、N两点分别放置电量为+Q和-Q的等量异号点电荷,套在杆上带正电的小金属环从A点无初速释放,运动到B 点;第二种情况,在M、N两点分别放置电量为+Q的等量同号点电荷,该金属环仍从A点无初速释放,运动到B点.则两种情况中( )A.金属环运动到B点的速度第一种情况较大B.金属环从A点运动到B点所用的时间第一种情况较短C.金属环从A点运动到B点的过程中,动能与重力势能之和均保持不变D.金属环从A点运动到B点的过程中(不含A、B两点),在杆上相同位置的速度第一种情况较大答案BD解析等量异号点电荷连线的中垂线是等势线,带电金属环沿杆运动时电势能不变,重力势能转化为动能,金属环所受合力等于重力,做加速度等于重力加速度的匀加速直线运动;等量同号正点电荷连线中垂线上,点电荷连线的中点O电势最高,与中点O距离越远,电势越低,A、B 两点关于O点对称,电势相等,金属环电势能相等,从A点到B点时重力势能全部转化为动能,第一种情况与第二种情况在B点的速度相等,故A错误.第二种情况中金属环所受电场力先是阻力后是动力,结合到B点时与第一种情况速度相等,可知D正确.由于到B点前第二种情况相同位置的速度均比较小,所以运动时间比较长,故B正确.第一种情况,只有重力做功,机械能守恒,第二种情况,除重力做功外,电场力先做负功,后做正功,过程中机械能不守恒,故C错误.二、非选择题(本题共2小题,共30分)11.(14分)如图所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q(q>0)的小球套在圆环上,并静止在P点,OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=0.6,cos37°=0.8.求:(1)电场强度E 的大小;(2)若要使小球从P 点出发能做完整的圆周运动,小球初速度的大小应满足的条件. 答案 (1)3mg4q(2)不小于5gr 解析(1)当小球静止在P 点时,小球的受力情况如图所示, 则有qE mg=tan θ, 所以E =3mg4q.(2)当小球做圆周运动时,可以等效为在一个“重力加速度”为54g 的“重力场”中运动.若要使小球能做完整的圆周运动,则小球必须能通过图中的Q 点.设当小球从P 点出发的速度为v min 时,小球到达Q 点时速度为零. 在小球从P 运动到Q 的过程中,根据动能定理有 -54mg ·2r =0-12mv 2min , 所以v min =5gr ,即小球的初速度应不小于5gr .12.(湘东五校联考)(16分)如图所示,长度为d的绝缘轻杆一端套在光滑水平转轴O上,另一端固定一质量为m、电荷量为q的带负电小球.小球可以在竖直平面内做圆周运动,AC和BD 分别为圆的竖直和水平直径,等量异号点电荷+Q、-Q分别固定在以C为中点、间距为2d的水平线上的E、F两点.让小球从最高点A由静止开始运动,经过B点时小球的速度大小为v,不考虑q对+Q、-Q所产生电场的影响,重力加速度为g,求:(1)小球经过C点时对杆的拉力大小;(2)小球经过D点时的速度大小.答案(1)5mg(2) 4gd-v2解析(1)设U BA=U,根据对称性可知U BA=U AD=U,题图中AC线处在等势面上,U AC=0,故小球从A点到C点过程中电场力不做功,小球从A点到C点过程,根据动能定理有mg·2d=12 mv2C在C点,由牛顿第二定律有T-mg=m v2 C d得T=5mg.根据牛顿第三定律知,球经过C点时对杆的拉力大小为T′=T=5mg.(2)小球从A点到B点和从A点到D点过程中,根据动能定理有mgd+qU=12 mv2mgd-qU=12 mv2D得v D=4gd-v2.。